Hypothetical in vivo behavior of semisolid dosage forms: indomethacin suppositories

Jose Raul Medina-Lopez Felipe Dino Reyes-Ramirez Luis Antonio Cedillo-Diaz Juan Manuel Contreras-Jimenez   

Open Access   

Published:  Apr 29, 2025

DOI: 10.7324/JAPS.2025.223837
Abstract

This study aimed to simulate the in vivo behavior of indomethacin suppositories (reference and a generic formulation) using in vitro dissolution data and a numerical convolution method. The United States Pharmacopeia (USP) basket apparatus (USP apparatus I) at 100 rpm and the flow-through cell method (USP apparatus IV) with laminar flow at 16 ml/min were used. The dissolution medium phosphate buffer (0.1 M, pH 7.4) with or without 1% sodium dodecyl sulfate (SDS) was used. The dissolution profiles were compared with model-dependent and independent methods. For the reference drug product, tested with the USP apparatus IV and without 1% SDS, predicted Cmax and AUC0–inf were 2.39 and 8.46 μgh/ml, respectively; for the generic formulation, same medium but with the USP apparatus I, values of 0.73 and 3.11 μgh/ml were calculated. When comparing predicted pharmacokinetic parameters with in vivo data prediction errors <10% for Cmax and AUC0–inf were only found with the reference drug product and the flow-through cell method. USP apparatus IV and phosphate buffer (0.1 M, pH 7.4) without 1% SDS were the ideal dissolution conditions to test multisource formulations and generate hypothetical in vivo behavior. To confirm these results, human studies using indomethacin suppositories should be conducted.


Keyword:     convolution flow-through cell indomethacin suppositories


Citation:

Medina-Lopez JR, Reyes-Ramirez FD, Cedillo-Diaz LA, Contreras-Jimenez JM. Hypothetical in vivo behavior of semisolid dosage forms: indomethacin suppositories. J Appl Pharm Sci. 2025. Online First. https://doi.org/10.7324/JAPS.2025.223837

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Thakur S, Riyaz B, Patil A, Kaur A, Kapoor B, Mishra V. Novel drug delivery systems for NSAIDs in management of rheumatoid arthritis: an overview. Biomed Pharmacother. 2018;106:1011–23. doi: https://doi.org/10.1016/j.biopha.2018.07.027

2. Patai A, Solymosi N, Mohácsi L, Patai AV. Indomethacin and diclofenac in the prevention of post-ERCP pancreatitis: a systematic review and meta-analysis of prospective controlled trials. Gastrointest Endosc. 2017;85(6):1144–56e1. doi: https://doi.org/10.1016/j.gie.2017.01.033

3. Yang C, Zhao Y, Li W, Zhu S, Yang H, Zhang Y, et al. Rectal nonsteroidal anti-inflammatory drugs administration is effective for the prevention of post-ERCP pancreatitis: an update meta-analysis of randomized controlled trials. Pancreatology 2017;17(5):681–8. doi: https://doi.org/10.1016/j.pan.2017.07.008

4. Nascimento ALCS, Fernandes RP, Charpentier M, Ter Horst JH, Caires FJ, Chorillo M. Co-crystals of non-steroidal anti-inflammatory drugs (NSAIDs): insight toward formation, methods, and drug enhancement. Particuology 2021;58(3):227–41. doi: https://doi.org/10.1016/j.partic.2021.03.015

5. Nascimento ALCS, Martins ICB, Spósito L, Morais-Silva G, Duarte JL, Rades T, et al. Indomethacin-omeprazole as therapeutic hybrids? Salt and co-amorphous systems enhancing physicochemical and pharmacological properties. Int J Pharm. 2024;653:123857. doi: https://doi.org/10.1016/j.ijpharm.2024.123857

6. Mohammed A, Elshaer A, Sareh P, Elsayed M, Hassanin H. Additive manufacturing technologies for drug delivery applications. Int J Pharm. 2020;580:119245. doi: https://doi.org/10.1016/j.ijpharm.2020.119245

7. Aiache JM, Islasse M, Beyssac E, Aiache S, Renoux R, Kantelip JP. Kinetics of indomethacin release from suppositories. In vitro-in vivo correlation. Int J Pharm. 1987;39(3):235–42. doi: https://doi.org/10.1016/0378-5173(87)90221-3

8. De Muynck C, Remon JP. Influence of fat composition on the melting behavior and on the in vitro release of indomethacin suppositories. Int J Pharm. 1992;85(1–3):103–12. doi: https://doi.org/10.1016/0378-5173(92)90139-S

9. Uzunkaya G, Bergi?adi N. In vitro drug liberation and kinetics of sustained release indomethacin suppository. Il Farmaco. 2003;58(7):509–12. doi: https://doi.org/10.1016/S0014-827X(03)00070-3

10. United States Pharmacopeia 47/National Formulary 42. United States Pharmacopoeial Convention, Inc; 2024.

11. Hassan HA, Charoo NA, Ali AA, Alkhatem SS. Establishment of a bioequivalence-indicating dissolution specification for candesartan cilexetil tablets using a convolution model. Dissol Technol. 2015;22(2):36–43. doi: https://doi.org/10.14227/DT220115P36

12. Emara LH, El-Menshawi BS, Estefan MY. In vitro-in vivo correlation and comparative bioavailability of vincamine in prolonged-release preparations. Drug Dev Ind Pharm. 2000;26(3):243–51. doi: https://doi.org/10.1081/ddc-100100352

13. Jinno J, Kamada N, Miyake M, Yamada K, Mukai T, Odomi M, et al. In vitro-in vivo correlation for wet-milled tablet of poorly water-soluble cilostazol. J Control Rel. 2008;130(1):29–37. doi: https://doi.org/10.1016/j.jconrel.2008.05.013

14. Xie F, Ji S, Cheng Z. In vitro dissolution similarity factor (f2) and in vivo bioequivalence criteria, how and when do they match? Using a BCS class II drug as a simulation example. Eur J Pharm Sci. 2015;66:163–72. doi: https://doi.org/10.1016/j.ejps.2014.10.002

15. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71. doi: https://doi.org/10.1208/s12248-010-9185-1

16. Yuksel N, Kanik AE, Baykara T. Comparison of in vitro dissolution profiles by ANOVA-based, model-dependent and -independent methods. Int J Pharm. 2000;209(1–2):57–67. doi: https://doi.org/10.1016/s0378-5173(00)00554-8

17. Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010;99(3):306–14. doi: https://doi.org/10.1016/j.cmpb.2010.01.007

18. Qureshi SA. In vitro-in vivo correlation (IVIVC) and determining drug concentrations in blood from dissolution testing – a simple and practical approach. Open Drug Deliv J. 2010;4:38–47. doi: https://doi.org/10.2174/1874126601004010038

19. Rastogi V, Yadav P, Lal N, Rastogi P, Singh BK, Verma N, et al. Mathematical prediction of pharmacokinetic parameters-an in-vitro approach for investigating pharmaceutical products for IVIVC. Future J Pharm Sci. 2018;4(2):175–84. doi: https://doi.org/10.1016/j.fjps.2018.003.001

20. Efentakis M, Al-Hmoud H, Buckton G, Rajan Z. The influence of surfactants on drug release from a hydrophobic matrix. Int J Pharm. 1991;70(1–2):153–8. doi: https://doi.org/10.1016/0378-5173(91)90175-N

21. Lootvoet G, Beyssac E, Shiu GK, Aiache JM, Ritschel WA. Study on the release of indomethacin from suppositories: in vitro-in vivo correlation. Int J Pharm. 1992;85(1–3):113–20. doi: https://doi.org/10.1016/0378-5173(92)90140-W

22. Azarmi S, Roa W, Löbenberg R. Current perspectives in dissolution testing of conventional and novel dosage forms. Int J Pharm. 2007;328(1):12–21. doi: https://doi.org/10.1016/j.ijpharm.2006.10.001

23. Podczeck F. Comparison of in vitro dissolution profiles by calculating mean dissolution time (MDT) or mean residence time (MRT). Int J Pharm. 1993;97(1–3):93–100. doi: https://doi.org/10.1016/0378-5173(93)90129-4

24. Archondikis A, Papaioannou G. Comparative study of two dissolution methods for indomethacin suppositories from fatty and water-soluble bases. Int J Pharm. 1989;55:217–20. doi: https://doi.org/10.1010/0378-5173(89)90044-6

25. Ilango KB, Kavimani S. A systematic review of the mathematical models of pharmaceutical dosage forms. Int J Curr Pharm Rev Res. 2015;6(1):59–70.

26. Medina JR, Salazar K, Hurtado M, Cortés AR, Domínguez-Ramírez AM. Comparative in vitro dissolution study of carbamazepine immediate-release products using the US paddles method and the flow-through cell system. Saudi Pharm J. 2014;22:141–7. doi: https://doi.org/j.jsps.2013.02.001

27. Fang JB, Robertson VK, Rawat A, Flick T, Tang ZJ, Cauchon NS, et al. Development and application of a biorelevant dissolution method using USP apparatus 4 in early phase formulation development. Mol Pharmaceut. 2010;7(5):1466–77. doi: https://doi.org/10.1021/MP100125B

28. De Muynck C, Lefebvre RA, Remon JP. Study of the bioavailability of four indomethacin suppository formulations in healthy volunteers. Int J Pharm. 1994;104(1):87–91. doi: https://doi.org/10.1016/0378-5173(94)90339-5

29. Xu J, Zhang L, Shao X. Application of bio-predictive dissolution tools for the development of solid oral dosage forms: current industrial experience. Drug Dev Ind Pharm. 2022;48(3):79–97. doi: https://doi.org/10.1018/03639045.2022.2098315

30. Paprská?ová A, Možná P, Oga EF, Elhissi A, Alhnan MA. Instrumentation of flow-through USP IV dissolution apparatus to assess poorly soluble basic drug products: a technical note. AAPS PharmSciTech. 2016;17(5):1261–5. doi: https://doi.org/10.1208/s12249-015-0444-4

31. Fotaki N. Flow-through cell apparatus (USP apparatus 4): operation and features. Dissolut Technol. 2011;18(4):46–9. doi: https://doi.org/10.14227/DT180411P46

32. Todaro V, Persoons T, Grove G, Healy MA, D’Arcy DM. Characterization and simulation of hydrodynamics on the paddle, basket and flow-through dissolution testing apparatuses – a review. Dissolut Technol. 2017;24(3):24–36. doi: https://doi.org/10.14227/DT240317P24

33. Abdelfattah F, Taha N, Abdou A, Mursi N, Emara L. Prediction of in vivo performance of ibuprofen immediate-release products using different dissolution models. J App Pharm Sci. 2022;12(8):193–201. doi: https://doi.org/10.7324/JAPS.2022.120820

34. Medina-López JR, Lugo-Ortíz R, Contreras-Jiménez JM, Hurtado M, Helmy SA. Dissolution performance of verapamil-HCl tablets using USP Apparatus 2 and 4: prediction of in vivo plasma profiles. Dissol Technol. 2023;30(4):230–7. doi: https://doi.org/10.14227/DT300423P230

35. Medina-López R, Vera-Ángeles YA, Reyes-Ramírez FD. Simulation of indomethacin plasma levels: influence of the hydrodynamics of the USP basket apparatus and flow-through cell system to evaluate capsules. Lat Am J Pharm. 2025;44(2):182–8.

Article Metrics
40 Views 9 Downloads 49 Total

Year

Month

Related Search

By author names