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INTRODUCTION
Respiratory influenza viruses continue to pose 

significant threats to global public health, leading to seasonal 
outbreaks and occasional pandemics with substantial 
morbidity and mortality [1]. Nowadays, advanced testing and 
management of healthcare have helped to maintain the fatality 
rate low [2]. Despite advancements in vaccination strategies 
and antiviral treatments, the on-going evolution of influenza 
viruses and the emergence of drug-resistant strains due to their 
global prevalence have led to an increase in reported cases by 
the end of 2023 and continuing into 2024 [3], highlighting the 

urgent need for novel therapeutic interventions. In recent years, 
computational approaches have gained prominence in drug 
discovery efforts, offering efficient and cost-effective means to 
screen large chemical libraries for potential inhibitors of viral 
replication. The development of multitarget antiviral agents that 
can simultaneously inhibit various viral proteins is a promising 
approach to overcoming resistance and enhancing treatment 
efficacy[4].

Glycyrrhizic acid (GA), obtained from the roots of 
the Glycyrrhiza glabra (liquorice) species, is one of the natural 
substances that has recently gained a lot of attention due 
to its antiviral potential. GA demonstrates a diverse array of 
pharmacological properties, encompassing anti-inflammatory, 
antioxidant, and antiviral effects. Recent research has highlighted 
its potential against several viruses, such as the human 
immunodeficiency virus, hepatitis C virus, and severe acute 
respiratory syndrome coronavirus (SARS-CoV). Furthermore, 
traditional medical systems assert that GA possesses antiviral 
capabilities. Previous research has demonstrated its inhibitory 
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ABSTRACT
Glycyrrhizic acid (GA), a key component of licorice root, has demonstrated various antiviral properties, including 
potential efficacy against influenza viruses. Using molecular docking, this study aims to elucidate GA’s binding 
affinity and stability with multiple target proteins associated with respiratory influenza viruses. Utilizing state-of-the-
art computational techniques, we investigated the interactions between GA and key viral protein targets, including 
the ATP-bound state of BiP (5E84), main protease (Mpro) (6LU7), spike receptor binding domain (6LZG), RNA-
dependent RNA polymerase (6M71), spike glycoprotein (6VSB), NSP15 endonuclease (6VWW), Nsp9 RNA-binding 
protein (6W4B), papain-like protease (6W9C), and neurominadase from H1N1 (5NZ4) implicated in respiratory 
influenza infection. Our findings clarify GA’s binding modes within the active sites of these targets, shedding light 
on its inhibitory potential against viral replication. We study the stability and dynamics of the GA-protein complexes 
using detailed molecular dynamics simulations. This helps us understand how their antiviral activity works. These 
computational insights provide valuable guidance for the rational design of GA-based therapeutics, as well as 
promising avenues for further experimental validation and drug development efforts.
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Target protein retrieval and reparation
Based on the literature survey, we found that various 

targets, such as the ATP-bound state of BiP (5E84), main 
protease (Mpro) (6LU7), spike receptor binding domain 
(6LZG), RNA-dependent RNA polymerase (6M71), spike 
glycoprotein (6VSB), NSP15 endonuclease (6VWW), Nsp9 
RNA-binding protein (6W4B), papain-like protease (6W9C), 
and neurominidase from the H1N1 (5NZ4) are major targets 
to study antiviral activity against respiratory influenza viruses, 
including SARS-CoV-1 and SARS-CoV-2 [10–14]. Therefore, 
we retrieved the fasta sequences of the aforementioned targets 
for antiviral activity against respiratory influenza viruses, such 
as SARS-CoV-1 and SARS-CoV-2, from the National Centre 
for Biotechnology information server. We also used the Basic 
Local Alignment Search tool to search for similar biological 
sequences on the Protein Data Bank. We then sorted the top 5 to 
10 selected sequences based on their improved query coverage, 
percentage identity, and E-value. We used the PDB databank 
to obtain the three-dimensional X-ray crystallographic structure 
of various targets, such as the ATP-bound state of BiP (5E84), 
main protease (Mpro) (6LU7), spike receptor binding domain 
(6LZG), RNA-dependent RNA polymerase (6M71), spike 
glycoprotein (6VSB), NSP15 endonuclease (6VWW), Nsp9 
RNA-binding protein (6W4B), papain-like protease (6W9C), 
and neurominidase from the H1N1 (5NZ4). We validated 
each target’s accession number using parameters including 
resolution, mutation, wwPDB validation, co-crystal ligand, 
and Ramachandran plot [15,16]. Table 1 presents a comparison 
between the standard values and the recovered protein, which 
serves as validation for the docking study protein.

The angles from a Ramachandran plot can be used to 
verify the solution to a crystal structure as well as determine the 
role of an amino acid in a secondary structure. It also assists 
with constraining structure prediction simulations and defining 
energy functions. It displays the protein structure regions that 
energetically allow backbone dihedral angles against amino 
acid residues. Table 2 below displays Ramachandran plots for 
several study targets. The PROCHECK web tool determined 
the three-dimensional geometry of the protein model, calculated 
the Ramachandran plot, and generated results for residues 
in various colored regions, namely red (favorite), yellow 
(additionally allowed), pale yellow (generously allowed), and 
whitish yellow (disallowed) [17,18].

Every molecule has the potential to be either a 
macromolecule or a micromolecule; however, it is necessary to 
optimize and minimize the latter before conducting a docking 
study. To confirm the binding pocket, we used the protein data 
bank’s PDB [sum server], a pictorial library of 3D structures 
for conventional inhibitor interactions with proteins. We 
completed the proteins with missing residues and synthesized 
side chains using CHIMAERA v1.16. Subsequently, they 
underwent optimization and minimization before being 
included in the docking study. We achieve the optimization 
of proteins by configuring 1,000 iterations of the Steepest 
Descent algorithm with a step size of 0.1 A0, followed by 100 
iterations of the Conjugate Gradient algorithm with a size of 
0.1 A0. All hydrogen atoms, including the ones with slower 

properties against a variety of respiratory viruses, including the 
influenza type A and B viruses. However, the precise molecular 
mechanisms underlying its antiviral activity, particularly against 
respiratory influenza viruses, remain incompletely understood.

The objective of this study is to utilize molecular 
docking to identify the binding affinities and preferred binding 
sites of GA and key viral protein targets, including the ATP-
bound state of BiP (5E84), main protease (Mpro) (6LU7), 
spike receptor binding domain (6LZG), RNA-dependent 
RNA polymerase (6M71), spike glycoprotein (6VSB), NSP15 
endonuclease (6VWW), Nsp9 RNA-binding protein (6W4B), 
papain-like protease (6W9C), and neurominadase from H1N1 
(5NZ4), followed by MD simulations to examine the stability 
and dynamic behavior of these interactions. We want to find the 
best binding conformations and understand how GA’s inhibitory 
effects on respiratory influenza viruses work at the molecular 
level by using a wide range of computational methods, such 
as binding free energy calculations and structural dynamics 
assessments. We anticipate that the research findings will 
illuminate GA’s potential as a multitarget antiviral agent against 
influenza viruses, thereby facilitating future experimental 
validation and therapeutic development.

The information from this study is very important 
for the smart design of GA-based medicines and the creation 
of new multitarget agents to fight respiratory flu viruses by 
using molecular docking and molecular dynamics simulations 
(MDSs). Moreover, the computational framework presented 
herein may serve as a valuable platform for screening other 
natural compounds and synthetic derivatives with potential 
antiviral activity, thus contributing to the on-going efforts to 
mitigate the impact of influenza infections on public health [5–
7]. The results may also provide a foundation for the design of 
novel GA-based therapeutics, offering a promising avenue for 
the prevention and treatment of influenza infections.

Subsequent MD simulations revealed details on the 
stability and dynamics of GA-protein complexes throughout 
time. The simulations demonstrated that GA and the active 
sites of the spike receptor binding domain (6LZG) exhibited 
persistent interactions. Hydrophobic and hydrogen bonding 
interactions primarily contributed to the stability of the binding. 
Furthermore, estimations of binding free energy supported the 
favorable binding affinities found in docking studies.

MATERIAL AND METHODS

Molecular docking

Retrieving herbal compounds and preparation of drug library
The 3D structures of GA from liquorice were retrieved 

from the PubChem database. We used the Structure File 
Generator (https://cactus.nci.nih.gov/translate/) and Online 
SMILES Translator to draw and convert compounds with 
missing.mol/.sdf files [8,9].

The way molecules interact in living things is not 
fully captured by molecular docking because it is based on the 
static structures of proteins and ligands. This simplification can 
affect the accuracy of predicted binding affinities and poses a 
challenge in interpreting the results as definitive.
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rates of addition, were included. Protonation statuses were 
assigned to the histidine residues. Additional fees were applied 
for both conventional (using the AMBER ff14SB force field) 
and unconventional (using the AM1-BCC force field) residues. 
The net charges for all non-standard entities were stabilized 
to enable the computation of their atomic partial charges 
using ANTECHAMBER charges. The protein was purified by 
removing any nonstandard residues, such as water molecules, 
cocrystal ligands, and superfluous chains, using Biovia 
Discovery Studio visualizer V21.1.0.20298 after optimization 
and minimization [19,20].

Grid generation
Auto-Dock Tools, Chimera, and Maestro were used 

for receptor grid identification. The workspace showed many 
targets, such as BiP (5E84) bound to ATP, Mpro (6LU7), 
the spike receptor binding domain (6LZG), RNA-dependent 
RNA polymerase (6M71), spike glycoprotein (6VSB), NSP15 
endonuclease (6VWW), Nsp9 RNA-binding protein (6W4B), 
papain-like protease (6W9C), and neurominidase from the 
H1N1 protein (5NZ4). The grid’s volume was determined 
by utilizing the pocket’s dimensions [21]. The size of the 
enclosing box was minimized to ensure its compatibility with 
the protein’s active site and the predicted ligands for docking. 
Computer-based target identification primarily encompasses 
the identification of disease-related targets, the identification 
of binding sites, and the evaluation of drug ability. The ability 
of the ligand and target protein to interact can be ascertained 
using the binding site [20]. The grid parameters specified 
in Table 4 were used to determine the active sites in the 
docking studies. The problem of low utility or druggability 
commonly encountered in clinical trials can be effectively 
mitigated through early druggability assessment of proteins. 
Moreover, it is necessary to ascertain whether the targeted 

Table 1. Comparison of standard values with recovered protein for validating docking study protein. 

Parameters Protein details Standards

Targets ATP-bound 
state of BiP

Main 
protease

Spike 
receptor-
binding 
domain

RNA-
dependent 

RNA 
polymerase

Spike 
glycoprotein

NSP15 
Endoribo-
nuclease

 Nsp9 RNA 
binding 
protein

Papain-
like 

protease

Neuraminidase 
from H1N1

-

Protein Id 5E84 6LU7 6LZG 6M71 6VSB 6VWW 6W4B 6W9C 5NZ4 -

Method of 
Experiment X-ray diffraction

Mutation No No No No No No No No No No

Resolution 2.99 A0 2.16A0 2.50A0 2.90A0 3.46A0 2.20A0 2.95A0 2.70A0 1.36 Å Near about 
2.00 A0

wwPDB  
Validation Better Better Better Better Better Better Better Better Better Better

Ramchandran  
Plot (by 

PROCHECK 
server) 

Residues in 
favoured + 

Allowed regions

89.8% 90.6% 90.8% 87.2% 84.0% 93.1% 91.1% 86.1% 100% >80%

protein is suitable for therapeutic purposes. Finding binding 
sites and testing druggability are important for figuring out 
how proteins work, understanding how cells work, doing 
molecular docking, and coming up with smart drugs [22–24]. 
Table 3 below illustrates the active sites for binding and grid 
generation.

The size of the enclosing box was minimized to ensure 
its compatibility with the protein’s active site and the anticipated 
ligand for docking. 

Ligands preparation
The ligand molecules were created using 

MarvinSketch v21.13 and saved in the 3D MOL2 format. All 
three compounds underwent processing and optimization using 
UCSF Chimaera v1.15 with the AM1-BCC semi-empirical 
force field. The default parameters were used, including 1,000 
steps of steepest descent and 100 steps of conjugate gradient 
[25].

Molecular docking of target protein with ligands
Once the ligands and proteins were obtained, their 

structures were converted to the pdbqt format using an internal 
bash script created with AutoDock Tools 1.5.6 for ligands and 
ADFRsuit for proteins. This script allowed all the rotatable 
bonds of the ligands to rotate freely while considering the 
receptor as stiff [26]. For docking studies, we utilized the 
AutoDock Vina 1.2.3, with 0.375 A spacing between grid 
points. The grid box was precisely positioned at the active site 
of the enzyme with great accuracy, enabling the program to 
explore potential interaction sites between the ligands and the 
receptor. Alternative arrangements were deemed the standard 
[24,27]. The XYZ center has coordinates (X*Y*Z), and the grid 
box has dimensions of 20 * 20 * 20 A0. The CPU parameter 
was set to 23, the exhaustiveness parameter was set to 32, the 
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Table 2. Ramachandran Plots Analysis of Protein Structures Using PROCHECK: comparative assessment for proteins (a) ATP-bound state of 
BiP (5E84), (b) Main protease (6LU7), (c) Spike receptor-binding domain(6LZG), (d) RNA-dependent RNA polymerase  (6M71), (e) Spike 

glycoprotein (6VSB), (f) NSP15 Endoribo-nuclease (6VWW), (g) Papain-like protease (6W4B), (h) Papain-like protease (6W9C), and (i) 
Neuraminidase from H1N1 (5NZ4). 

Sr. No. Name of target Ramachandran plots

a. ATP-bound state  
of BiP(5E84)

b. Main protease 
(6LU7)

c. Spike receptor-binding domain 
(6LZG)

(Continued)
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Sr. No. Name of target Ramachandran plots

d. RNA-dependent RNA polymerase 
(6M71)

e. Spike glycoprotein 
(6VSB)

f. NSP15 Endoribo-nuclease 
(6VWW)

(Continued)
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Sr. No. Name of target Ramachandran plots

g. Papain-like protease 
(6W4B)

h. Papain-like protease 
(6W9C)

i. Neuraminidase from H1N1 
(5NZ4)
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number of modes parameter was set to 9, and the energy range 
parameter was set to 3. The redockings were executed using 
identical settings as the previous dockings.

Visualization
The results received from Autodock Vina processing 

were used to create a complex utilizing the Biovia Discovery 
Studio visualizer. Maestro 12.3 (academic version) and 
LigPlus 1.2 were utilized to generate 2D and 3D pictures of 
complexes [27]. The interactions and binding energies of 
the test substances were evaluated and compared to those of 
conventional inhibitors.

The pharmacodynamics of the chemical were 
investigated using adsorption, distribution, metabolism, and 
excretion. SWISS-ADME (http://www.swissadme.ch/) is a 
website that allows users to sketch their potential ligand or 
drug molecule and provides parameters like lipophilicity, water 
solubility, and drug-likeness rules [28]. Predicting chemical 
toxicity is a crucial aspect of medication discovery. The toxicity 
analysis was conducted using the pkCSM (http://biosig.
unimelb.edu.au/pkcsm/prediction) and PROTOX (http://tox.

charite.de/protox_II/) web servers [25]. It predicts the level of 
tolerance of the small molecule when injected into human and 
animal models. Several toxicological consequences, such as 
AMES toxicity, LD50, maximal resistance dose for humans, 
and hepatotoxicity, are being considered [28]. 

MDSs

Simulation set-up
We examined 6LZG’s dock complexes with standard 

Ribavirin and test drug GA using MD simulations on a 
Desmond 2020.3 computer [25]. We implemented this system 
in a 10 × 10 × 10-period boundary salvation box using the 
OPLS-2005 force field [29–32] and an explicit solvent model 
with SPC water molecules [33]. Neutralizing the charge 
with 0.15 M NaCl solutions created an environment akin to 
living organisms. The protein-ligand complexes underwent 
retraining after equilibration with an NVT ensemble for 10 ns. 
After the previous phase, an NPT ensemble performed a brief 
(12 ns) equilibration and minimization. The NPT ensemble 
was established using the Nose-Hoover chain coupling 
approach [34] with the same 27°C temperature, 1.0 ps 
relaxation period, and 1 bar of pressure employed throughout 
all of the simulations. We set the timestep to 2 fs. To regulate 
pressure, we used a barostat approach based on the Martyna–
Tuckerman–Klein chain coupling system with a relaxation 
duration of 2 ps [35]. The particle mesh Ewald technique [36] 
was used to calculate long-range electrostatic interactions 
with a 9-coulomb interaction radius. The RESPA integrator 
was used to compute the bonded forces of each trajectory 
at a time step of 2 fs. The final manufacturing run time for 
6LZG_Apo, 6LZG_Ribavirin, and 6LZG_GA was 100 ns. 
The final production run was finished in 100 ns per unit. To 
check how consistent the MD was, we found the root mean 
square deviation (RMSD), the radius of gyration (Rg), the root 
mean square fluctuation (RMSF), and the hydrogen amount 
(H-bonds). The stability was monitored using simulations.

Table 3. Analysis of active site binding and grid generation parameters for docking studies. 

Protein Active sites amino acids

5E84 GLU201,ASP224,GLY226,GLY227,GLY228,ALA229,GLY255,GLU256,GLU293,LYS296,ARG297,ASP34,GLY36,GLY363,GL 
Y364,SER365,THR37,THR38,TYR39,ASP391,VAL394,SER40,CYS41,ILE61,LYS96

6LU7 PHE140, GLY143,ASN142, ,SER144,CYS145,HIS163, GLU166, THR25, THR26, LEU27,HIS41,MET49,VAL3,LEU4, LEU141

6LZG HIS345, THR347, ASP350,LEU370, ALA348, HIS374, GLU375, HIS378, ASP382, THR371PRO346, ARG393, 
ASN394,GLU398,HIS401,GLU402,GLU406,SER409,LEU410,GLN442,TYR515,ARG518

6M71 ASP452,TYR455,TYR456,THR540,MET542,LYS545,ARG553,ALA554,ARG555,THR556,ALA558,TRP617, TYR619, ASP618, 
LYS621, ASP623, GLU665,VAL667,LYS676,THR680,SER681,SER682,THR687,ALA688,ASN691,LEU758,S ER759, ARG624, 

CYS622, SER814 GLU811,ASP760,ASP761,ALA762,LYS798,TRP800, CYS813

6VSB GLN1002,TYR756,PHE970,ASP994,ARG995,THR998,GLY999,GLN1002,TYR756,PHE759,PHE970,ASP994,ARG995,THR9 
98,GLY999,GLN1002,TYR756,PHE970,ASP994,ARG995,THR998,GLY999,ALA363

6VWW HIS235, HIS243, GLN245, GLY247, HIS250, LYS290, VAL292, SER294,MET331,TRP333,GLU340,THR341,TY 
R343,LYS345,LEU346, ASP240, LEU246

6W4B ARG100,LEU104,LEU107,ALA108,LEU113,GLU71,PRO72,CYS74,PHE76,LEU89,PHE91,ASN97,MET102,ASN3,ASN34,G 
LU4,LEU5,SER6,VAL8,LEU98

6W9C CYS111, GLY163, MET208,ASP164,ARG166,GLU167, THR301 PRO248,TYR264,ASN267,TYR268,GLY271,ASP302,LYS105,TRP1
06,ALA107,ASP108, LEU162, TYR273

Table 4. Grid parameters utilized for determining active sites in 
docking studies. 

PDB ID
Centre co-ordinates Size co-ordinates

X Y Z X Y Z

5E84 32.688 −14.185 −39.441 30 30 30

6LU7 −11.514 16.061 67.4 30 30 30

6LZG −23.866 13.4 −16.44 30 30 30

6M71 227.549 226.92 238.335 30 30 30

6VSB −48.029 34.785 29.588 30 30 30

6VWW 40.238 −12.061 18.809 40 40 40

6W4B 40.238 −12.061 18.809 30 30 30

6W9C −37.109 8.793 32.976 40 40 40
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Binding free energy analysis
Molecular mechanics and generalized The Born 

surface area technique (MM-GBSA) was used to calculate 
the binding free energies of 6LZG_Apo, 6LZG_Ribavirin, 
and 6LZG_GA complexes. In the last fifty frames of the 
simulation trajectory, the MM-GBSA binding free energy was 
estimated using the Python script thermal mmgsba.py and 
the VSGB solvation model, as well as the OPLS_2005 force 
field and a one-step sample size. To calculate the binding free 
energy of MM-GBSA (kcal/mol), the distinct energy modules 
of columbic, covalent, hydrogen bond, van der Waals, self-
contact, lipophilic, and ligand and protein solvation were 
aggregated using the additivity concept. You may figure out 
how much Gbind costs by inserting the following numbers into 
the equation [34]. 

∆ Gbind = Δ GMM + Δ GSolv – Δ GSA

where 
ΔGbind designates the binding free energy, 
�ΔGMM designates the difference between the free 
energies of ligand-protein complexes and the total 
energies of protein and ligand in isolated form, 
�ΔGSolv designates the difference in the GSA solvation 
energies of the ligand-receptor complex and the sum 
of the solvation energies of the receptor and the ligand 
in the unbound state,
�ΔGSA designates the difference in the surface area 
energies for the protein and the ligand.
The accuracy of MD simulations is dependent on the 

force field parameters used to model the molecular interactions. 
Although widely validated force fields are employed, they still 
represent approximations and may not capture all the nuances 
of real molecular behavior.

RESULT AND DISCUSSION

Molecular docking result
We used a method known as structure-based 

molecular docking to find a substance that can potentially 
inhibit respiratory influenza viruses, including SARS-CoV-1 
and SARS-CoV-2. Using an in silico method, we screened GA 
obtained from liquorice and compared it to the commercially 
available antiviral drug Ribavirin. Some of the proteins we 
chose for virtual screening were BiP in its ATP-bound state 
(5E84), Mpro, a main protease (6LU7), a spike receptor binding 
domain (6LZG), RNA-dependent RNA polymerase (6M71), 
spike glycoprotein (6VSB), NSP15 endonuclease (6VWW), 
papain-like protease (6W9C), and neurominidase from the 
H1N1 virus (5NZ4). In silico toxicology studies proved that GA 
was safe, and bioactivity predictions suggest that it might work 
by stopping proteases or enzymes from doing their job. This 
method involved testing the effectiveness of GA, as well as a 
commercially available antiviral drug called ribavirin. These 
compounds were chosen because they have shown therapeutic 
potential against various infectious diseases, including their 
ability to fight against malaria and other viral diseases.

Primary screening showed that GA, when docked with 
different 9 targets, had a docking score ranging from −9.6 to 

−7 kcal/mol (Table 5). When docked against the receptor Spike 
receptor-binding domain (6LZG), GA has the highest docking 
score of −10.307, which is higher than the standard ribavirin’s 
docking score of −6.18 with the same target (Table 5).

The 2D interaction diagram (Fig. 1) describes the 
interaction between the bioactive phytoconstituent (GA) 
docked against the ATP-bound state of BiP (5E84), main 
protease (Mpro) (6LU7), spike receptor binding domain 
(6LZG), RNA-dependent RNA polymerase (6M71), spike 
glycoprotein (6VSB), NSP15 endonuclease (6VWW), Nsp9 
RNA-binding protein (6W4B), papain-like protease (6W9C), 
and neurominidase from the H1N1 (5NZ4), respectively.

The diagram described different proteins that react 
with GA in docked poses. SARS-CoV-2 MTase complexes 
share SAM binding residues with red circles in the diagrams.

Figure 1 depicts the 2D and 3D interactions of GA 
phytoligands with the different 9 protein targets. Molecular 
docking analysis found that the phytochemical GA had the 
highest binding energy of −10.307 Kcal/Mol against the spike 
receptor-binding domain with solitary hydrogen bond with 
LYS positioned. The binding energy of standard Ribavarine 
was reported to be −8.855 Kcal/Mol against Neuraminidase 
from the H1N1 target. The hydrophobic interaction is a crucial 
factor in the binding of ligands and targets. The docking results 
revealed that GA had the highest binding energy against various 
targets, including several targets, such as the ATP-bound state 
of BiP (5E84), main protease (Mpro) (6LU7), the spike receptor 
binding domain (6LZG), RNA-dependent RNA polymerase 
(6M71), spike glycoprotein (6VSB), NSP15 endonuclease 
(6VWW), Nsp9 RNA-binding protein (6W4B), papain-like 
protease (6W9C), and neurominidase from the H1N1 (5NZ4).

The mean docking score values, ΔG (Kcal/mol), and the 
likelihood of binding to the active site are displayed in Table 5.

Target prediction
The GA was investigated for molecular interactions 

with antiviral targets (Table 6). It has the highest binding affinity 
shows hydrogen bonds with ten residues and shows Hydrophobic 
Interactions with one and two residues, respectively.

MDSs result

Stability of GA-protein complexes
Simulations based on MDs and experiments were 

employed to investigate the stability and convergence of the 
Cα-backbone of 6LZG_Apo, 6LZG_Ribavirin, and 6LZG_GA 
protein-ligand complexes. Figure 2A represents the RMSD 
of three different proteins: 6LZG_Apo, 6LZG_Ribavirin, and 
6LZG_GA, over a time span of 100 nanoseconds (ns). RMSD is 
a common metric in structural biology and MDs, used to measure 
the average distance between the atoms of superimposed 
molecules. High RMSD values typically indicate significant 
conformational changes from a reference structure, while lower 
RMSD values suggest that the structure is relatively similar 
to the reference. 6LZG_GA exhibits an increase in RMSD till 
75 ns, which then stabilizes till the end of the simulation with 
an average RMSD of 2.51 Å. This could indicate a significant 
structural change or rearrangement that then stabilizes. The 
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Sr. No Targets 2D interaction diagram 3D interaction diagram

1.	 ATP-bound state 
of BiP (5E84)

2.	 main protease 
(Mpro) (6LU7)

3.	 spike receptor 
binding domain 

(6LZG)

4.	 RNA-dependent 
RNA polymerase 

(6M71)

(Continued)
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Sr. No Targets 2D interaction diagram 3D interaction diagram

5.	 spike 
glycoprotein 

(6VSB)

6.	 NSP15 
endonuclease 

(6VWW)

7.	 Nsp9 RNA-
binding protein 

(6W4B)

(Continued)
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RMSD values for the Apo state were found stable throughout 
the simulation with an average RMSD of 2.62 Å. While 6LZG_
Ribavirin shows a gradual increase over time of 52 ns and then 
stabilizes till the end of 100 ns with an average RMSD of 2.47 
Å, suggesting continuous conformational changes or deviations 
from the reference structure and then get stabilizes. All three 
Protein states show RMSD below 3 Å indicating stable states 

Table 5. Intermolecular ligand interactions and docking score with the ATP-bound state of BiP, Main protease, Spike receptor-binding domain, 
RNA-dependent RNA polymerase, Spike glycoprotein, NSP15 endoribonuclease, Nsp9 RNA binding protein, Papain-like protease, and 

Neuraminidase from the H1N1 using LigPlot v1.4.5, PLIP server, Maestro V12.8, and Biovia Discovery studio visualizer.

Sr. 
No.

Molecule ATP-
bound 
state of 

BiP

Main 
protease

Spike 
receptor-
binding 
domain

RNA-
dependent 

RNA 
polymerase

Spike 
glycoprotein

NSP15 
Endoribo-
nuclease

Nsp9 RNA 
binding 
protein

Papain-
like 

protease

Neuraminidase 
from H1N1

Protein Id 5E84 6LU7 6LZG 6M71 6VSB 6VWW 6W4B 6W9C 5NZ4

1 Ribavirin −8.825 −6.61 −6.18 −6.151 −6.067 −6.921 −4.847 −5.867 −8.855

2 Glycyrrhzic Acid −7.707 −8.949 −10.307 −9.533 −8.525 −8.125 −7.638 −9.406 −9.358

Sr. No Targets 2D interaction diagram 3D interaction diagram

8.	 Papain-like 
protease (6W9C)

9.	 neurominidase 
from the H1N1 

(5NZ4)

Figure 1. The 2D and 3D interactions of GA phyto-ligands with the protein targets (a) ATP-bound state of BiP (5E84), (b) main protease (6LU7), (c) spike receptor-
binding domain (6LZG), (d) RNA-dependent RNA polymerase (6M71), (e) spike glycoprotein (6VSB), (f) NSP15 Endoribo-nuclease (6VWW), (g) papain-like 
protease (6W4B), (h) papain-like protease (6W9C), and (i) neuraminidase from H1N1 (5NZ4).

while comparing, the Apo state displays slightly higher 
fluctuations in RMSD values than standard Ribavirin and GA 
throughout the simulation. The stability and dynamics of each 
combination can be inferred from their RMSD trajectories. The 
6LZG_Ribavirin, and 6LZG_GA, after an initial drift from the 
reference structure, seem to maintain a consistent structure. 
The Apo state might be the less stable among the three due to 
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its dynamic nature, with significant conformational changes. 
The complexes 6LZG_Ribavirin, and 6LZG_GA demonstrate 
similar behaviors in terms of their structural deviations from 
a reference. 6LZG_Apo state undergoes consistent changes, 
while 6LZG_Ribavirin and 6LZG_GA shows late stabilization. 
Figure 2B presents the RMSF values of residues for three 
protein-ligand complexes: 6LZG_Apo, 6LZG_Ribavirin, and 
6LZG_GA. The RMSF is a measure of the average deviation 
of a set of atoms (in this case, protein residues) over time 
from a reference position, typically used in MDs to determine 
the flexibility or variability of specific residues in a protein 
structure. 6LZG_Apo displays variable fluctuations throughout 
the residue indices. Notably, there are sharp peaks around 
residue 116–120, indicating specific regions of high flexibility. 
Overall, 6LZG_Ribavirin has moderately high fluctuations with 
pronounced peaks at residues 116–121, 137–138, 272, and 408–
410, suggesting these regions might be particularly dynamic or 
flexible when interacting with Ribavirin. The complex 6LZG_
GA shows significant fluctuations, especially around residues 83 
and 117–120. The higher the RMSF value for a specific residue, 
the greater its deviation from the reference, indicating increased 
flexibility or movement. From graph 1B, all three complexes 
show increased flexibility at 116–120, which is the region of the 
protein that is naturally more mobile because of the presence of 
loop regions. After critical observation, it has been found that 
fluctuations happen at residues in the loop regions which are 
not found in the binding site. Figure 2C illustrates the Rg for 
three complexes: 6LZG_Apo, 6LZG_Ribavirin, and 6LZG_
GA, plotted against simulation time in nanoseconds (ns). The 
Rg measures the distribution of a set of points in space, and 
in the context of MDs, it offers insights into the compactness 

or spatial distribution of a protein molecule over time. Range 
of RG values 6LZG_Apo, 6LZG_Ribavirin, and 6LZG_GA 
are 24.33–28.79, 24.41–33.34, and 24.46–28.32, respectively, 
which indicates protein with GA has a more compact structure 
than the other two states while protein with Ribavirin has 
less compact structure. A larger Rg generally implies a more 
expanded or less compact protein conformation, whereas a 
smaller Rg suggests a more compact or folded state. All three 
complexes demonstrate dynamic behavior throughout the 
simulation, as evidenced by changes in their Rg values. These 
fluctuations provide insights into the protein’s conformational 
changes, potentially influenced by the compounds’ binding. 
The results can be a foundation for understanding the structural 
effects of these compounds on 6LZG. Figure 2D represents the 
number of hydrogen bonds formed between the protein 6LZG 
and two different ligands (Ribavirin, and GA) over a time course 
of 100 ns. Hydrogen bonds play a crucial role in molecular 
recognition, protein-ligand interactions, and stabilizing the 
molecular complex. The strength and number of hydrogen bonds 
can be indicative of the ligand’s binding affinity to the protein. 
The number of hydrogen bonds in 6LZG_Ribavirin shows 
the range of 0–6 throughout the 100 ns simulation time. The 
relatively low count suggests either transient or weak bonding 
or perhaps the molecule interacts through other non-hydrogen 
bond mechanisms. 6LZG_GA complex reveals a higher and 
more consistent hydrogen bond count than the 6LZG_Ribavirin 
interaction. The bond count fluctuates mainly between 0 and 8, 
indicating a stronger and more stable interaction between 6LZG 
and Glycyrrhizic acid. The stability and duration of a protein-
ligand complex can be gauged by the consistency and number of 
hydrogen bonds. A higher count suggests a potentially stronger 
interaction, which might result in higher binding affinity. The 
data provides valuable insights into the ligand binding behavior, 
which could be instrumental in understanding their potential 
therapeutic effects or drug design strategies. 

Molecular mechanics generalized born surface area (MM-GBSA) 
calculations

The Table 7 showcases the binding free energy 
in the form of MM-GBSA components for protein-ligand 
complexes 6LZG_Ribavirin, and 6LZG_GA, as calculated 
by MD-simulation. The table represents the binding energies 
(in kcal/mol) of two ligands (Ribavirin and GA) to a protein 
(6LZG). The energy values are categorized based on various 
contributions such as lipid, van der Waals (vdW), Coulombic, 
hydrogen bond, solvent effect (SolvGB), and covalent energies. 
Overall binding energies (ΔG_bind) of 6LZG_GA have the 
most negative binding energy, suggesting the strongest binding 
affinity among the two ligands. Ribavirin has somewhat 
comparable energy, but weaker binder than GA. Lipophilic 
binding energies (ΔG_bindLipo) for all ligands show negative 
values, indicating favorable lipophilic interactions. Ribavirin 
exhibits the most significant lipophilic interaction. van der 
Waals binding energies (ΔG_bindvdW) shows positive values 
for both the ligands suggesting weaker or repulsive vdW 
interactions. Coulombic Binding Energies (ΔG_bindCoulomb) 
for all ligands demonstrate negative values, indicating favorable 
electrostatic interactions. GA shows the strongest Coulombic 

Table 6. The interaction and distance between inhibitors and critical 
amino acids of nine different targets in docking complexes were 

assessed using the LIGPLOT software.

Sr.  
no

Molecules Binding 
energy

Interaction Residue ID Distance 
A0

1 Glycyrrhizic_
acid

−9.358 Hydrogen 
Bonds

GLU119A 3.02

ASP151A 3.26

ASP151A 2.88

SER180A 2.64

GLU228A 1.92

GLU228A 2.37

GLU228A 2.53

SER247A 2.27

SER367A 3.09

TYR402A 3.22

Salt bridges ARG152A 5.35

ARG225A 4.86

ARG293A 4.6

ARG293A 4.21

LYS432A 3.29
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interaction. Hydrogen bonding energies (ΔG_bindHbond) 
for all ligands exhibit strong hydrogen bond contributions. 
GA shows the most significant hydrogen bonding energy. 
The positive values of the solvent effect (ΔG_bindSolvGB) 
indicate an unfavorable contribution from the solvent effect 
upon binding. Both ligands have the same unfavorable solvent 
contribution. Covalent binding energies (ΔG_bindCovalent) 
were found to be negative for all ligands indicating favorable 
covalent interactions However, GA has stronger covalent 
interactions than Ribavirin. GA seems to have the strongest 

Figure 2. MD simulation analysis of 100 ns trajectories of (A) Cα backbone of 6LZG_Apo (black), 6LZG_Ribavirin (red), and 6LZG_GA (blue), (B) RMSF of Cα 
backbone of 6LZG_Apo (black), 6LZG_Ribavirin (red), and 6LZG_GA (blue). (C) The radius of Rg of Cα backbone of 6LZG_Apo (black), 6LZG_Ribavirin (red), 
and 6LZG_GA (blue). (D) Formation of hydrogen bonds in 6LZG_Ribavirin (red), and 6LZG_GA (blue).

A

C

B

D

overall binding affinity for 6LZG, based on its most negative 
overall binding energy. This strong binding can be attributed 
to its significant lipophilic, Coulombic, hydrogen bonding, and 
covalent interactions.

CONCLUSION

Summary of findings
In this study, we explored the potential of GA as 

a multitarget antiviral agent against respiratory influenza 
viruses using molecular docking and MDs simulations. Our 
findings indicate that GA exhibits strong binding affinities to 
key influenza viral proteins, including spike receptor-binding 
domain (6LZG), papain-like protease (6W9C), neurominadase 
from H1N1 (5NZ4), and the RNA-dependent RNA polymerase 
(RdRp) complex. The docking results suggest that GA can 
effectively interact with the active sites of these proteins, 
potentially disrupting crucial stages of the viral life cycle such 
as viral entry, replication, and release.

MD simulations further confirmed the stability of 
the GA-protein complexes, demonstrating robust interactions 
characterized by significant hydrogen bonding and hydrophobic 
contacts. Binding free energy calculations supported the 
favorable binding affinities observed in the docking studies, 

Table 7. Binding free energy components for the 6LZG_Ribavirin, 
and 6LZG_GA, calculated by MM-GBSA.

Energies (kcal/mol) 6LZG_Ribavirin 6LZG_GA

ΔGbind −56.50 ± 3.28 −69.20 ± 4.18

ΔGbindLipo −19.46 ± 2.83 −10.15 ± 3.46

ΔGbindvdW 2.74 ± 0.83 1.38 ± 0.72

ΔGbindCoulomb −0.94 ± 0.13 −3.30 ± 0.23

ΔGbindHbond −16.99 ± 0.73 −26.31 ± 1.13

ΔGbindSolvGB 22.24 ± 1.59 22.44 ± 2.74

ΔGbindCovalent −42.22 ± 1.85 −51.77 ± 1.47
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highlighting the potential of GA to serve as an effective inhibitor 
of multiple influenza viral targets.

Hence, GA, which adheres to Lipinski’s rule of five, 
could be developed as a potent inhibitor of the ATP-bound 
state of BiP, main protease, spike receptor-binding domain, 
RNA-dependent RNA polymerase, spike glycoprotein, NSP15 
Endoribonuclease, Nsp9 RNA binding protein, papain-like 
protease, and neuraminidase from the H1N1 receptor. All of 
these are significant targets for respiratory influenza viruses 
such as SARS-CoV-1 and SARS-CoV-2. Consequently, the 
multitarget approach of GA could offer a strategic advantage 
in overcoming the limitations posed by the high mutation 
rates and drug resistance commonly associated with influenza 
viruses. These computational insights lay a solid foundation 
for future experimental validation and development of GA-
based therapeutic strategies. By targeting multiple viral 
proteins simultaneously, GA holds promise as a novel antiviral 
agent for the treatment and prevention of influenza infections, 
potentially contributing to more effective and durable antiviral 
therapies.

Future directions
In conclusion, our study underscores the potential of 

GA as a multitarget inhibitor of respiratory influenza viruses, 
warranting further investigation and development in the field 
of antiviral drug research. The study relies on computational 
methods such as molecular docking and MDSs, which, while 
powerful, cannot fully replicate the complexity of biological 
systems. The results provide predictions that need experimental 
validation to confirm the actual biological activity of GA against 
influenza viruses.
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