Glycyrrhizic acid (GA), a key component of licorice root, has demonstrated various antiviral properties, including potential efficacy against influenza viruses. Using molecular docking, this study aims to elucidate GA’s binding affinity and stability with multiple target proteins associated with respiratory influenza viruses. Utilizing state-of-the-art computational techniques, we investigated the interactions between GA and key viral protein targets, including the ATP-bound state of BiP (5E84), main protease (Mpro) (6LU7), spike receptor binding domain (6LZG), RNA-dependent RNA polymerase (6M71), spike glycoprotein (6VSB), NSP15 endonuclease (6VWW), Nsp9 RNA-binding protein (6W4B), papain-like protease (6W9C), and neurominadase from H1N1 (5NZ4) implicated in respiratory influenza infection. Our findings clarify GA’s binding modes within the active sites of these targets, shedding light on its inhibitory potential against viral replication. We study the stability and dynamics of the GA-protein complexes using detailed molecular dynamics simulations. This helps us understand how their antiviral activity works. These computational insights provide valuable guidance for the rational design of GA-based therapeutics, as well as promising avenues for further experimental validation and drug development efforts.
Supekar AR, Bhujbal S, Yadav R. Molecular docking and molecular dynamics simulation of glycyrrhizic acid in multitarget agents as potential inhibitors of respiratory influenza viruses. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2025.197023
1. Ul Islam A, Serseg T, Benarous K, Ahmmed F, Kawsar SMA. Synthesis, antimicrobial activity, molecular docking and pharmacophore analysis of new propionyl mannopyranosides. J Mol Struct [Internet]. 2023;1292(135999):135999. doi: http://dx.doi.org/10.1016/j.molstruc.2023.135999
2. Edouard Mathieu, Hannah Ritchie, Lucas Rodés-Guirao, Cameron Appel, Charlie Giattino, Joe Hasell, et al. “Coronavirus Pandemic (COVID-19)”. 2020. Published online at OurWorldInData.org. Available from: ‘https://ourworldindata.org/coronavirus’ [Online Resource]
3. World Health organisation; [cited 2024 May 25]. Available from https://www.who.int/publications/m/item/covid-19-epidemiological-update-15-march-2024 [Online Resource]
4. Abu R, Hasan MM, Aeyas A, Chowdhury FI, Khandaker MU. In-silico approach to designing effective antiviral drugs against SARS-CoV-2 and SARS-CoV-1 from reported phytochemicals: a quality improvement study. Ann Med Surg. 2023;85(7):3446–60. doi: https://doi.org/10.1097/MS9.0000000000000839
5. Serseg T, Benarous K, Serseg M, Rehman HM, El Bakri Y, Goumri-Said S. Discovery of inhibitors against SARS-CoV-2 associated fungal coinfections via virtual screening, ADMET evaluation, PASS, molecular docking, dynamics and pharmacophore studies. Arab J Basic Appl Sci [Internet]. 2022;29(1):337–50. doi: https://doi.org/10.1080/25765299.2022.2126588
6. Mamedov NA, Egamberdieva D. Phytochemical constituents and pharmacological effects of licorice: a review. In: Ozturk M, Hakeem K, editors. Plant and Human Health. Cham, Switzerland: Springer; 2019. vol. 3, 1–21. doi: https://doi.org/10.1007%2F978-3-030-04408-4_1
7. Wahab S, Annadurai S, Abullais SS, Das G, Ahmad W, Ahmad MF, et al. Glycyrrhiza glabra (licorice): a comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology. Plants [Internet]. 2021;10(12):2751. doi: https://doi.org/10.3390/plants10122751
8. Chandra A, Chaudhary M, Qamar I, Singh N, Nain V. In silico identification and validation of natural antiviral compounds as potential inhibitors of SARS-CoV-2 methyltransferase. J Biomol Struct Dyn [Internet]. 2022;40(14):6534–44. doi: https://doi.org/10.1080/07391102.2021.1886174
9. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des [Internet]. 2013;27(3):221–34. doi: https://doi.org/10.1007/s10822-013-9644-8
10. Padmika W, Uthpali M, Nimanthi J. Molecular docking and ADMET based study to identify potential phytochemical inhibitors for papain like protease of SARS-CoV-2 (preprint). doi: https://doi.org/10.26434/chemrxiv-2021-5j78t
11. Olawale F, Iwaloye O, Elekofehinti OO. Virtual screening of natural compounds as selective inhibitors of polo-like kinase-1 at C-terminal polo box and N-terminal catalytic domain. J Biomol Struct Dyn. 2022 Dec 26;40(24):13606–24. doi: https://doi.org/10.1080/07391102.2021.1991476
12. Pitsillou E, Liang J, Ververis K, Lim KW, Hung A, Karagiannis TC. Identification of small molecule inhibitors of the deubiquitinating activity of the SARS-CoV-2 papain-like protease: In silico molecular docking studies and in vitro enzymatic activity assay. Front Chem [Internet]. 2020;8:623971. doi: https://doi.org/10.3389/fchem.2020.623971
13. Anggiresti K, El H, Puspita A, Noor R. Silico study of secondary metabolites in dendrobium spp. as SARS-CoV-2 antivirus on main protease (Mpro). J Riset Biol dan Aplikasinya. 2022;4(1):19–25. doi:10.26740/jrba.v4n1. doi: https://doi.org/10.26740/jrba.v4n1.p19-25
14. Pandit M, Latha N. In silico studies reveal potential antiviral activity of phytochemicals from medicinal plants for the treatment of COVID-19 infection. Res Square. 2020. doi: https://doi.org/10.21203/rs.3.rs-22687/v1
15. Mishra A, Pathak Y, Choudhir G, Kumar A, Mishra SK, Tripathi V. Abstract 712: anticancer natural compounds as potential inhibitors of novel coronavirus (COVID19) main protease: an in-silico study. Cancer Res [Internet]. 2021;81(13_Supplement):712. doi: https://doi.org/10.1158/1538-7445.AM2021-712
16. Hisham Shady N, Youssif KA, Sayed AM, Belbahri L, Oszako T, Hassan HM, et al. Sterols and triterpenes: antiviral potential supported by in-silico analysis. Plants [Internet]. 2020;10(1):41. doi: https://doi.org/10.3390/plants10010041
17. Shah A, Patel V, Parmar B. Discovery of some antiviral natural products to fight against novel Coronavirus (SARS-CoV-2) using an in silico approach. Comb Chem High Throughput Screen [Internet]. 2021;24(8):1271–80.
18. Jain J, Kumari A, Somvanshi P, Grover A, Pai S, Sunil S. In silico analysis of natural compounds targeting structural and nonstructural proteins of chikungunya virus. F1000Res [Internet]. 2017;6:1601. doi: https://doi.org/10.12688%2Ff1000research.12301.2
19. Singh S, Sk MF, Sonawane A, Kar P, Sadhukhan S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J Biomol Struct Dyn [Internet]. 2021;39(16):6249–64. doi: https://doi.org/10.1080/07391102.2020.1796810
20. Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 Mpro enzyme through in silico approach. Life Sci [Internet]. 2020;255(117831):117831. doi: https://doi.org/10.1016/j.lfs.2020.117831
21. Tripathi V, Mishra A, Pathak Y, Kumar A, Mishra S. Natural compounds as potential inhibitors of SARS-CoV-2 main protease: an in-silico study. Asian Pac J Trop Biomed [Internet]. 2021;11(4):155. doi: https://doi.org/10.4103/2221-1691.310202
22. Liao J, Wang Q, Wu F, Huang Z. In silico methods for identification of potential active sites of therapeutic targets. Molecules [Internet]. 2022;27(20):7103. doi: https://doi.org/10.3390/molecules27207103
23. Gupta SS, Kumar A, Shankar R, Sharma U. In silico approach for identifying natural lead molecules against SARS-COV-2. J Mol Graph Model [Internet]. 2021;106(107916):107916. doi: https://doi.org/10.1016/j.jmgm.2021.107916
24. Rathinavel T, Thangaswamy S, Ammashi S, Kumarasamy S. Virtual screening of COVID-19 drug from three Indian traditional medicinal plants through in silico approach. Res J Biotechnol. 2020;15(10):124–40.
25. Abdolmaleki S, Ganjalikhany MG. Binding affinity optimization and structural evaluation of designed antibodies against PD-1 and PD-L1 as critical immune checkpoints involved in cancer treatment. Res Sq [Preprint]. 2024. doi: https://doi.org/10.21203/rs.3.rs-3837879/v1
26. Kazmi I, Al-Abbasi FA, AlGhamdi SA, Alghamdi AM, Zeyadi M, Sheikh RA, et al. Influence of rosiridin on streptozotocin-induced diabetes in rodents through endogenous antioxidants-inflammatory cytokines pathway and molecular docking study. J Biomol Struct Dyn [Internet]. 2023;8(12)1–16. doi: https://doi.org/10.1 080/07391102.2023.2282738
27. Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, et al. Atomic-level characterization of the structural dynamics of proteins. Science [Internet]. 2010;330(6002):341–6. doi: https://doi.org/10.1126/science.1187409
28. Chaturvedi M, Nagre K, Yadav JP. In silico approach for identification of natural compounds as potential COVID 19 main protease (Mpro) inhibitors. Virusdisease [Internet]. 2021;32(2):325–9. doi: https://doi.org/10.1007/s13337-021-00701-7
29. Bowers KJ, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE, Chow E, et al. Molecular dynamics---Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the 2006 ACM/IEEE conference on Supercomputing—SC ’06. New York, NY: ACM Press; 2006. doi: https://doi.org/10.1145/1188455.1188544
30. Chow E, Rendleman CA, 28 KJ, Dror RO, Hughes DH, Gullingsrud J, Sacerdoti FD, Shaw DE. Desmond performance on a cluster of multicore processors. DE Shaw Res Tech Rep. 2008;28(7).
31. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput [Internet]. 2010;6(5):1509–19. doi: https://doi.org/10.1021/ct900587b
32. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys [Internet]. 1983;79(2):926–35. doi: https://doi.org/10.1063/1.445869
33. Martyna GJ, Tobias DJ Klein ML. Constant pressure molecular dynamics algorithms. J Chem Phys 1994;101:4177–89. doi: https://doi.org/10.1063/1.467468
34. Martyna GJ, Klein ML, Tuckerman M. Nose-hoover chains-the canonical ensemble via continuous dynamics. J Chem Phys. 1992;97:2635–43. doi: https://doi.org/10.1063/1.463940
35. Toukmaji AY, John A. Board. Ewald summation techniques in perspective: a survey. Comput Phys Commun [Internet]. 1996;95(2–3):73–92. doi: https://doi.org/10.1016/0010-4655(96)00016-1
36. Joshi T, Joshi T, Sharma P, Mathpal S, Pundir H, Bhatt V, et al. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. Eur Rev Med Pharmacol Sci [Internet]. 2020;24(8):4529–36. doi: https://doi.org/10.26355/eurrev_202004_21036
Year
Month