Synergistic anti-inflammatory effects of Curcuma xanthorrhiza rhizomes and Physalis angulata herb extract on lipopolysaccharide-stimulated RAW 264.7 cells

Putu Yudhistira Budhi Setiawan Nyoman Kertia Arief Nurrochmad Subagus Wahyuono   

Open Access   

Published:  Jun 19, 2022

Abstract

Activation of macrophages stimulates the release of various inflammatory mediators which become targets for the development of anti-inflammatory drugs. The combination of Curcuma xanthorrhiza and Physalis angulata extracts was investigated for its anti-inflammatory properties and synergistic effects. Separate extraction with ethanol was applied for both materials, followed by the determination of the characteristics of each extract. To assess the production of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6), each extract and its combination was tested on lipopolysaccharide- (LPS)-induced RAW 264.7 cells using the enzyme-linked immunosorbent assay method. Nitric oxide production was determined by measuring the nitrite content using the Griess method. The cell viability was determined using the MTT method. Both extracts were also able to inhibit inflammatory mediators such as TNF-α, IL-6, and NO. The combination of the two extracts was dominated by a synergistic effect (C < 1) in all concentration ratios, but increasing the concentration ratio gave a cytotoxic effect. It can be concluded that both extracts possessed an anti-inflammatory activity on the LPS-induced RAW 264.7 cells model, and the combination of these extracts displayed synergistic anti-inflammatory activity.


Keyword:     Anti-inflammatory RAW 264.7 synergistic Curcuma xanthorrhiza Physalis angulata.


Citation:

Setiawan PYB, Wahyuono S, Kertia N, Nurrochmad A. Synergistic anti-inflammatory effects of Curcuma xanthorrhiza rhizomes and Physalis angulata herb extract on lipopolysaccharide-stimulated RAW 264.7 cells. J Appl Pharm Sci, 2022; 12(07):088–098.

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Abdel-Diam MM, Samak DH, El-Sayed YS, Aleya L, Alarifi S, Alkahtani S. Curcumin and quercetin synergistically attenuate subacute diazinon-induced inflammation and oxidative neurohepatic damage, and acetylcholinesterase inhibition in albino rats. Environ Sci Pollut Res Int, 2019; 26(4):3659-65. https://doi.org/10.1007/s11356-018-3907-9

Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm, 2007; 4(6):807-18. https://doi.org/10.1021/mp700113r

Bastos GNT, Silveira AJA, Salgado CG. Physalis angulata extract exerts anti-inflammatory effects in rats by inhibiting different pathways. J Ethnopharmacol, 2008; 118:246-51. https://doi.org/10.1016/j.jep.2008.04.005

Becker EM, Ntouma G, Skibsted LH. Synergism and antagonism between quercetin and other chain-breaking antioxidants in lipid systems of increasing structural organisation. Food Chem, 2007; 103(4):1288-96. https://doi.org/10.1016/j.foodchem.2006.10.034

Ben-Baruch A. Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol, 2006; 16(1):38-52. https://doi.org/10.1016/j.semcancer.2005.07.006

Bhat N, Jeri L, Mipun P, Kumar Y. Systematic studies (micromorphological, leaf architectural, anatomical and palynological) of genus Physalis L. (Solanaceae) in Northeast India. Plant Arch, 2008; 18(2):2229-38.

Bimonte S, Barbieri A, Leongito M, Piccirillo M, Giudice A, Pivonello C, de Angelis C, Granata V, Palaia R, Izzo F. Curcumin anticancer studies in pancreatic cancer. Nutrients, 2016; 8(7):433. https://doi.org/10.3390/nu8070433

Braga MA, Rodrigues R de O, Yaochite JNU. Pro-inflammatory activity of Astronium fraxinifolium Schott on lipopolysaccharide-stimulated RAW 264.7 cells. J App Pharm Sci, 2019; 9(12):30-6. https://doi.org/10.7324/JAPS.2019.91205

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018; 9(6):7204-18. https://doi.org/10.18632/oncotarget.23208

Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res, 2010; 70(2):440-6. https://doi.org/10.1158/0008-5472.CAN-09-1947

Cobaleda-Velasco M, Alanis-Bañuelos R, Almaraz N, RojasLópez M, Gonzalez L, Ávila-Reyes J, Morales Rodrigo S. Phenolic profiles and antioxidant properties of Physalis angulata L. as quality indicators. J Pharm Pharmacogn Res, 2017; 5:114-28.

Dermiati CN, Tandi J. Uji Efek Antiinflamasi Dan Analgesik Kombinasi Ekstrak Etanol Herba Patikan Kebo (Euphorbia Hirta L) Dan Daun Pepaya (Carica papaya L) Pada Tikus Putih Jantan. Farmakol J Farm, 2018; 15(2):98-105.

Dong L, Zhang Y, Wang X, Dong YX, Zheng L, Li YJ, Ni JM. In vivo and in vitro anti-inflammatory effects of ethanol fraction from Periploca forrestii Schltr. Chin J Integr Med, 2017; 23(7):528-34. https://doi.org/10.1007/s11655-017-2803-3

Fakhrudin N, Nisa K, Azzahra A, Ajiningtyas RJ. Study of radical scavenger activity, total phenol and flavonoid contents of Artocarpus altilis leaves extracts. Int J Pharm Clin Res, 2016; 8:352-6.

Ferreira L dos SL, do Vale A, de Souza A, Leite K, Sacramento C, Moreno MV, Araújo TH, Soares MB, Grassi MF. Anatomical and phytochemical characterization of Physalis angulata L.: a plant with therapeutic potential. Pharmacogn Res, 2019; 11(2):171-7. https://doi.org/10.4103/pr.pr_97_18

Gounden S, Chuturgoon A. Curcumin upregulates antioxidant defense, lon protease, and heat-shock protein 70 under hyperglycemic conditions in human hepatoma cells. J Med Food, 2017; 20(5):465-73. https://doi.org/10.1089/jmf.2016.0146

Güran M, ?anl?türk G, Kerküklü NR, Altunda? EM, SühaYalç?n A. Combined effects of quercetin and curcumin on anti-inflammatory and antimicrobial parameters in vitro. Eur J Pharmacol, 2019; 859(172486):1-6. https://doi.org/10.1016/j.ejphar.2019.172486

Halim M, Muhammad Zabri Tan MS, Ismail S, Mahmud R. Standardization and phytochemical studies of Curcuma xanthorrhiza Roxb. Int J Pharm Pharm Sci, 2012; 4:606-10.

Harborne JB. Phytochemical methods a guide to modern techniques of plant analysis. Springer Science & Business Media, Berlin, Germany, 1998.

Huang M, He JX, Hu HX, Zhang K, Wang XN, Zhao BB, Lou HX, Ren DM, Shen T.. Withanolides from the genus Physalis : a review on their phytochemical and pharmacological aspects. J Pharm Pharmacol, 2020; 72(5):649-69. https://doi.org/10.1111/jphp.13209

John Kenneth M, Amina I, Yakubu J. Co-extract mixture from Strophanthus hispidus (roots) and Aframomum meleguta (seeds) show phytochemical synergy in its anti-inflammatory activity. Arch Pharm Pharm Sci, 2019; 3(1):089-100. https://doi.org/10.29328/journal.apps.1001019

Kemenkes Republik Indonesia. Farmakope herbal Indonesia. 2nd edition, Kementrian Kesehatan Republik Indonesia, Jakarta, Indonesia, 2017.

Kim MB, Kim C, Song Y, Hwang JK. Antihyperglycemic and anti-inflammatory effects of standardized Curcuma xanthorrhiza Roxb. extract and its active compound xanthorrhizol in high-fat diet-induced obese mice. Evid Based Complement Alternat Med, 2014; 2014:205915. https://doi.org/10.1155/2014/205915

Kim S, Ko H, Hyun CG, Baik J, Bu H, Lee N. Anti-inflammatory constituents from branches of Corylus hallaisanensis Nakai. J App Pharm Sci, 2015; 5(12):162-6. https://doi.org/10.7324/JAPS.2015.501229

Kitaura H, Kimura K, Ishida M, Kohara H, Yoshimatsu M, Takano-Yamamoto T. Immunological reaction in TNF-α-mediated osteoclast formation and bone resorption in vitro and in vivo. Clin Dev Immunol, 2013; 2013:1-8. https://doi.org/10.1155/2013/181849

Komape NPM, Bagla VP, Kabongo-Kayoka P, Masoko P. Antimycobacteria potential and synergistic effects of combined crude extracts of selected medicinal plants used by Bapedi traditional healers to treat tuberculosis related symptoms in Limpopo Province, South Africa. BMC Complement Altern Med, 2017; 17(1):128. https://doi.org/10.1186/s12906-016-1521-2

Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest, 2000; 106(12):1481-8. https://doi.org/10.1172/JCI11176

Lawrence T. The nuclear factor NF- B pathway in inflammation. Cold Spring Harbor Perspect Biol, 2009; 1(6):1-10. https://doi.org/10.1101/cshperspect.a001651

Lee HA, Koh EK, Sung JE, Kim JE, Song SH, Kim DS, Song SH, Kim DS, Son HJ, Lee CY, Lee HS, Bae CJ, Hwang DY. Ethyl acetate extract from Asparagus cochinchinensis exerts anti-inflammatory effects in LPS stimulated RAW264.7 macrophage cells by regulating COX 2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity. Mol Med Rep, 2017; 15(4):1613-23. https://doi.org/10.3892/mmr.2017.6166

Lee KJ, Oh YC, Cho WK, Ma JY. Antioxidant and antiinflammatory activity determination of one hundred kinds of pure chemical compounds using offline and online screening HPLC assay. Evid Based Complement Alternat Med, 2015; 2015:165457. https://doi.org/10.1155/2015/165457

Liu Z, Luo Z, Jia C, Wang D, Li D. Synergistic effects of Potentilla fruticosa L. leaves combined with green tea polyphenols in a variety of oxidation systems. J Food Sci, 2016; 81(5):1091-101. https://doi.org/10.1111/1750-3841.13292

Mary H, Gomathy S, Jayasree S, Nizzy AM, Rajagopal B, Jeeva S. Phytochemical characterization and antimicrobial activity of Curcuma xanthorrhiza Roxb. Asian Pac J Trop Biomed, 2012; 2:637-40. https://doi.org/10.1016/S2221-1691(12)60288-3

McAdam E, Haboubi HN, Forrester G, Eltahir Z, Spencer-Harty S, Davies C, Griffiths AP, Baxter JN, Jenkins GJ. Inducible nitric oxide synthase (iNOS) and nitric oxide (NO) are important mediators of reflux-induced cell signalling in esophageal cells. Carcinogenesis, 2012; 33(11):2035-43. https://doi.org/10.1093/carcin/bgs241

Meng Q, Fan J, Liu Z, Li X, Zhang F, Zhang Y, Sun Y, Li L, Liu X, Hua E. Cytotoxic Withanolides from the whole herb of Physalis angulata L. Molecules, 2019; 24(8):1608. https://doi.org/10.3390/molecules24081608

Miller MW, Lin AP, Wolf EJ, Miller DR. Oxidative stress, inflammation, and neuroprogression in chronic PTSD. Harvard Rev Psychiatry, 2018; 26(2):57-69. https://doi.org/10.1097/HRP.0000000000000167

Naksuriya O, Okonogi S. Comparison and combination effects on antioxidant power of curcumin with gallic acid, ascorbic acid, and xanthone. Drug Discov Ther, 2015; 9(2):136-41. https://doi.org/10.5582/ddt.2015.01013

Oon SF, Nallappan M, Tee TT, Shohaimi S, Kassim NK, Sa'ariwijaya MSF, Cheah YH. Xanthorrhizol: a review of its pharmacological activities and anticancer properties. Cancer Cell Int, 2015; 15(100):1-15. https://doi.org/10.1186/s12935-015-0255-4

Park JH, Jung YJ, Shrestha S, Lee SM, Lee TH, Lee CH, Han D, Kim J, Baek NI. Inhibition of NO production in LPS-stimulated RAW264.7 macrophage cells with curcuminoids and xanthorrhizol from the rhizome of Curcuma xanthorrhiza Roxb. and quantitative analysis using HPLC. J Korean Soc Appl Biol Chem, 2014; 57(3):407-12. https://doi.org/10.1007/s13765-014-4132-y

Peyrat-Maillard MN, Cuvelier ME, Berset C. Antioxidant activity of phenolic compounds in 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidation: synergistic and antagonistic effects. J Am Oil Chem Soc, 2003; 80(10):1007. https://doi.org/10.1007/s11746-003-0812-z

Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa M. Curcumin and health. Molecules, 2016; 21(3):1-22. https://doi.org/10.3390/molecules21030264

Rahmat E, Lee J, Kang Y. Javanese turmeric (Curcuma xanthorrhiza Roxb.): ethnobotany, phytochemistry, biotechnology, and pharmacological activities. Evid Based Complement Alternat Med, 2021; 2021:1-15. https://doi.org/10.1155/2021/9960813

Sandeep IS, Sanghamitra N, Sujata M. Differential effect of soil and environment on metabolic expression of turmeric (Curcuma longa cv. Roma). Indian J Exp Biol, 2015; 53(6):406-11

Saldago E, Arana G. Physalis angulata L. (Bolsa Mullaca): a review of its traditional uses, chemistry and pharmacology. Bol Latinoam Caribe Plant Med Aromat, 2012; 12(5):431-45.

Sandur S, Pandey M, Sung B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROSindependent mechanism. Carcinogenesis, 2007; 28(8):1765-73. https://doi.org/10.1093/carcin/bgm123

Soares M, Tomassini TCB, Ribeiro dos Santos R, Bellintani M. Inhibition of macrophage activation and lipopolysaccaride-induced death by seco-steroids purified from Physalis angulata L. Eur J Pharmacol, 2003; 459(1):107-12. https://doi.org/10.1016/S0014-2999(02)02829-7

Sukmawati, Kosman R, Saharudin N. Kombinasi Ekstrak Etanol Daun Kemangi (Ocimum bacilicum L.) Dan Daun Salam (Syzygium polyanthum (Wight) Walp) Sebagai Antiinflamasi Pada Tikus (Rattus Norvegicus) Jantan Yang Diinduksi Karagen. As-Syifaa, 2018; 10(1):1-10. https://doi.org/10.33096/jifa.v10i1.314

Sun CP, Nie XF, Kang N, Zhao F, Chen LX, Qiu F. A new phenol glycoside from Physalis angulata. Nat Prod Res, 2017a; 31(9):1059-65. https://doi.org/10.1080/14786419.2016.1269102

Sun CP, Oppong MB, Zhao F, Chen LX, Qiu F. Unprecedented 22,26-seco physalins from Physalis angulata and their anti-inflammatory potential. Org Biomol Chem, 2017b; 15(41):8700-4. https://doi.org/10.1039/C7OB02205K

Sutrisna E, Indwianiastuti, Haryadi. The Ethanol Extract of Physalis angulata Linn Inhibits COX-2 Activity in MCF-7 Cell In Vitro. International Conference: Research and Application on Traditional Complementary and Alternative Medicine in Health Care (TCAM), Surakarta: 2012, p. 12-7.

Tanaka T, Narazaki M, Masuda K, Kishimoto T. Regulation of IL-6 in immunity and diseases. Adv Exp Med Biol, 2016; 941:79-88. https://doi.org/10.1007/978-94-024-0921-5_4

Trujillo J, Granados-Castro LF, Zazueta C, Andérica-Romero AC, Chirino YI, Pedraza-Chaverrí J. Mitochondria as a target in the therapeutic properties of curcumin. Arch Pharm (Weinheim), 2014; 347(12):873-84. https://doi.org/10.1002/ardp.201400266

Tuan Anh HL, Le Ba V, Do TT, Phan VK, Pham Thi HY, Bach LG, et al. Bioactive compounds from Physalis angulata and their antiinflammatory and cytotoxic activities. Journal of Asian Natural Products Research, 2021; 23(8):809-17. https://doi.org/10.1080/10286020.2020.1825390

Wagner H, Bladt S. Plant drug analysis; a thin layer chromatography atlas. 2nd edition, Springer-Verlag Berlin Heidelberg, New York, NY, 2001.

Williamson EM. Synergy and other interactions in phytomedicines. Phytomedicine, 2001; 8(5):401-9. https://doi.org/10.1078/0944-7113-00060

Yang YJ, Yi L, Wang Q, Xie BB, Dong Y, Sha CW. Antiinflammatory effects of physalin E from Physalis angulata on lipopolysaccharide-stimulated RAW 264.7 cells through inhibition of NFjB pathway. Immunopharmacol Immunotoxicol, 2017; 39(2):74-9. https://doi.org/10.1080/08923973.2017.1282514

Yuan H, Ma Q, Cui H, Liu G, Zhao X, Li W, Piao G. How can synergism of traditional medicines benefit from network pharmacology? Molecules, 2017; 22(7):1135. https://doi.org/10.3390/molecules22071135

Zhang L, Virgous C, Si H. Synergistic anti-inflammatory effects The data represent the mean ± SD of triplicate experiments.

Article Metrics

0 Absract views 0 PDF Downloads 0 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required