This study investigates actinomycete bacteria in the rhizosphere of turmeric rhizomes, which can produce bioactive compounds like their host, particularly those with anticancer properties. The main goals were to isolate these bacteria, analyze their biosynthetic gene clusters (BGCs), and test their effects on T47D cancer cells. We identified seven isolates, revealing three BGC combinations of PKS1, PKS2, and non-ribosomal peptide synthetase. Notably, isolate TC-ARCL7, which had both PKS1 and PKS2 genes, demonstrated significant anticancer activity against T47D cells, with an IC50 of 0.2 μg/ml, much more potent than Doxorubicin (7.9 μg/ml), curcumin (23.13 μg/ ml), and turmeric ethanol extract (50 μg/ml). This isolate was closely related to Kitasatospora misakiensis or Kitasatospora purpeofusca, with 99.08% sequence similarity. The findings highlight that similar BGCs do not always correlate with anticancer activity and suggest the potential for developing new pharmaceutical compounds.
Sari AN, Achnafani D, Budiarti M, Haryanti S, Widodo H, Wijayanti N, Retnaningrum E. Rhizospheric actinomycetes from turmeric (Curcuma longa L.): Isolation, detection of the biosynthetic gene clusters, and anticancer activity against T47D cancer cells. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2025.218990
1. Hu S, Xu Y, Meng L, Huang L, Sun H. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp Ther Med. 2018;16(2):1266-72. https://doi.org/10.3892/etm.2018.6345 | |
2. Liu ST, Zheng SW, Hou AJ, Zhang JX, Wang S, Wang XJ, et al. A review: the phytochemistry, pharmacology, and pharmacokinetics of Curcumae Longae Rhizoma (Turmeric). World J Tradit Chinese Med. 2022;8(4):463-90. https://doi.org/10.4103/2311-8571.351523 | |
3. Mandale SD, Dagar V, Dagar V. Antimicrobial activity of rhizospheric bacteria of Curcuma longa (Turmeric) producing metabolites against human pathogens. IOSR J Pharm Biol Sci. 2017;12(01):37-42. https://doi.org/10.9790/3008-1201013742 | |
4. Romero-Arguelles R, Romo-Sáenz CI, Morán-Santibáñez K, Tamez-Guerra P, Quintanilla-Licea R, Orozco-Flores AA, et al. In vitro antitumor activity of endophytic and rhizosphere gram-positive bacteria from Ibervillea sonorae (S. Watson) Greene against L5178Y-R lymphoma cells. Int J Environ Res Public Health. 2022;19(2):1-11. https://doi.org/10.3390/ijerph19020894 | |
5. Bahri A, Moazamian E, Azarpira N. Molecular identification, isolation and evaluation of Persian gulf actinomycetes as candidates of cytotoxic metabolites against breast cancer. Multidiscip Cancer Investig. 2017;1(3):10-4. https://doi.org/10.21859/mci-01035 | |
6. Abdallah OM, Tolba STM, Mohamed MR. Antimicrobial, antioxidant and anticancer potential of Streptomyces species isolated from the rhizosphere of Avicennia marina (Forssk.) Vierh. Indian J Exp Biol. 2022;60(February):81-90. | |
7. Sapkota A, Thapa A, Budhathoki A, Sainju M, Shrestha P, Aryal S. Isolation, Characterization, and Screening of Antimicrobial-Producing Actinomycetes from Soil Samples. Int J Microbiol. 2020 Mar 26;2020:2716584. doi: https://doi.org/10.1155/2020/2716584 | |
8. Taechowisan T, Chaisaeng S, Phutdhawong WS. Antibacterial, antioxidant and anticancer activities of biphenyls from Streptomyces sp. BO-07: an endophyte in Boesenbergia rotunda (L.) Mansf A. Food Agric Immunol [Internet]. 2017;28(6):1330-46. https://doi.org/10.1080/09540105.2017.1339669 | |
9. Nova MR, Handayani N. Antibacterial activity of the sambiloto leaf extracts (Andrographis paniculata) to Bacillus cereus and Pseudomonas aeruginosa. Asian J Nat Prod Biochem. 2017;14(1):19-24. https://doi.org/10.13057/biofar/f140103 | |
10. Rante H, Alam G, Pakki E, Usmar U, Ali A. Identification and antibacterial activity of actinomycetes isolated from medicinal plant Andrographis paniculata rhizosphere soil. Crescent J Med Biol Sci. 2020;7(4):467-73. | |
11. Marfil-Santana MD, Martínez-Cárdenas A, Ruíz-Hernández A, Vidal-Torres M, Márquez-Velázquez NA, Figueroa M, et al. A meta-omics analysis unveils the shift in microbial community structures and metabolomics profiles in mangrove sediments treated with a selective actinobacterial isolation procedure. Molecules. 2021;26:1-24. https://doi.org/10.3390/molecules26237332 | |
12. Komaki H, Tamura T. Profile of PKS and NRPS gene clusters in the genome of Streptomyces cellostaticus NBRC 12849T. Fermentation. 2023;9(11):924. https://doi.org/10.3390/fermentation9110924 | |
13. Ye JJ, Zou RJ, Zhou DD, Deng XL, Wu NL, Chen DD, et al. Insights into the phylogenetic diversity, biological activities, and biosynthetic potential of mangrove rhizosphere Actinobacteria from Hainan Island. Front Microbiol. 2023;14(1157601):1-17. https://doi.org/10.3389/fmicb.2023.1157601 | |
14. Osaro-Matthew RC, Ire FS, Frank-Peterside N. Screening of actinomycetes from turmeric (Curcuma longa L.) and ginger (Zingiber officinale) rhizosphere for antifungal activity. J Adv Microbiol. 2020;20(2):18-28. https://doi.org/10.9734/jamb/2020/v20i230214 | |
15. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16(3):313-40. https://doi.org/10.1099/00207713-16-3-313 | |
16. Osama N, Bakeer W, Raslan M, Soliman HA, Abdelmohsen UR, Sebak M. Anticancer and antimicrobial potential of five soil Streptomycetes: a metabolomics-based study. R Soc Open Sci. 2022;9(2):1-17. https://doi.org/10.1098/rsos.211509 | |
17. Media RHS. RHS colour chart. 6th ed. London, UK: RHS Media; 2019. | |
18. Qiagen. DNeasy powerlyzer microbial kit handbook [Internet]. Hilden, Germany: Qiagen; 2017. Available from: www.qiagen.com | |
19. Genilloud O. New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol. 2005;49:10-24. https://doi.org/10.1007/s00248-004-0249-6 | |
20. Farida Y, Widada J, Meiyanto E. Combination methods for screening marine actinomycetes producing potential compounds as anticancer. Indones J Biotechnol [Internet]. 2007 Dec 9 [cited 2022 Jun 14];12(2):988-97. Available from: https://jurnal.ugm.ac.id/ijbiotech/article/view/7772 | |
21. Shan W, Zhou Y, Liu H, Yu X. Endophytic actinomycetes from tea plants (Camellia sinensis): isolation, abundance, antimicrobial, and plant-growth-promoting activities. Biomed Res Int. 2018;2018:1-12. https://doi.org/10.1155/2018/1470305 | |
22. Bioline. MyTaq TM HS Red Mix Kit. Meridian Life Science; 2017. p. 1-2. | |
23. Anggelina AC, Pringgenies D, Setyati WA. Presence of biosynthetic gene clusters (NRPS/PKS) in actinomycetes of mangrove sediment in Semarang and Karimunjawa, Indonesia. Environ Nat Resour J. 2021;19(5):391-401. https://doi.org/10.32526/ennrj/19/202100050 | |
24. Haryanti S, Widiyastuti Y. Aktivitas Sitotoksik pada Sel MCF-7 dari Tumbuhan Indonesia untuk Pengobatan Tradisional Kanker Payudara. Media Penelit dan Pengemb Kesehat. 2017;27(4):247-54. https://doi.org/10.22435/mpk.v27i4.5010.247-254 | |
25. Andayani DGS, Sukandar U, Sukandar EY, Adnyana IK. Antibacterial, antifungal and anticancer, activity of five strains of soil microorganisms, isolated from Tangkuban Perahu Mountain by Fermentation. HAYATI J Biosci [Internet]. 2015;22(4):186-90. https://doi.org/10.1016/j.hjb.2016.01.003 | |
26. Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Suzuki KI, Ludwig W, et al. The actinobacteria. In: Whitman WB, editor. Bergey’s manual of systematic bacteriology. 2nd ed. Athens, Georgia: Department of Microbiology, University of Georgia; 2012. pp. 1446-804. https://doi.org/10.1007/978-0-387-68233-4 | |
27. Li Q, Chen X, Jiang Y, Jiang C. Morphological identification of actinobacteria. In: Actinobacteria-basics and biotechnological applications. London, UK: Intech Open Science; 2016. pp. 59-86. https://doi.org/10.5772/61461 | |
28. Akilandeswari P, Pradeep BV. Microbial pigments: potential functions and prospects. In: Singh OV, editor. Bio-pigmentation and biotechnological implementations. 1st ed. Hoboken, NJ: John Wiley and Sons, Inc.; 2017. 241-61 pp. https://doi.org/10.1002/9781119166191.ch11 | |
29. Peng F, Zhang MY, Hou SY, Chen J, Wu YY, Zhang YX. Insights into Streptomyces spp. Isolated from the rhizospheric soil of Panax notoginseng: isolation, antimicrobial activity and biosynthetic potential for polyketides and non-ribosomal peptides. BMC Microbiol. 2020;20:1-16. https://doi.org/10.1186/s12866-020-01832-5 | |
30. Safari WF, Chasanah E, Wahyudi AT. Antibacterial and anticancer activities of marine bacterial extracts and detection of genes for bioactive compounds synthesis. Int J Pharm Pharm Sci [Internet]. 2016;8(2):55-9. Available from: https://innovareacademics.in/journals/index.php/ijpps/article/viewFile/9778/3815.pdf | |
31. Paguirigan JAG, Kim JA, Hur JS, Kim W. Identification of a biosynthetic gene cluster for a red pigment cristazarin produced by a lichen-forming fungus Cladonia metacorallifera. PLoS One [Internet]. 2023;18(6 June):1-15. https://doi.org/10.1371/journal.pone.0287559 | |
32. Yusuf H, Satria D, Suryawati S, Fahriani M. Combination therapy of eurycomanone and doxorubicin as anticancer on T47D and MCF-7 cell lines. Syst Rev Pharm. 2020;11(10):335-41. | |
33. Lee N, Hwang S, Lee Y, Cho S, Palsson B, Cho BK. Synthetic biology tools for novel secondary metabolite discovery in Streptomyces. J Microbiol Biotechnol. 2019;29(5):667-86. https://doi.org/10.4014/jmb.1904.04015 | |
34. Yu S, Kim T, Yoo KH, Kang K. The T47D cell line is an ideal experimental model to elucidate the progesterone-specific effects of a luminal A subtype of breast cancer. Biochem Biophys Res Commun [Internet]. 2017;486(3):752-8. https://doi.org/10.1016/j.bbrc.2017.03.114 | |
35. Nordin ML, Kadir AA, Zakaria ZA, Abdullah R, Nazrul M, Abdullah H. In vitro investigation of cytotoxic and antioxidative activities of Ardisia crispa against breast cancer cell lines, MCF-7 and. BMC Complement Altern Med. 2018;18(87):1-10. https://doi.org/10.1186/s12906-018-2153-5 | |
36. Indrayanto G, Putra GS, Suhud F. Validation of in-vitro bioassay methods: application in herbal drug research [Internet]. Profiles Drug Subst Excip Relat Methodol. 2021;46:273-307. https://doi.org/10.1016/bs.podrm.2020.07.005 | |
37. Peña-Morán OA, Villarreal ML, Álvarez-Berber L, Meneses-Acosta A, Rodríguez-López V. Cytotoxicity, post-treatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast cancer cell lines. Molecules. 2016;21(8):1-15. https://doi.org/10.3390/molecules21081013 | |
38. Putri H, Jenie RI, Handayani S, Kastian RF, Meiyanto E. Combination of potassium pentagamavunon-0 and Doxorubicin induces apoptosis and cell cycle arrest and inhibits metastasis in breast cancer cells. Asian Pacific J Cancer Prev. 2016;17(5):2683-8. | |
39. Gao Q, Deng S, Jiang T. Recent developments in the identification and biosynthesis of antitumor drugs derived from microorganisms. Eng Microbiol [Internet]. 2022;2(4):1-23. https://doi.org/10.1016/j.engmic.2022.100047 | |
40. Nurkanto A, Agusta A. Molecular identification and morpho-physiological characterization of actinomycetes with antimicrobial properties. J Biol Indones. 2015;11(2):195-203. | |
41. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH, Emerson D. A genus definition for bacteria and archaea based on a standard genome relatedness index. MBio. 2020;11(1):1-20. https://doi.org/10.1128/mBio.02475-19 | |
42. Takahashi Y. Genus Kitasatospora, taxonomic features and diversity of secondary metabolites. J Antibiot (Tokyo). 2017;70(5):506-13. https://doi.org/10.1038/ja.2017.8 | |
43. Li Y, Wang M, Sun ZZ, Xie BB. Comparative genomic insights into the taxonomic classification, diversity, and secondary metabolic potentials of Kitasatospora, a genus closely related to Streptomyces. Front Microbiol. 2021;12(June):1-13. https://doi.org/10.3389/fmicb.2021.683814 |
Year
Month