Bibliometric landscape of current research on acetoxychavicol acetate

Febri Wulandari Muhammad Da’i Ahmad Fauzi Maryati Maryati Mahmoud Mirzaei   

Open Access   

Published:  Feb 02, 2025

DOI: 10.7324/JAPS.2025.218090
Abstract

Acetoxychavicol acetate (ACA) is a promising natural compound with an extensive spectrum of medicinal properties. This study aimed to provide bibliometric mapping to evaluate the ACA trends in publishing and original research. We conducted a targeted search on the Scopus database for relevant literature and examined the acquired data using VOSviewer to determine the citation and keyword patterns. A total of 135 articles were examined. Over several years, research on the ACA has revealed a fluctuating pattern. Currently, Japan and Malaysia are the most prolific countries in studies related to ACA, and they also demonstrate the most extensive collaboration networks. Co-occurrence analysis of keywords revealed that anticancer phrases ranked the highest. This study provides a comprehensive overview of the current research landscape and outlines future expectations for the development of ACA as a drug candidate.


Keyword:     Acetoxychavicol acetate (ACA) bibliometric mapping VOSviewer pharmacological activity anticancer


Citation:

Wulandari F, Da’i M, Fauzi A, Maryati M, Mirzaei M. Bibliometric landscape of current research on acetoxychavicol acetate. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.218090

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Priyono QAP, Yusniasari PA, Alifiansyah MRT, Suryanto GY, Widyowati R, Herdiansyah MA, et al. Ethnomedical potentials, phytochemicals, and medicinal profile of Alpinia galanga L.: a comprehensive review. BIO Integr. 2024;5(1):1-9. https://doi.org/10.15212/bioi-2024-0032

2. Sankaran S, Selvaraj J, Pottabathula SS, Namboori K, Venkidasamy B, Alharbi NS, et al. Alpinia galanga bioactive constituents as multi-target inhibitors of SARS-CoV-2 proteins: a molecular docking, molecular simulation and ADMET analysis. Traditional MedRes. 2024;9(4):24. https://doi.org/10.53388/TMR20230902001

3. David EM, Parthasarathi T, Selvaraj CI. Phytochemistry and bioactive potential of Galangal (Alpinia galanga (L.) Willd.). In: Pullaiah T, editor. Phytochemical composition and pharmacy of medicinal plants: 2-volume set. Palm Bay, FL: Apple Academic Press; 2023. pp. 165-74.

4. Pradubyat N, Giannoudis A, Elmetwali T, Mahalapbutr P, Palmieri C, Mitrpant C, et al. 1′-acetoxychavicol acetate from Alpinia galanga represses proliferation and invasion, and induces apoptosis via HER2-signaling in endocrine-resistant breast cancer cells. Planta Med. 2022;88(2):163-78. https://doi.org/10.1055/a-1307-3997

5. Liu P, Wu SL, Wang T, Zhang XM, Geng CA. Four new phenolic compounds from the fruits of Alpinia galanga. Phytochem Lett. 2023;55:75-9. https://doi.org/10.1016/j.phytol.2023.04.001

6. Yit KH, Zainal-Abidin Z. Antimicrobial potential of natural compounds of Zingiberaceae plants and their synthetic analogues: a scoping review of in vitro and in silico approaches. Curr Top Med Chem. 2024;24(13):1158-84. https://doi.org/10.2174/0115680266294573240328050629

7. Ahmad A, Riaz S, Farooq R, Ahmed M, Hussain N. Alpinia officinarum (Galangal): a beneficial plant. J Med Public Health. 2023;4:1057.

8. Ramanunny AK, Wadhwa S, Gulati M, Gupta S, Porwal O, Jha NK, et al. Development and validation of RP-HPLC method for 1?-Acetoxychavicol acetate (ACA) and its application in optimizing the yield of ACA during its isolation from Alpinia galanga extract as well as its quantification in nanoemulsion. South Afr J Bot. 2022 Sep;149:887-98. https://doi.org/10.1016/j.sajb.2021.10.012

9. Alif I, Utomo RY, Ahlina FN, Nugraheni N, Hermansyah D, Putra A, et al. Immunopotentiation of galangal (Alpinia galanga L.) when combined with T-cells against metastatic triple-negative breast cancer, MDA-MB 231. J Appl Pharm Sci. 2021;11(11):53-61. https://doi.org/10.7324/JAPS.2021.1101107

10. Ong GH, Ori D, Kawasaki T, Kawai T. Inhibition of lipopolysaccharide-induced inflammatory responses by 1′-acetoxychavicol acetate. Genes Cells. 2022;27(7):482-92. https://doi.org/10.1111/gtc.12943

11. Higashida M, Xu S, Kojima-Yuasa A, Kennedy DO, Murakami A, Ohigashi H, et al. 1′-Acetoxychavicol acetate-induced cytotoxicity is accompanied by a rapid and drastic modulation of glutathione metabolism. Amino Acids. 2009;36(1):107-13. https://doi.org/10.1007/s00726-008-0038-5

12. Humaidi SNIC, Shalan NSN, Taib MNAM, Al-Shammary AAK, Anuar N, Awang K, et al. Antimicrobial and drug-synergistic potential of Alpinia conchigera Griff.-derived phenylpropanoids against Mycobacterium smegmatis. Malaysia J Microbiol. 2020;16(6):511-8.

13. Zhang D, Zou L, Wu DT, Zhuang QG, Li HB, Mavumengwana V, et al. Discovery of 1'-acetoxychavicol acetate (ACA) as a promising antibacterial compound from galangal (Alpinia galanga (Linn.) Willd). Ind Crops Prod. 2021;171:113883. https://doi.org/10.1016/j.indcrop.2021.113883

14. Ketkomol P, Songsak T, Jongrungruangchok S, Madaka F, Pradubyat N. The effect of 1'-acetoxychavicol acetate on A549 human non-small cell lung cancer. J Curr Sci Tech. 2024;14(2):43. https://doi.org/10.59796/jcst.V14N2.2024.43

15. Hua HY, Jiang YJ, You XY, Ye QX. Effects of 1'-acetoxychavicol acetate submicron emulsion on proliferation and apoptosis of HeLa cells. Chin Trad Herbal Drugs. 2012;43(4):729-33.

16. Kojima-Yuasa A, Matsui-Yuasa I. Pharmacological effects of 1′-acetoxychavicol acetate, a major constituent in the rhizomes of Alpinia galanga and Alpinia conchigera. J Med Food. 2020;1;23(5):465-75. https://doi.org/10.1089/jmf.2019.4490

17. Cardona- Galeano W, Ramirez- Malule H, Gómez- Ríos D. Hybrids based on coumarins and their anticancer activities: a bibliometric analysis. J Appl Pharm Sci. 2023;13(9):204-12. . https://doi.org/10.7324/JAPS.2023.150232

18. Omar N, Othman Z, Abdul Halim AS, Ahmad R, Md Lazin Md Lazim MR, Shafin N, et al. Unveiling the therapeutic potential of ketamine in depression: a bibliometric analysis and research landscape overview. J Appl Pharm Sci. 2024;14:27-34. https://doi.org/10.7324/JAPS.2024.177533

19. Cardona- Galeano W, Ramirez- Malule H, Gómez- Ríos D. Anticancer activity of monastrol, hybrids and derivatives: a comprehensive bibliometric analysis of recent research. J Appl Pharm Sci. 2024;14:73-82. https://doi.org/10.7324/JAPS.2024.152544

20. Dagli N, Patel B, Dagli R, Adnan N, Ahmad R, Haque M, et al. Bibliometric analysis and visualization of research on nanotechnology in dentistry from 1999 to 2022. J Appl Pharm Sci. 2023;13:58-66. https://doi.org/10.7324/JAPS.2023.146431

21. Aziz AN, Ibrahim H, Rosmy Syamsir D, Mohtar M, Vejayan J, Awang K. Antimicrobial compounds from Alpinia conchigera. J Ethnopharmacol. 2013;145(3):798-802. https://doi.org/10.1016/j.jep.2012.12.024

22. Misawa T, Aoyama H, Furuyama T, Dodo K, Sagawa M, Miyachi H, et al. Structural development of benzhydrol-type 1′-Acetoxychavicol Acetate (ACA) analogs as human leukemia cell-growth inhibitors based on quantitative structure-activity relationship (QSAR) analysis. Chem Pharm Bull. 2008;56(10):1490-5. https://doi.org/10.1248/cpb.56.1490

23. Miyauchi M, Nishikawa A, Furukawa F, Nakamura H, Son HY, Murakami A, et al. Inhibitory effects of 1'-acetoxychavicol acetate on N-nitrosobis (2-oxopropyl)-amine-induced initiation of cholangiocarcinogenesis in Syrian Hamsters. Jpn J Cancer Res. 2000;91(5):477-81. https://doi.org/10.1111/j.1349-7006.2000.tb00970.x

24. Saritnum O, Suamsiri P, Minami M, Matsushlma KI, Nemoto K. Genetic relationship of galangal (Alpinia galanga Willd.) in Thailand by RAPD analysis. Sabrao J Breed Genet. 2009;41(1):69-76.

25. Houghton P, Fang R, Techatanawat I, Steventon G, Hylands PJ, Lee CC. The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Methods. 2007;42(4):377-87. https://doi.org/10.1016/j.ymeth.2007.01.003

26. Matsuda H, Pongpiriyadacha Y, Morikawa T, Ochi M, Yoshikawa M. Gastroprotective effects of phenylpropanoids from the rhizomes of Alpinia galanga in rats: structural requirements and mode of action. Eur J Pharmacol. 2003;471(1):59-67. https://doi.org/10.1016/S0014-2999(03)01785-0

27. Oonmetta-aree J, Suzuki T, Gasaluck P, Eumkeb G. Antimicrobial properties and action of galangal (Alpinia galanga Linn.) on Staphylococcus aureus. LWT Food Sci Technol. 2006;39(10):1214-20. https://doi.org/10.1016/j.lwt.2005.06.015

28. Lee CC, Houghton P. Cytotoxicity of plants from Malaysia and Thailand used traditionally to treat cancer. J Ethnopharmacol. 2005;100(3):237-43. https://doi.org/10.1016/j.jep.2005.01.064

29. Nakamura Y, Murakami A, Ohto Y, Torikai K, Tanaka T, Ohigashi H. Suppression of tumor promoter-induced oxidative stress and inflammatory responses in mouse skin by a superoxide generation inhibitor 1'-acetoxychavicol acetate. Cancer Res. 1998;58(21):4832-9.

30. Murakami A, Matsumoto K, Koshimizu K, Ohigashi H. Effects of selected food factors with chemopreventive properties on combined lipopolysaccharide- and interferon-γ-induced IκB degradation in RAW264.7 macrophages. Cancer Lett. 2003;195(1):17-25. https://doi.org/10.1016/S0304-3835(03)00058-2

31. Zheng Q, Hirose Y, Yoshimi N, Murakami A, Koshimizu K, Ohigashi H, et al. Further investigation of the modifying effect of various chemopreventive agents on apoptosis and cell proliferation in human colon cancer cells. J Cancer Res Clin Oncol. 2002;128(10):539-46. https://doi.org/10.1007/s00432-002-0373-y

32. Murakami A, Ohura S, Nakamura Y, Koshimizu K, Ohigashi H. 1'-Acetoxychavicol acetate, a superoxide anion generation inhibitor, potently inhibits tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in ICR mouse skin. Oncology. 1996;53(5):386-91. https://doi.org/10.1159/000227593

33. Mitsui S, Kobayashi S, Nagahori H, Ogiso A. Constituents from seeds of Alpinia galanga Wild, and their anti-ulcer activities. Chem Pharm Bull (Tokyo). 1976;24(10):2377-82. https://doi.org/10.1248/cpb.24.2377

34. Haque AKMM, Leong KH, Lo YL, Awang K, Nagoor NH. In vitro inhibitory mechanisms and molecular docking of 1′-S-1′-acetoxychavicol acetate on human cytochrome P450 enzymes. Phytomedicine. 2017;31:1-9. https://doi.org/10.1016/j.phymed.2017.05.002

35. Kojima-Yuasa A, Yamamoto T, Yaku K, Hirota S, Takenaka S, Kawabe K, et al. 1′-acetoxychavicol acetate ameliorates age-related spatial memory deterioration by increasing serum ketone body production as a complementary energy source for neuronal cells. Chem-Biol Interact. 2016;257:101-9. https://doi.org/10.1016/j.cbi.2016.07.031

36. Korkina LG. Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol. 2007;53(1):15-25.

37. Liu Y, Murakami N, Zhang S, Xu T. Structure-activity relationships of 1′-acetoxychavicol acetate homologues as new nuclear export signal inhibitors. Pharmazie. 2007;62(9):659-62.

38. Yaku K, Matsui-Yuasa I, Azuma H, Kojima-Yuasa A. 1′-acetoxychavicol acetate enhances the phase II enzyme activities via the increase in intranuclear Nrf2 level and cytosolic p21 level. Am J Chin Med. 2011;39(4):789-802. https://doi.org/10.1142/S0192415X11009196

39. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981-90. https://doi.org/10.1016/j.cellsig.2012.01.008

40. Trachootham D, Lu W, Ogasawara MA, Valle NRD, Huang P. Redox regulation of cell survival. Antioxid Redox Signal. 2008;10(8):1343-74. https://doi.org/10.1089/ars.2007.1957

41. Ando S, Matsuda H, Morikawa T, Yoshikawa M. 1′S-1′-Acetoxychavicol acetate as a new type inhibitor of interferon-β production in lipopolysaccharide-activated mouse peritoneal macrophages. Bioorg Med Chem. 2005;13(9):3289-94. https://doi.org/10.1016/j.bmc.2005.02.022

42. Ohata T, Fukuda K, Murakami A, Ohigashi H, Sugimura T, Wakabayashi K. Inhibition by 1@?-acetoxychavicol acetate of lipopolysaccharide- and interferon-γ-induced nitric oxide production through suppression of inducible nitric oxide synthase gene expression in RAW264 cells. Carcinogenesis. 1998;19(6):1007-12. https://doi.org/10.1093/carcin/19.6.1007

43. Chen X, Wu X, Li L, Zhu X. Development of proteasome inhibitors for cancer therapy. IJDDP. 2024;3:100004. https://doi.org/10.53941/ijddp.2024.100004

44. Seo JW, Cho SC, Park SJ, Lee EJ, Lee JH, Han SS, et al. 1′-acetoxychavicol acetate isolated from Alpinia galanga ameliorates ovalbumin-induced asthma in mice. PLoS One. 2013;8(2):e56447. https://doi.org/10.1371/journal.pone.0056447

45. Anuar N, Taib MNAM, Hanafiah KM, Shammary AAKA, Shalan NSN, Humaidi SNIC, et al. Synthesis of 1?-Acetoxychavicol Acetate (ACA) analogues and their inhibitory activities against methicillin-resistant Staphylococcus aureus. J Phys Sci. 2020;31(3):101-11. https://doi.org/10.21315/jps2020.31.3.8

46. Janssen AM, Scheffer JJC. Acetoxychavicol acetate, an antifungal component of Alpinia galanga. Planta Med. 1985;51(6):507-11. https://doi.org/10.1055/s-2007-969577

47. Weerakkody NS, Smith WM, Mikkelsen D, Waanders J, Kerven G, Caffin N, et al. Purified 1′acetoxychavicol acetate (1′ACA) from galangal spice affects membrane fatty acid composition and triggers a cell envelope stress response in Staphylococcus aureus. Int J Antimicrob Agents. 2012;39(3):269-71. https://doi.org/10.1016/j.ijantimicag.2011.11.010

48. Chouni A, Paul S. A review on phytochemical and pharmacological potential of Alpinia galanga. Pharmacogn J. 2018;10(1):9-15. https://doi.org/10.5530/pj.2018.1.2

49. Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int. 2014;2014:1-12. https://doi.org/10.1155/2014/186864

50. Shen CL, Wang R, Ji G, Elmassry MM, Zabet-Moghaddam M, Vellers H, et al. Dietary supplementation of gingerols- and shogaols-enriched ginger root extract attenuate pain-associated behaviors while modulating gut microbiota and metabolites in rats with spinal nerve ligation. J Nutr Biochem. 2022;100:108904. https://doi.org/10.1016/j.jnutbio.2021.108904

51. Sok SPM, Ori D, Wada A, Okude H, Kawasaki T, Momota M, et al. 1′-acetoxychavicol acetate inhibits NLRP3-dependent inflammasome activation via mitochondrial ROS suppression. Int Immunol. 2021;33(7):373-86. https://doi.org/10.1093/intimm/dxab016

52. Gupta P, Bhatter P, D'souza D, Tolani M, Daswani P, Tetali P, et al. Evaluating the anti Mycobacterium tuberculosis activity of Alpinia galanga (L.) Willd. axenically under reducing oxygen conditions and in intracellular assays. BMC Complement Altern Med. 2014;14:84. https://doi.org/10.1186/1472-6882-14-84

53. Phanumartwiwath A, Kesornpun C, Sureram S, Hongmanee P, Pungpo P, Kamsri P, et al. Antitubercular and antibacterial activities of isoxazolines derived from natural products: isoxazolines as inhibitors of Mycobacterium tuberculosis InhA. J Chem Res. 2021;45(11-12):1003-15. https://doi.org/10.1177/17475198211047801

54. Warit S, Rukseree K, Prammananan T, Hongmanee P, Billamas P, Jaitrong S, et al. In vitro activities of enantiopure and racemic 1'-acetoxychavicol acetate against clinical isolates of Mycobacterium tuberculosis. Sci Pharm. 2017;85(3):32. https://doi.org/10.3390/scipharm85030032

55. Liang CH, Lin YS, Chiang SS. Regulation of adipogenesis and lipolysis by the rhizomes of Alpinia galanga in 3T3-L1 preadipocytes and high fat diet-induced obese BALB/c mice. Taiwanese J Agric Chem Food Sci. 2018;56(1-2):9-24.

56. Yaku K, Matsui-Yuasa I, Konishi Y, Kojima-Yuasa A. AMPK synergizes with the combined treatment of 1′-acetoxychavicol acetate and sodium butyrate to upregulate phase II detoxifying enzyme activities. Mol Nutr Food Res. 2013;57(7):1198-208. https://doi.org/10.1002/mnfr.201200809

57. Kato R, Matsui-Yuasa I, Azuma H, Kojima-Yuasa A. The synergistic effect of 1′-acetoxychavicol acetate and sodium butyrate on the death of human hepatocellular carcinoma cells. Chem-Biol Interact. 2014;212(1):1-10. https://doi.org/10.1016/j.cbi.2014.01.010

58. Chiu SP, Wu MJ, Chen PY, Ho YR, Tai MH, Ho CT, et al. Neurotrophic action of 5-hydroxylated polymethoxyflavones: 5-demethylnobiletin and gardenin A stimulate neuritogenesis in PC12 cells. J Agric Food Chem. 2013;61(39):9453-63. https://doi.org/10.1021/jf4024678

59. Yaku K, Matsui-Yuasa I, Kojima-Yuasa A. 1′-acetoxychavicol acetate increases proteasome activity by activating cAMP-PKA signaling. Planta Med. 2018;84(3):153-9. https://doi.org/10.1055/s-0043-118806

60. He P, Yan S, Zheng J, Gao Y, Zhang S, Liu Z, et al. Eriodictyol attenuates LPS-induced neuroinflammation, amyloidogenesis, and cognitive impairments via the inhibition of NF-κB in male C57BL/6J mice and BV2 microglial cells. J Agric Food Chem. 2018;66(39):10205-14. https://doi.org/10.1021/acs.jafc.8b03731

61. Awang K, Nurul Azmi M, Lian Aun LI, Nazif Aziz A, Ibrahim H, Hasima Nagoor N. The apoptotic effect of 1'S-1'-acetoxychavicol

acetate from Alpinia conchigera on human cancer cells. Molecules. 2010;15(11):8048-59. https://doi.org/10.3390/molecules15118048

62. Campbell CT, Prince M, Landry GM, Kha V, Kleiner HE. Pro-apoptotic effects of 1′-acetoxychavicol acetate in human breast carcinoma cells. Toxicol Lett. 2007;173(3):151-60. https://doi.org/10.1016/j.toxlet.2007.07.008

63. Muangnoi P, Lu M, Lee J, Thepouyporn A, Mirzayans R, Le XC, et al. Cytotoxicity, apoptosis and DNA damage induced by Alpinia galanga rhizome extract. Planta Med. 2007;73(8):748-54. https://doi.org/10.1055/s-2007-981542

64. Ghallab AM, Eissa RA, El Tayebi HM. CXCR2 Small-molecule antagonist combats chemoresistance and enhances immunotherapy in triple-negative breast cancer. Front Pharmacol. 2022;13:862125. https://doi.org/10.3389/fphar.2022.862125

65. Pang X, Zhang L, Lai L, Chen J, Wu Y, Yi Z, et al. 1'-acetoxychavicol acetate suppresses angiogenesis-mediated human prostate tumor growth by targeting VEGF-mediated Src-FAK-Rho GTPase-signaling pathway. Carcinogenesis. 2011;32(6):904-12. https://doi.org/10.1093/carcin/bgr052

66. Guntarno NC, Rahaju AS, Kurniasari N. The role of MMP-9 and VEGF in the invasion state of bladder urothelial carcinoma. Indonesian Biomed J. 2021;13(1):61-7. https://doi.org/10.18585/inabj.v13i1.1348

67. Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules. 2019;9(11):735. https://doi.org/10.3390/biom9110735

68. Ahlina FN, Nugraheni N, Salsabila IA, Haryanti S, Da'i M, Meiyanto E. Revealing the reversal effect of galangal (Alpinia galanga L.) extract against oxidative stress in metastatic breast cancer cells and normal fibroblast cells intended as a co- chemotherapeutic and anti-ageing agent. Asian Pac J Cancer Prev. 2020;21(1):107-17. https://doi.org/10.31557/APJCP.2020.21.1.107

69. Azmi MN, Tan CS, Abdulameed HT, Kamal NNSNM, Kahar NEA, Omar MTC. Synthesis of benzhydrol analogues based on 1'-acetoxychavicol acetate (ACA), as a stable and potent antiproliferative agent on breast cancer cell lines, ADMET analysis and molecular docking study. Org Commun. 2024;17(2):99-114. https://doi.org/10.25135/acg.oc.2405.3237

70. Shao X, Xing F, Zhang Y, Lok CN, Che CM. Integrative chemoproteomics reveals anticancer mechanisms of silver( i ) targeting the proteasome regulatory complex. Chem Sci. 2024;15(14):5349-59. https://doi.org/10.1039/D3SC04834A

71. Sari AA, Munawaroh R, Sofyanita EN. Bibliometric analysis of antibacterial activity of Centella asiatica: a study based on Scopus database. J Appl Pharm Sci. 2023;13:1-15. https://doi.org/10.7324/JAPS.2023.139686

72. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31-46. https://doi.org/10.1158/2159-8290.CD-21-1059

73. Zhou X, Xu R, Wu Y, Zhou L, Xiang T. The role of proteasomes in tumorigenesis. Genes Dis. 2024;11(4):101070. https://doi.org/10.1016/j.gendis.2023.06.037

74. Sagawa M, Tabayashi T, Kimura Y, Tomikawa T, Nemoto-Anan T, Watanabe R, et al. TM -233, a novel analog of 1′-acetoxychavicol acetate, induces cell death in myeloma cells by inhibiting both JAK / STAT and proteasome activities. Cancer Sci. 2015;106(4):438-46. https://doi.org/10.1111/cas.12616

75. Subramaniam B, Arshad NM, Malagobadan S, Misran M, Nyamathulla S, Mun KS, et al. Development and evaluation of 10-acetoxychavicol acetate (ACA)-loaded nanostructured lipid carriers for prostate cancer therapy. Pharmaceutics. 2021;13(4):439. https://doi.org/10.3390/pharmaceutics13040439

Article Metrics
35 Views 0 Downloads 35 Total

Year

Month

Related Search

By author names