Effect of eicosapentaenoic acid, docosahexaenoic acid, and their combination on selected atherogenic biomarkers in a high-fat diet rat model

Amal H. Abu Sadah Reem Issa Husni Farah Ghaleb Oriquat Shady H. Awwad Ibrahim Mosleh Beisan A. Mohammad Ahmad Aljaberi Mohammad Al-Najjar Mahmoud S. Abu-Samak   

Open Access   

Published:  Dec 21, 2024

DOI: 10.7324/JAPS.2025.196085
Abstract

Findings concerning eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) as well as omega-3 (n-3FA) effects on lipid profile and biomarkers of atherosclerosis progression are still highly debated. The current study was designed to evaluate and compare the effect of EPA, DHA, and their combination in the form of n-3FA on serum non-high-density lipoprotein (NHC), oxidized-low-density lipoprotein (Ox-LDL), Lipoprotein(a) Lp(a), and other lipid profile parameters levels in rats with high-fat diet model. Based on the diet and supplementation model, six groups (n = 6 per group) of male Westar rats were distributed as follows: standard diet (SD), high-fat diet (FD); FD + atorvastatin (ATV), FD + omega-3 (n-3FA), FD + EPA (EPA), and FD + DHA (DHA). The results have shown a significant higher mean NHC levels in the DHA and n-3FA groups than in the EPA group (27.52 ± 2.92 vs. 43.23 ± 8.98 and 45.65 ± 5.08 mg/ dl, respectively, p < 0.001). In addition, the mean levels of total cholesterol and Lp(a) levels were significantly higher in DHA than in EPA (35.8 ± 2.04 vs. 51.8 ± 6.33 mg/dl, 2.42 ± 0.71 vs. 4.41 ± 1.14 ng/dl, p < 0.001). Significant higher mean Ox-LDL levels were observed in n-3FA than in DHA (p < 0.001) or EPA (p < 0.05). No significant in mean Ox-LDL levels was observed between EPA and DHA study groups (t = 3.62, p = 0.1387). The current study findings revealed the potential advantages of EPA supplements but not DHA supplements alone or their combination with EPA in the common form known as omega-3 for preventing or treating hyperlipidemia.


Keyword:     Omega-3 DHA EPA Ox-LDL non-HDL lipid profile lipidemia


Citation:

Sadah AHA, Issa R, Farah H, Oriquat G, Awwad SH, Mosleh I, Mohammad B A, Aljaberi A, Al-Najjar M, Abu-Samak MS. Effect of eicosapentaenoic acid, docosahexaenoic acid and their combination on selected atherogenic biomarkers in high-fat diet rat model. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2025.196085

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Abu-Taha M, Dagash R, Mohammad BA, Basheiti I, Abu-Samak MS. Combined effect of coffee consumption and cigarette smoking on serum levels of vitamin B12, folic acid, and lipid profile in young male: a cross-sectional study. Int J Gen Med. 2019;12:421–32. doi: https://doi.org/10.2147/IJGM.S213737

2. Poznyak AV, Nikiforov NG, Markin AM, Kashirskikh DA, Myasoedova VA, Gerasimova EV, et al. Overview of OxLDL and its impact on cardiovascular health: focus on atherosclerosis. Front Pharmacol. 2020;11:613780. doi: https://doi.org/10.3389/fphar.2020.613780

3. Stewart J, Manmathan G, Wilkinson P. Primary prevention of cardiovascular disease: a review of contemporary guidance and literature. JRSM Cardiovasc Dis. 2017;6:2048004016687211. doi: https://doi.org/10.1177/2048004016687211

https://doi.org/10.1177/2048004016687211

4. Wang HH, Garruti G, Liu M, Portincasa P, Wang DQ. Cholesterol and lipoprotein metabolism and atherosclerosis: recent advances in reverse cholesterol transport. Ann Hepatol. 2017;16(Suppl. 1: s3-105.):s27–s42. doi: https://doi.org/10.5604/01.3001.0010.5495

5. Kelsey MD, Pagidipati NJ. Should we “RESPECT EPA” more now? EPA and DHA for cardiovascular risk reduction. Curr Cardiol Rep. 2023;25(11):1601–9. doi: https://doi.org/10.1007/s11886-023-01972-w

6. Sherratt SC, Libby P, Bhatt DL, Mason P.Eicosapentaenoic acid (EPA) inhibits low-density lipoprotein (LDL) oxidation compared to docosahexaenoic acid (DHA) and mineral oil in vitro. Circulation. 2022;146(1):A13685. doi: https://doi.org/10.1161/circ.146.suppl_1.13685

7. Zibaeenezhad MJ, Ghavipisheh M, Attar A, Aslani A. Comparison of the effect of omega-3 supplements and fresh fish on lipid profile: a randomized, open-labeled trial. Nutr Diabetes. 2017;7(12):1–8. doi: https://doi.org/10.1038/s41387-017-0007-8

8. Manson JE, Cook NR, Lee I-M, Christen W, Bassuk SS, Mora S, et al. Marine n−3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med. 2018;380(1):23–32. doi: https://doi.org/10.1056/NEJMoa1811403

9. Mehdawi A, Mohammad BA, Mosleh I, Khader HA, Habash M, Nassar RI, et al. Combined effect of omega-3 fatty acid and vitamin D3 on oxidized LDL-C and non–HDL-C levels in people with vitamin D deficiency: a randomized controlled trial. J Cardiovasc Pharmacol. 2023;81(4):251–8. doi: https://doi.org/10.1097/FJC.0000000000001398

10. Awwad S, Abu-Zaiton A, Issa R, Said R, Sundookah A, Habash M, et al. The effect of excessive coffee consumption, in relation to diterpenes levels of medium-roasted coffee, on non-high-density lipoprotein cholesterol level in healthy men. Pharmacia. 2023;70(1):49–59. doi: https://doi.org/10.3897/pharmacia.70.e90495

11. Aung T, Halsey J, Kromhout D, Gerstein HC, Marchioli R, Tavazzi L, et al. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: meta-analysis of 10 trials involving 77 917 individuals. JAMA Cardiol. 2018;3(3):225–34. doi: https://doi.org/10.1001/jamacardio.2017.5205

https://doi.org/10.1001/jamacardio.2017.5205

12. Bowman L, Mafham M, Wallendszus K, Stevens W, Buck G, Barton J, et al. Effects of n-3 fatty acid supplements in diabetes mellitus. N Engl J Med. 2018;379(16):1540–50. doi: https://doi.org/10.1056/NEJMoa1804989

13. Nissen SE, Lincoff AM, Wolski K, Ballantyne CM, Kastelein JJ, Ridker PM, et al. Association between achieved ω-3 fatty acid levels and major adverse cardiovascular outcomes in patients with high cardiovascular risk: a secondary analysis of the STRENGTH trial. JAMA Cardiol. 2021;6(8):910–7. doi: https://doi.org/10.1001/jamacardio.2021.1157

14. Scipione CA, Koschinsky ML, Boffa MB. Lipoprotein(a) in clinical practice: new perspectives from basic and translational science. Crit Rev Clin Lab Sci. 2018;55(1):33–54. doi: https://doi.org/10.1080/10408363.2017.1415866

15. Schrock CG. Lipoprotein(a): it is not the cholesterol content: it is the apolipoprotein(a)! Eur Heart J. 2019;40(43):3576. doi: https://doi.org/10.1093/eurheartj/ehz601

16. Ward NC, Ying Q, Chan DC, Pang J, Mori TA, Schultz CJ, et al. Improved arterial inflammation with high dose omega-3 fatty acids in patients with elevated lipoprotein(a): selective effect of eicosapentaenoic acid? J Clin Lipidol. 2023;17(5):694–9. doi: https://doi.org/10.1016/j.jacl.2023.08.004

17. Gouaref I, Bouazza A, Abderrhmane SA, Koceir EA. Lipid profile modulates cardiometabolic risk biomarkers including hypertension in people with type-2 diabetes: a focus on unbalanced ratio of plasma polyunsaturated/saturated fatty acids. Molecules. 2020;25(18):4315. doi: https://doi.org/10.3390/molecules25184315

https://doi.org/10.3390/molecules25184315

18. Gajos G, Zalewski J, Mostowik M, Konduracka E, Nessler J, Undas A. Polyunsaturated omega-3 fatty acids reduce lipoprotein-associated phospholipase A2 in patients with stable angina. Nutr Metab Cardiovasc Dis. 2014;24(4):434–9. doi: https://doi.org/10.1016/j.numecd.2013.09.011

19. Mason RP. New insights into mechanisms of action for omega-3 fatty acids in atherothrombotic cardiovascular disease. Curr Atheroscler Rep. 2019;21(1):2. doi: https://doi.org/10.1007/s11883-019-0762-1

20. Sezai A, Unosawa S, Taoka M, Osaka S, Obata K, Kanno S, et al. Long-term comparison of ethyl icosapentate versus. Omega-3-acid ethyl in patients with cardiovascular disease and hypertriglyceridemia (DEFAT Trial). Circ J. 2019;83(6):1368–76. doi: https://doi.org/10.1253/circj.cj-18-0764

21. Al-Bayati M, Issa R, Abu-Samak M, Alnsour L, Awwad S. Phytochemical analysis and evaluation of anti-hyperlipidaemic effect for ethanolic leaf extract of Equisetum ramosissimum L.: in vivo study on rats’ models. Pharmacia. 2023;70(3):557–68. doi: https://doi.org/10.3897/pharmacia.70.e101623

22. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016 Mar;7(2):27–31. doi: https://doi.org/10.4103/0976-0105.177703

23. Oda SS. The influence of Omega3 fatty acids supplementation against aluminum-induced toxicity in male albino rats. Environ Sci Pollut Res Int. 2016;23(14):14354–61. doi: https://doi.org/10.1007/s11356-016-6578-4

24. de Sales Guilarducci J, Marcelino BAR, Konig IFM, Orlando TM, Varaschin MS, Pereira LJ. Therapeutic effects of different doses of prebiotic (isolated from Saccharomyces cerevisiae) in comparison to n-3 supplement on glycemic control, lipid profiles and immunological response in diabetic rats. Diabetol Metab Syndr. 2020;12:69. doi: https://doi.org/10.1186/s13098-020-00576-6

25. Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4(4):303–6. doi: https://doi.org/10.4103/0976-500X.119726

26. Mason RP, Sherratt SCR, Eckel RH. Rationale for different formulations of omega-3 fatty acids leading to differences in residual cardiovascular risk reduction. Metabolism. 2022;130:155161. doi: https://doi.org/10.1016/j.metabol.2022.155161

27. Allaire J, Couture P, Leclerc M, Charest A, Marin J, Lépine MC, et al. A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: the Comparing EPA to DHA (ComparED) Study. Am J Clin Nutr. 2016;104(2):280–7. doi: https://doi.org/10.3945/ajcn.116.131896

28. Nicholls SJ, Lincoff AM, Garcia M, Bash D, Ballantyne CM, Barter PJ, et al. Effect of high-dose omega-3 fatty acids versus corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA. 2020;324(22):2268–80. doi: https://doi.org/10.1001/jama.2020.22258

29. Asztalos IB, Gleason JA, Sever S, Gedik R, Asztalos BF, Horvath KV, et al. Effects of eicosapentaenoic acid and docosahexaenoic acid on cardiovascular disease risk factors: a randomized clinical trial. Metabolism. 2016;65(11):1636–45. doi: https://doi.org/10.1016/j.metabol.2016.07.010

30. Bernstein AM, Ding EL, Willett WC, Rimm EB. A meta-analysis shows ythat docosahexaenoic acid from algal oil reduces serum triglycerides and increases HDL-cholesterol and LDL-cholesterol in persons without coronary heart disease. J Nutr. 2012;142(1):99–104. doi: https://doi.org/10.3945/jn.111.148973

31. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380(1):11–22. doi: https://doi.org/10.1056/NEJMoa1812792

32. Tong M, Wang J, Ji Y, Chen X, Wang J, Wang S, et al. Effect of eicosapentaenoic acid and pitavastatin on electrophysiology and anticoagulant gene expression in mice with rapid atrial pacing. Exp Ther Med. 2017;14(3):2310–6. doi: https://doi.org/10.3892/etm.2017.4741

33. Farooq MA, Gaertner S, Amoura L, Niazi ZR, Park SH, Qureshi AW, et al. Intake of omega-3 formulation EPA:DHA 6:1 by old rats for 2 weeks improved endothelium-dependent relaxations and normalized the expression level of ACE/AT1R/NADPH oxidase and the formation of ROS in the mesenteric artery. Biochem Pharmacol. 2020;173:113749. doi: https://doi.org/10.1016/j.bcp.2019.113749

34. Adili R, Hawley M, Holinstat M. Regulation of platelet function and thrombosis by omega-3 and omega-6 polyunsaturated fatty acids. Prostag Oth Lipid M. 2018;139:10–18. doi: https://doi.org/10.1016/j.prostaglandins.2018.09.005

35. Rogero MM, Leão MC, Santana TM, Pimentel MVMB, Carlini GCG, da Silveira TFF, et al. Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19. Free Radic Biol Med. 2020;156:190–9. doi: https://doi.org/10.1016/j.freeradbiomed.2020.07.005

36. Green CJ, Pramfalk C, Charlton CA, Gunn PJ, Cornfield T, Pavlides M, et al. Hepatic de novo lipogenesis is suppressed and fat oxidation is increased by omega-3 fatty acids at the expense of glucose metabolism. BMJ Open Diabetes Res Care. 2020;8(1):e000871. doi: https://doi.org/10.1136/bmjdrc-2019-000871

37. ?ebrowska A, Hall B, Stolecka-Warzecha A, Stanula A, Sadowska-Kr?pa E. The effect of omega-3 fatty acid supplementation on serum adipocytokines, lipid profile and biochemical markers of inflammation in recreational runners. Nutrients. 2021;13(2):456. doi: https://doi.org/10.3390/nu13020456

38. Xie X, Liu X, Li R, Fan L, Huang F. ω3 fatty acids in atherosclerotic cardiovascular disease (Review). Biomed Rep. 2024;20(6):94. doi: https://doi.org/10.3892/br.2024.1782

39. Dubois V, Eeckhoute J, Lefebvre P, Staels B. Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J Clin Invest. 2017;127:1202–14. doi: https://doi.org/10.1172/JCI88894

40. Ketsa OV, Marchenko MM. [The effect of diet ratio of polyunsaturated fatty acids of omega-3 and omega-6 families on activity of aminotransferases and gamma-glutamyltransferase in rat blood serum]. Vopr Pitan. 2014;83(1):27–32.

41. Vatsalya V, Song M, Schwandt ML, Cave MC, Barve SS, George DT, et al. Effects of sex, drinking history, and omega-3 and omega-6 fatty acids dysregulation on the onset of liver injury in very heavy drinking alcohol-dependent patients. Alcohol Clin Exp Res. 2016;40(10):2085–93. doi: https://doi.org/10.1111/acer.13197

42. Fraser DA, Wang X, Lund J, Nikoli? N, Iruarrizaga-Lejarreta M, Skjaeret T, et al. A structurally engineered fatty acid, icosabutate, suppresses liver inflammation and fibrosis in NASH. J Hepatol. 2022;76(4):800–11. doi: https://doi.org/10.1016/j.jhep.2021.12.004

43. Lin YH, Brown JA, DiMartino C, Dahms I, Salem N Jr, Hibbeln JR. Differences in long chain polyunsaturates composition and metabolism in male and female rats. Prostaglandins Leukot Essent Fatty Acids. 2016;113:19–27. doi: https://doi.org/10.1016/j.plefa.2016.08.008

44. Childs CE, Romeu-Nadal M, Burdge GC, Calder PC. Gender differences in the n-3 fatty acid content of tissues. Proc Nutr Soc. 2008;67(1):19–27. doi: https://doi.org/10.1017/S0029665108005983

45. Sibbons CM, Brenna JT, Lawrence P, Hoile SP, Clarke-Harris R, Lillycrop KA, et al. Effect of sex hormones on n-3 polyunsaturated fatty acid biosynthesis in HepG2 cells and in human primary hepatocytes. Prostaglandins Leukot Essent Fatty Acids. 2014 Feb-Mar;90(2-3):47–54. doi: https://doi.org/10.1016/j.plefa.2013.12.006

46. Phang M, Scorgie FE, Seldon M, Garg ML, Lincz LF. Reduction of prothrombin and Factor V levels following supplementation with omega-3 fatty acids is sex dependent: a randomised controlled study. J Nutr Biochem. 2014 Oct;25(10):997–1002. doi: https://doi.org/10.1016/j.jnutbio.2014.05.001

Article Metrics
29 Views 10 Downloads 39 Total

Year

Month

Related Search

By author names