This study aimed to investigate the presence, characterization, and antioxidant properties of carotenoid compounds at the cellular level in the bacteria Paracoccus haeundaensis SAB E11. Furthermore, carotenoid synthesis was determined based on the presence of the crtY gene. Characterization of the carotenoid isolated was performed through thin-layer chromatography (TLC), UV-Vis spectrum, high-performance liquid chromatography (HPLC), and Fourier-transform infrared spectroscopy (FTIR). Meanwhile, cellular antioxidant activity was examined using 2,2-diphenyl-1-picryhydrazyl (DPPH) radicals and the organism model yeast Schizosaccharomyces pombe ARC039. The results showed that P. haeundaensis SAB E11 had a band on the chromatogram at 163 bp, representing 54 amino acid residues of lycopene β-cyclase crtY. TLC, UV-Vis, HPLC, and Fourier transform infrared spectroscopy (FTIR) analyses confirmed carotenoid presence, while the DPPH radicals assay identified antioxidant activity with an IC50 value of 203.90 ± 3.12 μg.ml−1 At the cellular level, carotenoid concentrations of 28 μg.ml-1 and 56 μg.ml-1 could enhance the stress tolerance phenotype of S. pombe ARC039 against 2 mM H2O2. Strong induction of mitochondrial activity was obtained following treatment with the 28 μg.ml-1 concentration. After H2O2 treatment, there was a 3.18 and 2.55-fold increase in the relative expression of catalase (ctt1) and superoxide dismutase (sod2) genes of S. pombe ARC039, respectively. These data showed that P. haeundaensis SAB E11 produced carotenoids with potential antioxidant capabilities manifested at the cellular level by inducing an adaptive oxidative response and mitochondrial activity, as well as increasing the expression of ctt1 and sod2 genes.
Abubakar H, Astuti RI, Batubara I, Listiyowati S, Wahyudi AT. Investigating antioxidant activity of carotenoid compound from Paracoccus haeundaensis SAB E11 at the cellular level in Schizosaccaromyces pombe ARC039 yeast model. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2025.204168
1. Nandi A, Yan LJ, Jana CK, Das N. Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid Med Cell Longev. 2019;9613090:1–19. doi: http://dx.doi.org/10.1155/2019/9613090
2. Dubois-Deruy E, Peugnet V, Turkieh A, Pinet F. Oxidative stress in cardiovascular diseases. Antioxidants. 2020;9(864):1–15. doi: http://dx.doi.org/10.3390/antiox9090864
3. Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, et al. A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res. 2018;70:62–93. doi: http://dx.doi.org/10.1016/j.plipres.2018.04.004
4. Meléndez-Martínez AJ, Britton G, Vicario IM, Heredia FJ. Relationship between the colour and the chemical structure of carotenoid pigments. Food Chem. 2007;101:1145–50. doi: http://dx.doi.org/10.1016/j.foodchem.2006.03.015
5. Mordi RC, Ademosun OT, Ajanaku CO, Olanrewaju IO, Walton JC. Free radical mediated oxidative degradation of carotenes and xanthophylls. Molecules. 2020;25:1–13. doi: http://dx.doi.org/10.3390/molecules25051038
6. Asker D, Beppu T, Ueda K. Unique diversity of carotenoid-producing bacteria isolated from Misasa, a radioactive site in Japan. Appl Microbiol Biotechnol. 2007;77(2):383–92. doi: http://dx.doi.org/10.1007/s00253-007-1157-8.
7. Licht MK, Nuss AM, Volk M, Konzer A, Beckstette M, Berghoff BA, et al. Adaptation to photooxidative stress: common and special strategies of the alphaproteobacteria Rhodobacter sphaeroides and Rhodobacter capsulatus. Microorganisms. 2020;8(2):1–22. doi: http://dx.doi.org/10.3390/microorganisms8020283
8. Naik R, Gupte S. Characterization of pigment produced by high carotenoid yielding bacteria Paracoccus marcusii RSPO1 and evaluation of its anti-diabetic, anti-microbial and antioxidant properties. Nat Prod Res. 2024;38(6):968–77. doi: http://dx.doi.org/10.1080/14786419.2023.2208358
9. Basim I, Jaber Kithar A, Majeed Alaa Gazi ALhashimi R. Antioxidant and antibacterial activity of β-carotene pigment extracted from Paracoccus homiensis strain BKA7 isolated from air Basrah, Iraq. Ann Rom Soc Cell Biol. 2021;25(4):14006–28.
10. Mussagy CU, Duffose L. A review of natural astaxanthin production in a circular bioeconomy context using Paracoccus carotinifaciens. Bioresour Technol. 2023;369:1–9. doi: http://dx.doi.org/10.1016/j.biortech.2022.128499
11. Hirakida H, Nakamura S, Inagaki S, Tsuji S, Hayashi M, Shimazawa M, et al. Anti-diabetic effects of astaxanthin-rich extract derived from Paracoccus carotinifaciens on pancreatic β cells. J Funct Foods. 2022;97:105252.
12. Hayashi M, Kawamura M, Kawashima Y, Uemura T, Maoka T. Effect of astaxanthin-rich extract derived from Paracoccus carotinifaciens on the status of stress and sleep in adults. J Clin Biochem Nutr. 2020;66(2):92–102. doi: http://dx.doi.org/10.3164/jcbn.19-13
13. Patil MP, Kang M jae, Niyonizigiye I, Singh A, Kim JO, Seo YB, et al. Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines. Colloids Surf B Biointerfaces. 2019;183(110455):1–7. doi: http://dx.doi.org/10.1016/j.colsurfb.2019.110455
14. Abubakar H, Astuti RI, Listyowati S, Batubara I, Wahyudi AT. An orange pigment from the marine bacterium Paracoccus haeundaensis SAB E11 as a prospective source of natural antioxidants. Biodiversitas. 2022;23(9):4730–7. doi: http://dx.doi.org/10.13057/biodiv/d230940
15. Prastya ME, Astuti RI, Batubara I, Takagi H, Wahyudi AT. Natural extract and its fractions isolated from the marine bacterium Pseudoalteromonas flavipulchra STILL-33 have antioxidant and antiaging activities in Schizosaccharomyces pombe. FEMS Yeast Res. 2020;20(3):1–14. doi: http://dx.doi.org/10.1093/femsyr/foaa014
16. Astuti RI, Prastya ME, Batubara I, Budiarti E, Ilmiyawati A. Antiaging and antioxidant bioactivities of Asteraceae plant fractions on the cellular functions of the yeast Schizosaccharomyces pombe. Adv Pharmacol Pharm Sci. 2021;2021:1–12. doi: http://dx.doi.org/10.1155/2021/2119634
17. Abubakar H, Wahyudi AT, Yuhana M. Skrining bakteri yang berasosiasi dengan spons Jaspis sp. sebagai penghasil senyawa antimikroba. IJMS. 2012;16(1):35–40. doi: http://dx.doi.org/10.14710/ik.ijms.16.1.35-40
18. Choi SS, Seo YB, Nam SW, Kim G Do. Enhanced production of astaxanthin by co-culture of Paracoccus haeundaensis and lactic acid bacteria. Front Mar Sci. 2021;7:1–12. doi: http://dx.doi.org/10.3389/fmars.2020.597553
19. Chekanov K, Litvinov D, Fedorenko T, Chivkunova O, Lobakova E. Combined production of astaxanthin and β-carotene in a new strain of the microalga Bracteacoccus aggregatus BM5/15 (IPPAS C-2045) cultivated in photobioreactor. Biology (Basel). 2021;10(7):1–17. doi: http://dx.doi.org/10.3390/biology10070643
20. Hagos M, Redi-Abshiro M, Chandravanshi BS, Yaya EE. Development of analytical methods for determination of β-carotene in pumpkin (Cucurbita maxima) flesh, peel, and seed powder samples. Int J Anal Chem. 2022;2022:1–11. doi: http://dx.doi.org/10.1155/2022/9363692
21. Allahkarami S, Akhavan Sepahi A, Hosseini H, Razavi MR. Isolation and identification of carotenoid-producing Rhodotorula sp. from Pinaceae forest ecosystems and optimization of in vitro carotenoid production. Biotechnol Rep. 2021;32:1–12. doi: http://dx.doi.org/10.1016/j.btre.2021.e00687
22. Singh DP, Khattar JS, Rajput A, Chaudhary R, Singh R. High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions. PLoS One. 2019;14(9):1–19. doi: http://dx.doi.org/10.1371/journal.pone.0221930
23. Batubara I, Komariah K, Sandrawati A, Nurcholis W. Genotype selection for phytochemical content and pharmacological activities in ethanol extracts of fifteen types of Orthosiphon aristatus (Blume) Miq. leaves using chemometric analysis. Sci Rep. 2020;10(1):1–11. doi: http://dx.doi.org/10.1038/s41598-020-77991-2
24. Lesmana D, Andrianto D, Astuti RI. Antiaging properties of the ethanol fractions of clove (Syzygium aromaticum l.) bud and leaf at the cellular levels: study in yeast Schizosaccharomyces pombe. Sci Pharm. 2021;89(4):1–13. doi: http://dx.doi.org/10.3390/scipharm89040045
25. Cahlia U, Astuti RI, Nomura J, Wahyudi AT. Antioxidant properties of active fraction extract derived from yellow-red pigment produced by the marine sponge-associated bacterium Bacillus haikouensis AGS112 and identification of related compounds. Hayati. 2023;30(5):874–84. doi: http://dx.doi.org/10.4308/hjb.30.5.874-884
26. Foong LC, Loh CWL, Ng HS, Lan JCW. Recent development in the production strategies of microbial carotenoids. World J Microbiol Biotechnol. 2021;37(1):1–11. doi: http://dx.doi.org/10.1007/s11274-020-02967-3
27. Lee JH, Kim YT. Cloning and characterization of the astaxanthin biosynthesis gene cluster from the marine bacterium Paracoccus haeundaensis. Gene. 2006;370:86–95. doi: http://dx.doi.org/10.1016/j.gene.2005.11.007
28. Siddaramappa S, Viswanathan V, Thiyagarajan S, Narjala A. Genomewide characterization of the genetic diversity of carotenogenesis in bacteria of the order Sphingomonadales. Microb Genom. 2018;4(4):1–15. doi: http://dx.doi.org/10.1099/mgen.0.000172
29. Qiang S, Su AP, Li Y, Chen Z, Hu CY, Meng YH. Elevated β-carotene synthesis by the engineered Rhodobacter sphaeroides with enhanced CrtY expression. J Agric Food Chem. 2019;67(34):9560–68. doi: http://dx.doi.org/10.1021/acs.jafc.9b02597
30. Guevarra RB, Magez S, Peeters E, Chung MS, Kim KH, Radwanska M. Comprehensive genomic analysis reveals virulence factors and antibiotic resistance genes in Pantoea agglomerans KM1, a potential opportunistic pathogen. PLoS One. 2021;16:1–27. doi: http://dx.doi.org/10.1371/journal.pone.0239792
31. Zhao Z, Liu Z, Mao X. Biotechnological advances in lycopene β-Cyclases. J Agric Food Chem. 2020;68(43):11895–907. doi: http://dx.doi.org/10.1021/acs.jafc.0c04814
32. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42:W252–8. doi: http://dx.doi.org/10.1093/nar/gku340
33. Guo HB, Perminov A, Bekele S, Kedziora G, Farajollahi S, Varaljay V, et al. AlphaFold2 models indicate that protein sequence determines both structure and dynamics. Sci Rep. 2022;12(1):1–15. doi: http://dx.doi.org/10.1038/s41598-022-14382-9
34. Sinha S, Das S, Saha B, Paul D, Basu B. Anti-microbial, anti-oxidant, and anti-breast cancer properties unraveled in yeast carotenoids produced via cost-effective fermentation technique utilizing waste hydrolysate. Front Microbiol. 2023;13:1–13. doi: http://dx.doi.org/10.3389/fmicb.2022.1088477
35. Hagaggi NSA, Abdul-Raouf UM. Production of bioactive β-carotene by the endophytic bacterium Citricoccus parietis AUCs with multiple in vitro biological potentials. Microb Cell Fact. 2023;22(1):1–9. doi: http://dx.doi.org/10.1186/s12934-023-02108-z
36. Vila E, Hornero-Méndez D, Azziz G, Lareo C, Saravia V. Carotenoids from heterotrophic bacteria isolated from Fildes Peninsula, King George Island, Antarctica. Biotechnol Rep. 2019;21:1–7. doi: http://dx.doi.org/10.1016/j.btre.2019.e00306
37. Kaur P, Ghoshal G, Jain A. Bio-utilization of fruits and vegetables waste to produce β-carotene in solid-state fermentation: characterization and antioxidant activity. Process Biochem. 2019;76(1):155–64. doi: http://dx.doi.org/10.1016/j.procbio.2018.10.007
38. Kusmita L, Nur Prasetyo Edi A, Dwi Franyoto Y, Mutmainah, Haryanti S, Dwi Retno Nurcahyanti A. Sun protection and antibacterial activities of carotenoids from the soft coral Sinularia sp. symbiotic bacteria from Panjang Island, North Java Sea. Saudi Pharm J. 2023;31(8):1–10. doi: http://dx.doi.org/10.1016/j.jsps.2023.06.013
39. Metwally RA, El-Sersy NA, El Sikaily A, Sabry SA, Ghozlan HA. Optimization and multiple in vitro activity potentials of carotenoids from marine Kocuria sp. RAM1. Sci Rep. 2022;12(1):1–19. doi: http://dx.doi.org/10.1038/s41598-022-22897-4
40. Sandhiya L, Zipse H. Conformation-dependent antioxidant properties of β-carotene. Org Biomol Chem. 2022;20(1):152–62. doi: http://dx.doi.org/10.1039/d1ob01723c
41. Stafsnes MH, Bruheim P. Pigmented marine heterotrophic bacteria: occurrence, diversity, and characterization of pigmentation. In: Kim S-K, editor. Marine biomaterials: characterization, isolation and applications. First, London, UK: Taylor & Francis; 2013, p. 117–47. doi: http://dx.doi.org/10.1201/b14723
42. Skinner C, Lin SJ. Effects of calorie restriction on life span of microorganisms. Appl Microbiol Biotechnol. 2010;88(4):817–28. doi: http://dx.doi.org/10.1007/s00253-010-2824-8
43. Chen D, Wilkinson CR, Watt S, Penkett CJ, Mark Toone W, Jones N, et al. Multiple pathways differentially regulate global oxidative stress responses in fission yeast. Mol Biol Cell. 2008;19(1):308–17. doi: http://dx.doi.org/10.1091/mbc.e07-08-0735
44. Ohtsuka H, Shimasaki T, Aiba H. Genes affecting the extension of chronological lifespan in Schizosaccharomyces pombe (fission yeast). Mol Microbiol. 2021;115(4):623–42. doi: http://dx.doi.org/10.1111/mmi.14627
45. González-Rubio G, Fernández-Acero T, Martín H, Molina M. Mitogen-activated protein kinase phosphatases (MKPs) in fungal signaling: conservation, function, and regulation. Int J Mol Sci. 2019;20(7):1–16. doi: http://dx.doi.org/10.3390/ijms20071709
46. Papadakis MA, Workman CT. Oxidative stress response pathways: fission yeast as archetype. Crit Rev Microbiol. 2015;41(4):520–35. doi: http://dx.doi.org/10.3109/1040841X.2013.870968
47. Reungpatthanaphong P, Dechsupa S, Meesungnoen J, Loetchutinat C, Mankhetkorn S. Rhodamine B as a mitochondrial probe for measurement and monitoring of mitochondrial membrane potential in drug-sensitive and -resistant cells. J Biochem Biophys Methods. 2003;57(1):1–16. doi: http://dx.doi.org/10.1016/S0165-022X(03)00032-0
48. Quinn J, Findlay VJ, Dawson K, Millar JBA, Jones N, Morgan BA, et al. Distinct regulatory proteins control the graded transcriptional response to increasing H2O2 levels in fission yeast Schizosaccharomyces pombe. Mol Biol Cell. 2002;13(2):805–16. doi: http://dx.doi.org/10.1091/mbc.01-06
49. Vivancos AP, Jara M, Zuin A, Sansó M, Hidalgo E. Oxidative stress in Schizosaccharomyces pombe: different H2O2 levels, different response pathways. Mol Geneti Genomics. 2006;276(6):495–502. doi: http://dx.doi.org/10.1007/s00438-006-0175-z
Year
Month