Bacillus spp. associated with tropical medicinal plants are potential sources of secondary metabolites possessing antimycobacterial properties. This study evaluated the antimycobacterial activity of endophytic Bacillus species against Mycobacterium smegmatis and analyzed putative secondary metabolite gene clusters (SMGCs) in the complete genome sequence of the selected isolate. Among the four isolates tested, colony and metabolite extract from Bacillus sp. strain DJ4 strongly inhibited the growth of M. smegmatis, a surrogate bacterium for Mycobacterium tuberculosis (Mtb). The extract was categorized as bactericidal, since the minimum inhibitory concentration (MIC) and MBC of the bacterial extract were 31.25 μg/ml and 125 μg/ml, respectively. The most effective inhibition of biofilm formation and eradication of M. smegmatis cells’ biofilm was shown by the 2 × MIC extract treatment. Eighteen volatile compounds (VOCs) were identified by gas chromatography-mass spectrometry analysis. Some VOCs found in the extract have been reported to act as antibacterial agents. Whole-genome analysis revealed that Bacillus sp. strain DJ4 is similar to Bacillus velezensis strain KCTC 13012. Eight SMGCs were identified in the bacterial genomes. In conclusion, the present study indicates that endophytic Bacillus species, especially Bacillus sp. strain DJ4, are a new source of antimycobacterial compounds. This discovery may allow further exploration of secondary metabolites and genomic features of this endophytic bacterium to open up great prospects in the pharmaceutical industry to combat Mtb infection.
Priyanto JA, Prastya ME, Hening ENW, Astuti RI. Exploring antimycobacterial potential and profiling secondary metabolite gene clusters in the whole genome of Bacillus isolated from dogfruit (Archidendron pauciflorum). J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2025.204561
1. NIAID (National Institute of Allergy and Infectious Diseases). Tuberculosis. [cited 2024 June 4]. [Internet]. Available from: https://www.niaid.nih.gov/diseases-conditions/tuberculosis-tb
2. WHO. Treatment of tuberculosis: guidelines. 4th ed. Geneva, Switzerland: WHO; 2010. [cited 2024 June 4]. Available from: http://apps.who.int/iris/bitstream/10665/44165/1/9789241547833_eng.pdf?ua=1&ua=1
3. Mabhula A, Singh V. Drug-resistance in Mycobacterium tuberculosis: where we stand. Medchemcomm. 2019;10(8):1342−60. doi: https://doi.org/10.1039/c9md00057g
4. Food and Drug Administration (FDA) approves new drug for treatment-resistant forms of tuberculosis that affects the lungs. 2019 [cited 2024 June 4]. [Internet]. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-new-drug-treatment-resistant-forms-tuberculosis-affects-lungs
5. Perveen S, Kumari D, Singh K, Sharma R. Tuberculosis drug discovery: progression and future interventions in the wake of emerging resistance. Europ J Med Chem. 2022;229:114066−86. doi: https://doi.org/10.1016/j.ejmech.2021.114066
6. Lelovic N, Mitachi K, Yang J, Lemieux MR, Ji Y, Kuurosu MM. Application of Mycobacterium smegmatis as a surrogate to evaluate drug leads against Mycobacterium tuberculosis. J Antibiot (Tokyo). 2020;73(11):780−9. doi: https://doi.org/10.1038/s41429-020-0320-7
7. Tensingh JAS, Ranjitha J, Rajan A, Shankar V. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J Infect Publ Health. 2020;13(9):1255−64. doi: https://doi.org/10.1016/j.jiph.2020.06.023
8. Fouda A, Eid AM, Elsaied A, El-Belely EF, Barghoth MG, Azab E, et al. Plant growth promoting endophytic bacterial community inhabiting the leaves of Pulicaria incisa (Lam.) DC inherent to arid regions. Plants. 2021;10(76):2−22. doi: https://doi.org/10.3390/plants10010076
9. Bunawan H, Dusik L, Bunawan SN, Amin NM. Botany, traditional uses, phytochemistry and pharmacology of Archidendron jiringa: a review. Global J Pharmacol. 2013;7(4):474−8. doi: https://doi.org/10.5829/idosi.gjp.2013.7.4.824
10. Hemmerling F, Pie J. Strategies to access biosynthetic novelty in bacterial genomes for drug discovery. Nat Rev Drug Discov. 2022; 21:359–78. doi: https://doi.org/10.1038/s41573-022-00414-6
11. Priyanto JA, Prastya ME, Astuti RI, Minarti, Mozef T. Endophytic Bacillus spp. isolated from Archidendron pauciflorum: pharmacological property and their phytochemical constituents. J Res Pharm. 2023;27(6):2511–21. doi: http://dx.doi.org/10.29228/jrp.540
12. Priyanto JA, Prastya ME, Astuti ME, Kristiana R. The antibacterial and antibiofilm activities of the endophytic bacteria associated with Archidendron pauciflorum against multidrug-resistant strains. Appl Biochem Biotechnol. 2023;195(11):6653–74. doi: https://doi.org/10.1007/s12010-023-04382-4
13. Guendouzi SE, Suzanna D, Hassi M, Haggoud A, Souda SI, Houari A, et al. Isolation and identification of Bacillus strains with antimycobacterial activity. Afr J Microbiol Res. 2011;5(18):2786–92. doi: https://doi.org/10.5897/AJMR11.640
14. Nalli Y, Singh S, Gajjar A, Mahizhaveni B, Dusthackeer VNA, Shinde PB. Bacillibactin class siderophores produced by the endophyte Bacillus subtilis NPROOT3 as antimycobacterial agents. Lett Appl Microbiol. 2023;76(2):ovac026. doi: https://doi.org/10.1093/lambio/ovac026
15. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. CLSI Supplement M100. 31st edition, Wayne, PA: Clinical and Laboratory Standards Institute; 2023.
16. Wintachai P, Paosen S, Yupanqui CT, Voravuthikunchai SP. Silver nanoparticles synthesized with Eucalyptus critriodora ethanol leaf extract stimulate antibacterial activity against clinically multidrug-resistant Acinetobacter baumannii isolated from pneumonia patients. Microb Pathogen. 2019;126:245–57. doi: https://doi.org/10.1016/j.micpath.2018.11.018
17. Dat TTH, Oanh PTT, Cuong LCV, Anh LT, Minh LTH, Ha H, et al. Pharmacological properties, volatile organic compounds, and genome sequences of bacterial endophytes from the mangrove plant Rhizophora apiculata Blume. Antibiotics. 2021;10(1491):1–23. doi: https://doi.org/10.3390/antibiotics10121491
18. Seenivasan A, Manikkam R, Kaari M, Sahu AK, Said M, Dastager SG. 2,4-Di-tert-butylphenol (2,4-DTBP) purified from Streptomyces sp. KCA1 from Phyllanthus niruri: isolation, characterization, antibacterial and anticancer properties. J King Saudi Univ Sci. 2022;34:1–7. doi: https://doi.org/10.1016/j.jksus.2022.102088
19. Varsha KK, Devendra L, Shilpa G, Priya S, Pandey A, Nampoothiri KM. 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int J Food Microbiol. 2015;211:44–50. doi: https://doi.org/10.1016/j.ijfoodmicro.2015.06.025
20. Ahmad S, Alrouji M, Alhajlah S, Alomeir O, Pandey RP, Ashraf MS, et al. Secondary metabolite profiling, antioxidant, antidiabetic and neuroprotective activity of Cestrum octurnum (Night Scented-Jasmine): use of in vitro and in silico approach in determining the potential bioactive compound. Plants. 2023;12:1–22. doi: https://doi.org/10.3390/plants12061206
21. Roy RN, Laskar S, Sen SK. Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2. Microbiol Res. 2006;161(13):121–6. doi: https://doi.org/10.1016/j.micres.2005.06.007
22. Kiran GS, Priyadharsini S, Sajayan A, Ravindran A, Selvin J. An antibiotic agent pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus. RSC Adv. 2018;8:17837–46. doi: https://doi.org/10.1039/C8RA00820E
23. Sanjenbam P, Kannabiran K. Bioactivity of pyrrolo [1,2-a]pyrazine-1,4-dione,hexahydro-3-(phenylmethyl)- extracted from Streptomyces sp. VITPK9 isolated from the salt spring habitat of Manipur, India. Asian J Pharmaceut. 2016;10(4):265–70. doi: https://doi.org/10.22377/ajp.v10i04.865
24. Anzaku AA, Akyala JI, Juliet A, Obianuju, EC. Antibacterial activity of lauric acid on some selected clinical isolates. Annals Clin Lab Res. 2017;5(2):1–5. doi: https://doi.org/10.21767/2386-5180.1000170
25. Nazemi M, Motallebi A, Abbasi E, Kheladi M, Zare M. Antibacterial, antifungal, and cytotoxic activity of the fraction contains squalene in the acetone extract of a sea cucumber, Stichopus hermanni. Iranian J Fish Sci. 2022;21(6):1495–507. doi: https://doi.org/10.22092/ijfs.2023.128416
26. Selamat SN, Muhamad II, Idham Z, Pae. Retention of alpha tocopherol and antioxidant activity of encapsulated palm mixed vitamin E in formulated blends. MOJ Food Process Technol. 2018;6(3):272?8. doi: https://doi.org/10.15406/mojfpt.2018.06.00175
27. Chen XH, Vater J, Piel J, Franke P, Scholz R, Schneider K, et al. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol. 2006;188(11):4024–36. doi: https://doi.org/10.1128/JB.00052-06
28. Barbe V, Cruveiller S, Kunst F, Lenoble P, Meurice G, Sekowska A, et al. From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. Microbiology (Reading). 2009;155(6):1758–75. doi: https://doi.org/10.1099/mic.0.027839-0
29. Wu L, Wu H, Chen L, Yu X, Borriss R, Gao X. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci Rep. 2015;5(12975):1–9. doi: https://doi.org/10.1038/srep12975
30. Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol. 2007;25(9):1007–14. doi: https://doi.org/10.1038/nbt1325
31. Moldenhauer J, Chen XH, Borriss R, Piel J. Biosynthesis of the antibiotic bacillaene, the product of a giant polyketide synthase complex of the trans-AT family. Angewandte Chemie Int Ed. 2007;46(43):8195–7. doi: https://doi.org/10.1002/anie.200703386
32. Schneider K, Chen XH, Vater J, Franke P, Nicholson G, Borriss R, et al. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J Nat Prod. 2007;70(9):1417–23. doi: https://doi.org/10.1021/np070070k
33. Liu Z, Budiharjo A, Wang P, Shi H, Fang J, Borriss R, et al. The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. Appl Microbiol Biotechnol. 2013;97(23):10081–90. doi: https://doi.org/10.1007/s00253-013-5247-5
34. Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol. 2004;186(4):1084–96. doi: https://doi.org/10.1128/JB.186.4.1084-1096.2004
35. Nisa S, Shoukat M, Bibi Y, Al Ayoubi S, Shah W, Masood S, et al. Therapeutic prospects of endophytic Bacillus species from Berberis lycium against oxidative stress and microbial pathogens. Saudi J Biol Sci. 2022;29(1):287–95. doi: https://doi.org/10.1016/j.sjbs.2021.08.099
36. Nxumalo CI, Ngidi LS, Shandu JSE, Maliehe TS. Isolation of endophytic bacteria from the leaves of Anredera cordifolia CIX1 for metabolites and their biological activities. BMC Compl Med Ther. 2020;20(1):1–11. doi: https://doi.org/10.1186/s12906-020-03095-z
37. Riaz MS, Kaur A, Shwayat SN, Behboudi S, Kishore U, Pathan AA. Dissecting the mechanism of intracellular Mycobacterium smegmatis growth inhibition by platelet activating factor C-16. Front Microbiol. 2020;11:1–14. doi: https://doi.org/10.3389/fmicb.2020.01046
38. Jeffrey LN, Ardrey A, Hafiz TA, Dyer LA, Warman AJ, Mosallam N, et al. Identification of 2-aryl-quinolone inhibitors of cytochrome bd and chemical validation of combination strategies for respiratory inhibitors against Mycobacterium tuberculosis. ACS Infect Diseases. 2023;9(2):221–38. doi: https://doi.org/10.1021/acsinfecdis.2c00283
39. Shetty A, Dick T. Mycobacterial cell wall synthesis inhibitors cause lethal ATP burst. Front Microbiol. 2018;9:1–9. doi: https://doi.org/10.3389/fmicb.2018.01898
40. Lin Y, Li Y, Zhu N, Han Y, Jiang W, Wang Y, et al. The antituberculosis antibiotic capreomycin inhibits protein synthesis by disrupting interaction between ribosomal proteins L12 and L10. Antimicrob Agents Chemother. 2014;58(4):2038–44. doi: https://doi.org/10.1128/AAC.02394-13
41. Šimunovi? K, Solnier J, Alperth F, Kunert O, Možina S, Bucar F. Efflux pump inhibition and resistance modulation in Mycobacterium smegmatis by Peucedanum ostruthium and its coumarins. Antibiotics. 2021;10:1–17. doi: https://doi.org/10.3390/antibiotics10091075
42. Szafran MJ, Ko?odziej M, Skut P, Medapi B, Domaga?a A, Trojanowski D, et al. Amsacrine derivatives selectively inhibit mycobacterial topoisomerase I (topa), impair M. smegmatis growth and disturb chromosome replication. Front Microbiol. 2018;17(9):1–13. doi: https://doi.org/10.3389/fmicb.2018.01592
43. Richards JP, Cai W, Zill NA, Zhang W, Ojha AK. Adaptation of Mycobacterium tuberculosis to biofilm growth is genetically linked to drug tolerance. Antimicrobact Agents Chemoter. 2019;63(11):1–17. doi: https://doi.org/10.1128/aac.01213-19
44. Grahovac J, Paj?in I, Vlajkov V. Bacillus VOCs in the context of biological control. Antibiotics. 2023;12:1–40. doi: https://doi.org/10.3390/antibiotics12030581
45. Naksang P, Tongchitpakdee S, Thumanu K, Oruna-Concha MJ, Niranjan K, Rachtanapun C. Assessment of antimicrobial activity, mode of action and volatile compounds of Etlingera pavieana essential oil. Molecules. 2020;25(14):1–14. doi: https://doi.org/10.3390/molecules25143245
46. Wang WQ, Feng XC, Shi HT, Wang YM, Jiang CY, Xiao ZJ, et al. Biofilm inhibition based on controlling the transmembrane transport and extracellular accumulation of quorum sensing signals. Environ Res. 2023;221:115218. doi: https://doi.org/10.1016/j.envres.2023.115218
47. Abdallah FB, Lagha R, Gaber A. Biofilm inhibition and eradication properties of medicinal plant essential oils against methicillin-resistant Staphylococcus aureus clinical isolates. Pharmaceut (Basel). 2020;13(11):1–15. doi: https://doi.org/10.3390/ph13110369
48. Land M, Hauser L, Jun SR, Nookaew I, Leuze MR, Ahn TH, et al. Insights from 20 years of bacterial genome sequencing. Functional Integr Genomics. 2015;15(2):141–61. doi: https://doi.org/10.1007/s10142-015-0433-4
49. Jeong H, Park SH, Choi SK. Genome sequence of antibiotic-producing Bacillus amyloliquefaciens strain KCTC 13012. Genome Announc. 2015;3(5):1–2. doi: https://doi.org/10.1128/genomeA.01121-15
50. Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol. 2019;10:1–19. doi: https://doi.org/10.3389/fmicb.2019.00302
Year
Month