This study aims to identify metabolite compounds and determine the in vitro antioxidant and pancreatic lipase inhibitory activity of Peronema canescens Jack extracts and fractions. The results of phytochemical content showed that the ethyl acetate (FEA), n-butanol (FB), and aqueous (FA) fractions had significantly higher amounts of phenolic and flavonoid compounds than other fractions. It is linear with the antioxidant activity of FEA, FB, and FA, producing very strong to strong antioxidant activity. N-hexane fraction (FH) showed significant terpenoid content and a strong inhibitory effect on the lipase enzyme. Phytoconstituents in the extracts and fractions were profiled using ultra-high-performance liquid chromatography-high resolution mass spectrometry equipped with principal component analysis to classify chemical compounds. Diosmetin and pinoquercetin compounds were identified as being present abundantly in FEA. Meanwhile, terpenoid compounds and fatty acids are abundant in FH, including 7-oxodehydroabietic acid, oleanonic acid, oleanolic acid, docosanamide, eleostearic acid, ethyl linolenic acid, 1-stearoylglycerol, 9-oxo-10 (E), 12 (E)-octadecadienoic acid, and 12-oxo-phytodienoic acid. These findings indicate that FEA contains bioactive compounds that increase antioxidant activity, while FH contains many bioactive compounds with pancreatic lipase inhibitory effects. Further research is required to determine the correlation between the amount of active compound content and the bioactivity of P. canescens leaf extracts and fractions. In addition, further research using experimental animals and optimization of safer solvents will provide more comprehensive bioactivity information and increase our best knowledge of ethnomedicine based on P. canescens herbal preparations.
Suryani AE, Nisa K, Handayani S, Darsih C, Wuryastuty H, Yanuartono Y. The UHPLC-HRMS profiling, in vitro-antioxidant and pancreatic lipase inhibitory activities of Peronema canescens leaves extract and fractions from Indonesia J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.214965
1. Verma S, Singh SP. Current and future status of herbal medicines. Vet World. 2008;1(11):347-50. https://doi.org/10.5455/vetworld.2008.347-350 | |
2. Ng ZX, Samsuri SN, Yong PH. The antioxidant index and chemometric analysis of tannin, flavonoid, and total phenolic extracted from medicinal plant foods with the solvents of different polarities. J Food Process Preserv. 2020;44:1-11. https://doi.org/10.1111/jfpp.14680 | |
3. Chew SY, Teoh SY, Sim YY, Nyam KL. Optimization of ultrasonic extraction condition for maximal antioxidant, antimicrobial, and antityrosinase activity from Hibiscus cannabinus L. leaves by using the single factor experiment. J Appl Res Med Aromat Plants. 2021;25:100321. https://doi.org/10.1016/j.jarmap.2021.100321 | |
4. Rao MV, Sengar AS, Sunil CK, Rawson A. Ultrasonication-A green technology extraction technique for spices: a review. Trends Food Sci Technol. 2021;116:975-91. https://doi.org/10.1016/j.tifs.2021.09.006 | |
5. El Maaiden E, Bouzroud S, Nasser B, Moustaid K, El Mouttaqi A, Ibourki M, et al. A comparative study between conventional and advanced extraction techniques: pharmaceutical and cosmetic properties of plant extracts. Molecules. 2022;27:2074. https://doi.org/10.3390/molecules27072074 | |
6. Duraipandiyan V, Ayyanar M, Ignacimuthu S. Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India. BMC Complement Altern Med. 2006;6:1-17. https://doi.org/10.1186/1472-6882-6-35 | |
7. Ochwang'i DO, Kimwele CN, Oduma JA, Gathumbi PK, Mbaria JM, Kiama SG. Medicinal plants used in treatment and management of cancer in Kakamega County, Kenya. J Ethnopharmacol. 2014;151:1040-55. https://doi.org/10.1016/j.jep.2013.11.051 | |
8. Pindan NP, Daniel, Saleh C, Magdaleni AR. Phytochemical test and antioxidant activity test of n-hexane fraction extract, ethyl acetate and remained ethanol from leaf of sungkai (Peronema canescens Jack.) using DPPH method. J At. 2021;06:22-7. | |
9. Fransisca D, Kahanjak DN, Frethernety A. Uji aktivitas antibakteri ekstrak etanol daun sungkai (Peronema canescens Jack) terhadap pertumbuhan Escherichia coli dengan metode difusi cakram Kirby-Bauer. J Pengelolaan Lingkung Berkelanjutan. 2020;4:460-70. https://doi.org/10.36813/jplb.4.1.460-470 | |
10. Ahmad I, Ibrahim A. Bioaktivitas ekstrak metanol dan fraksi n-heksana daun sungkai (Peronema canescens jack) terhadap larva udang (Artemia salina Leach). J Sains dan Kesehat. 2015;1:114-9. https://doi.org/10.25026/jsk.v1i3.27 | |
11. Ramadenti F, Sundaryono A, Handayani D. Uji fraksi etil asetat daun Peronema canescens terhadap Plasmodium berghei pada Mus musculus. Alotrop J Pendidik dan Ilmu Kim. 2017;2:89-92. | |
12. Kusriani RH, Nawawi A, Turahman T. Uji aktivitas antibakteri ekstrak dan fraksi kulit batang dan daun sungkai (Peronema canescens Jack) terhadap Staphylococcus aureus ATCC 25923 dan Escherichia coli ATCC 25922. J Farm Galen Vol. 2015;2:8-14. | |
13. Maigoda T, Judiono J, Purkon DB, Haerussana ANEM, Mulyo GPE. Evaluation of Peronema canescens leaves extract: fourier transform infrared analysis, total phenolic and flavonoid content, antioxidant capacity, and radical scavenger activity. Open Access Maced J Med Sci. 2022;10:117-24. https://doi.org/10.3889/oamjms.2022.8221 | |
14. Okfrianti Y. Aktivitas antioksidan ekstrak etanol daun sungkai (Peronema canescens Jack). J Kesehat. 2022;13:333-9. https://doi.org/10.26630/jk.v13i2.3200 | |
15. Sutomo S, Arnida A, Yulistati FR, Normaidah N, Pratama MRF. Pharmacognostic study and antioxidant activity of sungkai (Peronema canescens Jack.) methanol extract from Indonesia. Bull Pharm Sci Assiut. 2022;45:655-65. https://doi.org/10.21608/bfsa.2022.271585 | |
16. Juswardi J, Delsy Amalia I, Sriwijaya U. Metabolite profile of false elder leaves (Peronema canescens Jack.) based on development levels. Int J Life Sci. 2023;11:143-50. | |
17. Muharni M, Ferlinahayati F, Yohandini H, Riyanti F, Pakpahan Nap. The anticholesterol activity of betulinic acid and stigmasterol isolated from the leaves of sungkai (Peronema canescens Jack). Int J Appl Pharm. 2021;13:198-203. https://doi.org/10.22159/ijap.2021v13i2.40372 | |
18. Latief M, Sutrisno, Dasrinal E, Safitri W, Tarigan IL. Immunomodulator activity of 5,7-dihydroxy isoflavones and β-Sitosterol from Peronema canescens Jack leaves methanol and ethyl acetate extract. Proceedings of the 4th Green Development International Conference (GDIC 2022) 2023 [Internet]; Amsterdam, The Netherlands: Atlantis Press; 2023. pp 558-72. https://doi.org/10.2991/978-2-38476-110-4_57 | |
19. Yao P, Liu Y. Terpenoids: natural compounds for non-alcoholic fatty liver disease (NAFLD) therapy. Molecules. 2023;28(1):272. https://doi.org/10.3390/molecules28010272 | |
20. Ramabulana T, Ndlovu M, Mosa RA, Sonopo MS, Selepe MA. Phytochemical profiling and isolation of bioactive compounds from Leucosidea sericea (Rosaceae). ACS Omega. 2022;7:11964-72. https://doi.org/10.1021/acsomega.2c00096 | |
21. De Melo CL, Queiroz MGR, Arruda Filho AC, Rodrigues AM, De Sousa DF, Almeida JGL, et al. Betulinic acid, a natural pentacyclic triterpenoid, prevents abdominal fat accumulation in mice fed a high-fat diet. J Agric Food Chem. 2009;57:8776-81. https://doi.org/10.1021/jf900768w | |
22. Pratiwi U, Muharni M, Ferlinahayati F, Yohandini H, Suheryanto S. Antihyperlipidemia activity of sungkai (Peronema canescens) leaves extract in albino rats Rattus noverticus (Wistar strain) with propylthiouracil-induced hyperlipidemia. Med Plants. 2022;14:589-96. https://doi.org/10.5958/0975-6892.2022.00064.8 | |
23. Nguyen HC, Lin KH, Huang MY, Yang CM, Shih TH, Hsiung TC, et al. Antioxidant activities of the methanol extracts of various parts of Phalaenopsis orchids with white, yellow, and purple flowers. Not Bot Horti Agrobot Cluj-Napoca. 2018;46:457-65. https://doi.org/10.15835/nbha46211038 | |
24. Nowak A, Czyzowska A, Efenberger M, Krala L. Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat products. Food Microbiol. 2016;59:142-9. https://doi.org/10.1016/j.fm.2016.06.004 | |
25. Chang C, Yang M, Wen H, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002;10:178-82. https://doi.org/10.38212/2224-6614.2748 | |
26. Lin MS, Yu ZR, Wang BJ, Wang CC, Weng YM, Koo M. Bioactive constituent characterization and antioxidant activity of Ganoderma lucidum extract fractionated by supercritical carbon dioxide. Sains Malaysiana. 2015;44:1685-91. | |
27. Mahmood A, Ngah N, Omar MN. Phytochemicals constituent and antioxidant activities in Musa x paradisiaca flower. Eur J Sci Res. 2011;66:311-8. | |
28. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231-7. https://doi.org/10.1016/S0891-5849(98)00315-3 | |
29. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "Antioxidant Power": the FRAP assay. Anal Biochem. 1996;239:70-6. https://doi.org/10.1006/abio.1996.0292 | |
30. Lévuok Mena KP, Patiño Ladino OJ, Prieto Rodríguez JA. In vitro inhibitory activities against α-glucosidase, α-amylase, and pancreatic lipase of medicinal plants commonly used in Chocó (Colombia) for type 2 diabetes and obesity treatment. Sci Pharm. 2023;91:49. https://doi.org/10.3390/scipharm91040049 | |
31. Wiyono T, Frediansyah A, Sholikhah EN, Pratiwi WR. UHPLC-ESI-MS analysis of Javanese Tamarindus indica leaves from various tropical zones and their beneficial properties in relation to antiobesity. J Appl Pharm Sci. 2022;12:137-47. https://doi.org/10.7324/JAPS.2022.120814 | |
32. Windarsih A, Suratno, Warmiko HD, Indrianingsih AW, Rohman A, Ulumuddin YI. Untargeted metabolomics and proteomics approach using liquid chromatography-Orbitrap high resolution mass spectrometry to detect pork adulteration in Pangasius hypopthalmus meat. Food Chem. 2022;386:132856. https://doi.org/10.1016/j.foodchem.2022.132856 | |
33. Wenzl T, Haedrich J, Schaechtele A, Robouch P, Stroka J. Guidance document on the estimation of LOD and LOQ for measurements in the field of contaminants in feed and food. EUR 28099. Luxembourg: Publications Office of the European Union; 2016. doi: https://doi.org/10.2787/8931 | |
34. Aydo?an C. Recent advances and applications in LC-HRMS for food and plant natural products: a critical review. Anal Bioanal Chem. 2020;412:1973-91. https://doi.org/10.1007/s00216-019-02328-6 | |
35. Park JS, Park HY, Kim DH, Kim DH, Kim HK. Ortho-dihydroxyisoflavone derivatives from aged Doenjang (Korean fermented soypaste) and its radical scavenging activity. Bioorganic Med Chem Lett. 2008;18(18):5006-9. https://doi.org/10.1016/j.bmcl.2008.08.016 | |
36. Liao W, Chen L, Ma X, Jiao R, Li X, Wang Y. Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells. Eur J Med Chem. 2016;114:24-32. https://doi.org/10.1016/j.ejmech.2016.02.045 | |
37. Seo YH, Kang SY, Shin JS, Ryu SM, Lee AY, Choi G, et al. Chemical constituents from the aerial parts of Agastache rugosa and their inhibitory activities on prostaglandin E2 production in lipopolysaccharide-treated RAW 264.7 Macrophages. J Nat Prod. 2019;82(12):3379-85. https://doi.org/10.1021/acs.jnatprod.9b00697 | |
38. Kishore N, Twilley D, Blom Van Staden A, Verma P, Singh B, Cardinali G, et al. Isolation of flavonoids and flavonoid glycosides from Myrsine africana and their inhibitory activities against mushroom tyrosinase. J Nat Prod. 2018;81(1):49-56. https://doi.org/10.1021/acs.jnatprod.7b00564 | |
39. Boukaabache R, Kerkatou W, Bensouici C, Benayache F, Boumaza O. A new isoflavonoid derivative, evaluation of the antioxidant capacity and phenolic content of Genista lobelii DC. Nat Prod Res. 2024;38:3842-7. https://doi.org/10.1080/14786419.2023.2261073 | |
40. Cuong TD, Hung TM, Kim JC, Kim EH, Woo MH, Choi JS, et al. Phenolic compounds from Caesalpinia sappan heartwood and their anti-inflammatory activity. J Nat Prod. 2012;75(12):2069-75. https://doi.org/10.1021/np3003673 | |
41. Losada Barreiro S, Bravo Díaz C. Free radicals and polyphenols: the redox chemistry of neurodegenerative diseases. Eur J Med Chem. 2017;133:379-402. https://doi.org/10.1016/j.ejmech.2017.03.061 | |
42. Xiao Y, Ren Q, Wu L. The pharmacokinetic property and pharmacological activity of acteoside: a review. Biomed Pharmacother. 2022;153:113296. https://doi.org/10.1016/j.biopha.2022.113296 | |
43. Yang JH, Kondratyuk TP, Jermihov KC, Marler LE, Qiu X, Choi Y, et al. Bioactive compounds from the fern Lepisorus contortus. J Nat Prod. 2011;74(2):129-36. https://doi.org/10.1021/np100373f | |
44. Yang X, Huang E, Yuan C, Zhang L, Yousef AE. Isolation and structural elucidation of brevibacillin, an antimicrobial lipopeptide from Brevibacillus laterosporus that combats drug-resistant Gram-positive bacteria. Appl Environ Microbiol. 2016;82(9):2763-72. https://doi.org/10.1128/AEM.00315-16 | |
45. Cantrell CL, Case BP, Mena EE, Kniffin TM, Duke SO, Wedge DE. Isolation and identification of antifungal fatty acids from the basidiomycete Gomphus floccosus. J Agric Food Chem. 2008;56(13):5062-8. https://doi.org/10.1021/jf8008662 | |
46. Choi JY, Lee JW, Jang H, Kim JG, Lee MK, Hong JT, et al. Quinic acid esters from Erycibe obtusifolia with antioxidant and tyrosinase inhibitory activities. Nat Prod Res. 2021;35(18):3026-32. https://doi.org/10.1080/14786419.2019.1684285 | |
47. Swaminathan P, Kalva S, Saleena L. E-Pharmacophore and molecular dynamics study of flavonols and dihydroflavonols as inhibitors against dihydroorotate dehydrogenase. Comb Chem High Throughput Screen. 2014;17(8):663-73. https://doi.org/10.2174/1386207317666140321115128 | |
48. Miao M, Xiang L. Pharmacological action and potential targets of chlorogenic acid. Adv Pharmacol. 2020;87:71-88. https://doi.org/10.1016/bs.apha.2019.12.002 | |
49. Lv J, Sharma A, Zhang T, Wu Y, Ding X. Pharmacological review on asiatic acid and its derivatives: a potential compound. SLAS Technol. 2018;23(2):111-27. https://doi.org/10.1177/2472630317751840 | |
50. Peixoto JAB, Álvarez-Rivera G, Costa ASG, Machado S, Cifuentes A, Ibáñez E, et al. Contribution of phenolics and free amino acids on the antioxidant profile of commercial lemon verbena infusions. Antioxidants. 2023;12(2):251. https://doi.org/10.3390/antiox12020251 | |
51. Huang J, Xie M, He L, Song X, Cao T. Chlorogenic acid: a review on its mechanisms of anti-inflammation, disease treatment, and related delivery systems. Front Pharmacol. 2023;14:1218015. https://doi.org/10.3389/fphar.2023.1218015 | |
52. Zardini HZ, Davarpanah M, Shanbedi M, Amiri A, Maghrebi M, Ebrahimi L. Microbial toxicity of ethanolamines-multiwalled carbon nanotubes. J Biomed Mater Res-Part A. 2014;102(6):1774-81. https://doi.org/10.1002/jbm.a.34846 | |
53. Pieretti S, Saviano A, Mollica A, Stefanucci A, Aloisi AM, Nicoletti M. Calceolarioside a, a phenylpropanoid glycoside from calceolaria spp., displays antinociceptive and anti-inflammatory properties. Molecules. 2022;27(7):2183. https://doi.org/10.3390/molecules27072183 | |
54. Goswami SK, Gangadarappa SK, Vishwanath M, Razdan R, Jamwal R, Bhadri N, et al. Antioxidant potential and ability of phloroglucinol to decrease formation of advanced glycation end products increase efficacy of sildenafil in diabetes-induced sexual dysfunction of rats. Sex Med. 2016;4(2):106-14. https://doi.org/10.1016/j.esxm.2015.12.002 | |
55. Jesus JA, Lago JHG, Laurenti MD, Yamamoto ES, Passero LFD. Antimicrobial activity of oleanolic and ursolic acids: an update. Evidence-based Complement Altern Med. 2015;(1):620472. https://doi.org/10.1155/2015/620472 | |
56. Xue J, Zhu L, Zhu X, Li H, Ma C, Yu S, et al. Tetradecylamine-MXene functionalized melamine sponge for effective oil/water separation and selective oil adsorption. Sep Purif Technol. 2021;259:118106. https://doi.org/10.1016/j.seppur.2020.118106 | |
57. Fikriya SH, Cahyana AH. Study of antioxidant activity of the derivatives of quinoline-4-carboxylic acids by the modification of isatin via pfitzinger reaction. Makara J Sci. 2023;27(2):9. https://doi.org/10.7454/mss.v27i2.1394 | |
58. El Sayed ZI, Hassan WHB, Abdel-Aal MM, Al-Massarani SM, Abdel-Mageed WM, Basudan OA, et al. Chemical and biological characterization of the ethyl acetate fraction from the red sea marine sponge Hymedesmia sp. Pharmaceuticals. 2024;17(6):724. https://doi.org/10.3390/ph17060724 | |
59. Castellano JM, Ramos-Romero S, Perona JS. Oleanolic acid: extraction, characterization and biological activity. Nutrients. 2022;14(3):623. https://doi.org/10.3390/nu14030623 | |
60. Chen L, Tang Y, Tao Y, Seerat A, Zhu P, He T, et al. Accumulation of salicylic acid and 12-oxophytodienoic acid acting on the antioxidant pathway to keep stability of striped leaves of variegated temple bamboo. J Am Soc Hortic Sci. 2024;149(1):27-36. https://doi.org/10.21273/JASHS05348-23 | |
61. Zhu JX, Guo MX, Zhou L, Yi LT, Huang HL, Wang HL, et al. Evaluation of the anti-inflammatory material basis of Lagotis brachystachya in HepG2 and THP-1 cells. J Ethnopharmacol. 2024;318:117055. https://doi.org/10.1016/j.jep.2023.117055 | |
62. C T S, Balachandran I. LC/MS characterization of antioxidant flavonoids from Tragia involucrata L. Beni-Suef Univ J Basic Appl Sci. 2016;5(3):231-5. https://doi.org/10.1016/j.bjbas.2016.06.001 | |
63. Céliz G, Alfaro FF, Cappellini C, Daz M, Verstraeten S V. Prunin- and hesperetin glucoside-alkyl (C4-C18) esters interaction with Jurkat cells plasma membrane: Consequences on membrane physical properties and antioxidant capacity. Food Chem Toxicol. 2013;55:411-23. https://doi.org/10.1016/j.fct.2013.01.011 | |
64. Cai J, Wen H, Zhou H, Zhang D, Lan D, Liu S, et al. Naringenin: a flavanone with anti-inflammatory and anti-infective properties. Biomed Pharmacother. 2023;164:114990. https://doi.org/10.1016/j.biopha.2023.114990 | |
65. Nagao K, Inoue N, Suzuki K, Shimizu T, Yanagita T. The cholesterol metabolite cholest-5-en-3-one alleviates hyperglycemia and hyperinsulinemia in obese (db/db) Mice. Metabolites. 2022;12(1):26. https://doi.org/10.3390/metabo12010026 | |
66. Ribeiro VP, Arruda C, Aldana-Mejia JA, Bastos JK, Tripathi SK, Khan SI, et al. Phytochemical, antiplasmodial, cytotoxic and antimicrobial evaluation of a Southeast brazilian brown propolis produced by Apis mellifera Bees. Chem Biodivers. 2021;18(9):2100288. https://doi.org/10.1002/cbdv.202100288 | |
67. Yang XW, Feng L, Li SM, Liu XH, Li YL, Wu L, et al. Isolation, structure, and bioactivities of abiesadines A-Y, 25 new diterpenes from Abies georgei Orr. Bioorganic Med Chem. 2010;18(2):744-54. https://doi.org/10.1016/j.bmc.2009.11.055 | |
68. Suárez-Rebaza LA, de Albuquerque RDDG, Zavala E, Alva-Plasencia PM, Ganoza-Suárez MM, Ganoza-Yupanqui ML, et al. Chemical composition and antioxidant capacity of purified extracts of Prosopis pallida (Humb. & Bonpl. ex Willd.) Kunth (Fabaceae) fruits from Northern Peru. Bol Latinoam y del Caribe Plantas Med y Aromat. 2023;22(5):594-606. https://doi.org/10.37360/blacpma.23.22.5.43 | |
69. Yoshioka Y, Yoshimura N, Matsumura S, Wada H, Hoshino M, Makino S, et al. α-glucosidase and pancreatic lipase inhibitory activities of diterpenes from Indian mango ginger (Curcuma amada roxb.) and its derivatives. Molecules. 2019;24(22):4071. https://doi.org/10.3390/molecules24224071 | |
70. Park SY, Seetharaman R, Ko MJ, Kim DY, Kim TH, Yoon MK, et al. Ethyl linoleate from garlic attenuates lipopolysaccharide-induced pro-inflammatory cytokine production by inducing heme oxygenase-1 in RAW264.7 cells. Int Immunopharmacol. 2014;19(2):253-61. https://doi.org/10.1016/j.intimp.2014.01.017 | |
71. Warinthip N, Liawruangrath B, Natakankitkul S, Pojanakaroon T, Rannurags N, Pyne SG, et al. Chemical constituents from leaves of Gardenia sootepensis and Pseudomussaenda flava biological activity and antioxidant activity. Chiang Mai Univ J Nat Sci. 2022;21(1):2022004. https://doi.org/10.12982/CMUJNS.2022.004 | |
72. Jin Z, Li L, Zheng Y, An P. Inhibition of Bacillus cereus by garlic (Allium sativum) essential oil during manufacture of white sufu, a traditional Chinese fermented soybean curd. LWT. 2020;130:109634. https://doi.org/10.1016/j.lwt.2020.109634 | |
73. Hussein K, Eswaramoorthy R, Melaku Y, Endale M. Antibacterial and antioxidant activity of isoflavans from the roots of Rhynchosia ferruginea and in silico study on dna gyrase and human peroxiredoxin. Int J Second Metab. 2021;8(4):321-36. https://doi.org/10.21448/ijsm.962120 | |
74. Kobori M, Ohnishi-Kameyama M, Akimoto Y, Yukizaki C, Yoshida M. α-Eleostearic acid and its dihydroxy derivative are major apoptosis-inducing components of bitter gourd. J Agric Food Chem. 2008;56(2):10515-20. https://doi.org/10.1021/jf8020877 | |
75. El Houda Lezoul N, Belkadi M, Habibi F, Guillén F. Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants. Molecules. 2020;25(20):4672 https://doi.org/10.3390/molecules25204672 | |
76. Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, et al. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal. 2014;22:296-302. https://doi.org/10.1016/j.jfda.2013.11.001 | |
77. Jha AK, Sit N. Extraction of bioactive compounds from plant materials using combination of various novel methods: a review. Trends Food Sci Technol. 2022;119:579-91. https://doi.org/10.1016/j.tifs.2021.11.019 | |
78. González-Centeno MR, Knoerzer K, Sabarez H, Simal S, Rosselló C, Femenia A. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.)-a response surface approach. Ultrason Sonochem. 2014;21(6):2176-84. https://doi.org/10.1016/j.ultsonch.2014.01.021 | |
79. Muzykiewicz-Szyma?ska A, Kucharska E, Pe?ech R, Nowak A, Jakubczyk K, Kucharski ?. The optimisation of ultrasound-assisted extraction for the polyphenols content and antioxidant activity on Sanguisorba officinalis l. Aerial parts using response surface methodology. Appl Sci. 2024;14(20):9579. https://doi.org/10.3390/app14209579 | |
80. Thoo YY, Ho SK, Liang JY, Ho CW, Tan CP. Effects of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from mengkudu (Morinda citrifolia). Food Chem. 2010;120(1):290-5. https://doi.org/10.1016/j.foodchem.2009.09.064 | |
81. Xu DP, Zhou Y, Zheng J, Li S, Li AN, Li H Bin. Optimization of ultrasound-assisted extraction of natural antioxidants from the flower of Jatropha integerrima by response surface methodology. Molecules. 2016;21(1):18. https://doi.org/10.3390/molecules21010018 | |
82. Indrianingsih AW, Styaningrum P, Suratno, Windarsih A, Suryani R, Noviana E, et al. The effect of extraction method on biological activity and phytochemical content of Artocarpus heterophyllus (jackfruit) leaves extract concurrent with its principal component analysis. Process Biochem. 2024;143:135-47. https://doi.org/10.1016/j.procbio.2024.04.034 | |
83. Yim HS, Chye FY, Koo SM, Matanjun P, How SE, Ho CW. Optimization of extraction time and temperature for antioxidant activity of edible wild mushroom, Pleurotus porrigens. Food Bioprod Process. 2012;90(2):235-42. https://doi.org/10.1016/j.fbp.2011.04.001 | |
84. González Montelongo R, Gloria Lobo M, González M. Antioxidant activity in banana peel extracts: testing extraction conditions and related bioactive compounds. Food Chem. 2010;119:1030-9. https://doi.org/10.1016/j.foodchem.2009.08.012 | |
85. Kaczorová D, Karalija E, Dahija S, Bešta-Gajevi? R, Pari? A, ?avar Zeljkovi? S. Influence of extraction solvent on the phenolic profile and bioactivity of two achillea species. Molecules. 2021;26:1601-16. https://doi.org/10.3390/molecules26061601 | |
86. Lapkin AA, Plucinski PK, Cutler M. Comparative assessment of technologies for extraction of artemisinin. J Nat Prod. 2006;1653-64. https://doi.org/10.1021/np060375j | |
87. Fadlilaturrahmah F, Khairunnisa A, MP Putra A, Sinta I. Uji aktivitas tabir surya dan antioksidan ekstrak etanol daun sungkai (Perenema canescens Jack). J Ilm Ibnu Sina Ilmu Farm dan Kesehat. 2021;6:322-30. https://doi.org/10.36387/jiis.v6i2.737 | |
88. Mundim FM, Pringle EG. Whole-plant metabolic allocation under water stress. Front Plant Sci. 2018;9:852-63. https://doi.org/10.3389/fpls.2018.00852 | |
89. Benhssain K, Aabdousse J, Salim N, Oussif I, Ramchoun M, Elhabty M, et al. Effect of geographical origin on yield and secondary metabolite content of extracts of Moroccan Juniperus thurifera. Aust J Crop Sci. 2023;17:591-9. https://doi.org/10.21475/ajcs.23.17.06.p3926 | |
90. Saada M, Falleh H, Catarino MD, Cardoso SM, Ksouri R. Plant growth modulates metabolites and biological activities in retama raetam (forssk.) webb. Molecules. 2018;23:1-17. https://doi.org/10.3390/molecules23092177 | |
91. Singh A, Kumar V. Phyto-chemical and bioactive compounds of pumpkin seed oil as affected by different extraction methods. Food Chem Adv. 2023;2:1-9. https://doi.org/10.1016/j.focha.2023.100211 | |
92. Muharni M, Ferlinahayati F, Yohandini H. Antioxidant, antibacterial, total phenolic and flavonoid contents of sungkai leaves (Peronema canescens). Trop J Nat Prod Res. 2021;5:528-33. https://doi.org/10.26538/tjnpr/v5i3.18 | |
93. Gulcin ?. Antioxidants and antioxidant methods: an updated overview. Arch Toxicol. 2020;94(3):651-715. https://doi.org/10.1007/s00204-020-02689-3 | |
94. Faraone I, Rai DK, Chiummiento L, Fernandez E, Choudhary A, Prinzo F, et al. Antioxidant activity and phytochemical characterization of Senecio clivicolus wedd. Molecules. 2018;23:1-17. https://doi.org/10.3390/molecules23102497 | |
95. Lremizi I, Ait A, Chawki O, Marie B, Fauconnier L. Chemical composition, antioxidant, anticholinesterase, and alpha glucosidase activity of Stevia rebaudiana Bertoni extracts cultivated in Algeria. J Food Meas Charact. 2023;17:2639-50. https://doi.org/10.1007/s11694-022-01704-8 | |
96. Ait Chaouche FS, Mouhouche F, Hazzit M. Antioxidant capacity and total phenol and flavonoid contents of Teucrium polium L. grown in Algeria. Med J Nutrition Metab. 2018;11:135-44. https://doi.org/10.3233/MNM-17189 | |
97. Elufioye TO, Chinaka CG, Oyedeji AO. Antioxidant and anticholinesterase activities of Macrosphyra longistyla (DC) hiern relevant in the management of Alzheimer's disease. Antioxidants. 2019;8:400. https://doi.org/10.3390/antiox8090400 | |
98. Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5:27986-8006. https://doi.org/10.1039/C4RA13315C | |
99. Zeb A. Concept, mechanism, and applications of phenolic antioxidants in foods. J Food Biochem. 2020;44(9):13394. https://doi.org/10.1111/jfbc.13394 | |
100. Mohamed Isa SSP, Ablat A, Mohamad J. The antioxidant and xanthine oxidase inhibitory activity of Plumeria rubra flowers. Molecules. 2018;23:400-18. https://doi.org/10.3390/molecules23020400 | |
101. Olszowy-Tomczyk M. Synergistic, antagonistic and additive antioxidant effects in the binary mixtures. Phytochem Rev. 2020;19(5):63-103 [Internet]. doi: https://doi.org/10.1007/s11101-019-09658-4 https://doi.org/10.1007/s11101-019-09658-4 | |
102. Alara OR, Abdurahman NH, Ukaegbu CI. Extraction of phenolic compounds: a review. Curr Res Food Sci. 2021;4:200-14. https://doi.org/10.1016/j.crfs.2021.03.011 | |
103. Irnameria D, Okfrianti Y. Perbedaan aktivitas antioksidan ekstrak daun sungkai dengan menggunakan pelarut metanol dan aquades. Agritepa. 2023;10:219-28. https://doi.org/10.37676/agritepa.v10i1.3158 | |
104. Molyneux P. The use of the stable free radical Diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol. 2004;26:211-9. | |
105. Liu Y, Liu C, Li J. Comparison of vitamin C and its derivative antioxidant activity: evaluated by using density functional theory. ACS Omega. 2020;5:25467-75. https://doi.org/10.1021/acsomega.0c04318 | |
106. Han LK, Kimura Y, Kawashima M, Takaku T, Taniyama T, Hayashi T, et al. Anti-obesity effects in rodents of dietary teasaponin, a lipase inhibitor. Int J Obes. 2001;25(10):1459-64. https://doi.org/10.1038/sj.ijo.0801747 | |
107. Patil M, Patil R, Bhadane B, Mohammad S, Maheshwari V. Pancreatic lipase inhibitory activity of phenolic inhibitor from endophytic Diaporthe arengae. Biocatal Agric Biotechnol. 2017;10:234-8. https://doi.org/10.1016/j.bcab.2017.03.013 | |
108. Birari RB, Bhutani KK. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today. 2007;12:879-89. https://doi.org/10.1016/j.drudis.2007.07.024 | |
109. Ahda M, Jaswir I, Khatib A, Ahmed QU, Mahfudh N, Ardini YD, et al. Phytochemical analysis, antioxidant, α-glucosidase inhibitory activity, and toxicity evaluation of Orthosiphon stamineus leaf extract. Sci Rep. 2023;13:1-11. https://doi.org/10.1038/s41598-023-43251-2 | |
110. Kang C, Zhang Y, Zhang M, Qi J, Zhao W, Gu J, et al. Screening of specific quantitative peptides of beef by LC-MS/MS coupled with OPLS-DA. Food Chem. 2022;387:132932. https://doi.org/10.1016/j.foodchem.2022.132932 | |
111. Sosnowska D, Pods?dek A, Redzynia M, ?y?elewicz D. Effects of fruit extracts on pancreatic lipase activity in lipid emulsions. Plant Foods Hum Nutr. 2015;70:344-50. https://doi.org/10.1007/s11130-015-0501-x | |
112. Kahlon TS, Smith GE. In vitro binding of bile acids by blueberries (Vaccinium spp.), plums (Prunus spp.), prunes (Prunus spp.), strawberries (Fragaria X ananassa), cherries (Malpighia punicifolia), cranberries (Vaccinium macrocarpon) and apples (Malus sylvestris). Food Chem. 2007;100:1182-7. https://doi.org/10.1016/j.foodchem.2005.10.066 | |
113. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. https://doi.org/10.1016/j.foodchem.2022.132531 | |
114. Zuo AR, Dong HH, Yu YY, Shu QL, Zheng LX, Yu XY, et al. The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. Chinese Med (United Kingdom). 2018;13:1-12. https://doi.org/10.1186/s13020-018-0206-9 |
Year
Month