Inhibitory effect of ink derived from Indian Loligo duvauceli squid against HIF1α induced angiogenesis

Seyedeh Sara Kamyab Alpana S. Moghe Shyam S. Nandi Sonali A. Sawant   

Open Access   

Published:  Aug 20, 2024

DOI: 10.7324/JAPS.2024.173159
Abstract

Squids are one of the most important commercial marine resources having high human consumption and market value. An Indian squid, Loligo duvauceli is a valuable species among them. They contain ink sacs which are discarded before using them for consumption. This study for the first time reports its potent ability to inhibit angiogenesis in vitro and in vivo. The melanin-free extract (MFI) of squid ink was assessed for antiproliferative effect on cancer and human umbilical vein endothelial (HUVEC) cell lines. Its antiangiogenic activity was investigated in HUVEC-based tube formation and chick chorioallantoic membrane (CAM) assays. The MFI displayed a prominent reduction in the mean vascular density of the CAM membrane, the viability of HUVEC cells, and its tube formation on the Matrigel base. Influence on the expression of angiogenesis effector genes HIF 1 α, vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptors (VEGFR), and COX 2 in HUVEC cell line denoted prominent downregulation of HIF 1 α, VEGF, and VEGFR gene expression. Overall, the results indicated a remarkable potential of L. duvauceli ink to serve as a negative mediator of angiogenesis with probable selective HIF1α induced molecular mechanism for exerting its effect. This waste product of sea food processing industry thus presented itself as a promising natural candidate for arresting angiogenesis.


Keyword:     Antiangiogenesis Loligo Duvauceli Squid CAM assay HUVEC Vascular Endothelial Growth Factor


Citation:

Kamyab SS, Moghe AS, Nandi SS, Sawant SA. Inhibitory effect of ink derived from Indian Loligo duvauceli squid against HIF1α induced angiogenesis. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.173159

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Otrock ZK, Mahfouz RA, Makarem JA, Shamseddine AI. Understanding the biology of angiogenesis: a review of the most important molecular mechanisms. Blood Cells Mol Dis. 2007;39(2):212–20. doi: https://doi.org/10.1016/j.bcmd.2007.04.001

https://doi.org/10.1016/j.bcmd.2007.04.001

2. Yoo SY, Kwon SM. Angiogenesis and its therapeutic opportunities. Mediators Inflamm. 2013;2013:127170. doi: https://doi.org/10.1155/2013/127170

3. Teleanu RI, Chircov C, Grumezescu AM, Teleanu DM. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J Clin Med. 2019 Dec 29;9(1):84. doi: https://doi.org/10.3390/jcm9010084

4. Oguntade AS, Al-Amodi F, Alrumayh A, Alobaida M, Bwalya M. Anti-angiogenesis in cancer therapeutics: the magic bullet. J Egypt Natl Canc Inst. 2021 Jul 2;33(1):15. doi: https://doi.org/10.1186/s43046-021-00072-6

5. Lopes-Coelho F, Martins F, Pereira SA, Serpa J. Anti-angiogenic therapy: current challenges and future perspectives. Int J Mol Sci. 2021 Apr 5;22(7):3765. doi: https://doi.org/10.3390/ijms22073765

6. Li R, Song X, Guo Y, Song P, Duan D, Chen ZS. Natural products: a promising therapeutics for targeting tumor angiogenesis. Front Oncol. 2021 Oct 22;11:772915. doi: https://doi.org/10.3389/fonc.2021.772915

7. Karthikeyan A, Joseph A, Nair BG. Promising bioactive compounds from the marine environment and their potential effects on various diseases. J Genet Eng Biotechnol. 2022 Jan 26;20(1):14. doi: https://doi.org/10.1186/s43141-021-00290-4

8. Barreca M, Spanò V, Montalbano A, Cueto M, Díaz Marrero AR, Deniz I, et al. Marine anticancer agents: an overview with a particular focus on their chemical classes. Mar Drugs. 2020 Dec 4;18(12):619. doi: https://doi.org/10.3390/md18120619

9. Sabrah MM, Aly Y. El-Sayed, Azza A. El-Ganiny. Fishery and population characteristics of the Indian squids Loligo duvauceli Orbigny, 1848 from trawl survey along the north-west Red Sea. Egypt J Aquat Res. 2015;41(3):279–85. doi: https://doi.org/10.1016/j.ejar.2015.07.003

10. Nadarajah SK, Vijayaraj R, Mani J. Therapeutic significance of Loligo vulgaris (Lamarck, 1798) ink extract: a biomedical approach. Pharmacogn Res. 2017 Dec;9 (Suppl 1):S105–9. doi: https://doi.org/10.4103/pr.pr_81_17

11. Nisha N, Suja S. Phytochemical evaluation and antioxidant activity of methanol extract of Loligo duvauceli ink. J Pharmacogn Phytochem. 2018;7(1):1764–67.

12. Gajendra Raju CV, Sarojini A Amitha, Lakshmisha IP, Arun Kumar P. Antioxidant activity of melanin free ink (MFI) extract from the ink sac of Loligo duvauceli.J Entomol Zool Stud. 2020;8(4):1388–92.

13. Girija S, Duraipandiyan V, Kuppusamy PS, Gajendran H, Rajagopal R. Chromatographic characterization and GC-MS evaluation of the bioactive constituents with antimicrobial potential from the pigmented ink of Loligo duvauceli. Int Sch Res Notices. 2014 Nov 10;2014:820745. doi: https://doi.org/10.1155/2014/82074

14. Zhong JP, Wang G, Shang JH, Pan JQ, Li K, Huang Y, et al. Protective effects of squid ink extract towards hemopoietic injuries induced by cyclophosphamine. Mar Drugs. 2009;7(1):9–18. doi: https://doi.org/10.3390/md7010009

15. Hermelin J, Diaz JHJ, Thilaga RD, Sivakumar V. Cytotoxic activity of crude and partially purified ink of L. duvauceli towards HepG2 cell line. Int J Pharm Res Rev. 2014;3(6):19–23. doi: https://doi.org/https://api.semanticscholar.org/CorpusID:27933782}

16. Senan VP, Sherief PM, Nair JR. Cytotoxic effect of ink extracts of cuttlefish and squid on chick embryo fibroblasts. Int J Pharm Sci Res. 2013;4(5):1893–96. doi: http://dx.doi.org/10.13040/IJPSR.0975-8232.4(5).1893-96

17. Varinská L, Fáber L, Kello M, Petrovová E, Balážová ?, Solár P, et al. β-Escin effectively modulates HUVECS proliferation and tube formation. Molecules. 2018 Jan 17;23(1):197. doi: http://dx.doi.org/10.3390/molecules23010197

18. Mathur R, Gupta, SK, Singh N, Mathur S, Kochupillai V, Velpandian T. Evaluation of the effect of Withania somnifera root extracts on cell cycle and angiogenesis. J Ethnopharmacol.2006;105(3):336–41.

https://doi.org/10.1016/j.jep.2005.11.020

19. Ganger MT, Dietz GD, Ewing SJ. A common base method for analysis of qPCR data and the application of simple blocking in qPCR experiments. BMC Bioinformatics. 2017 Dec 1;18(1):534. doi: https://doi.org/10.1186/s12859-017-1949-5

20. Khudhair IH, Suker DK, Hanna BA, Khudair IH, Marina B. Cytotoxic effect of ink extracted from cephalopoda on cancer cell line corresponding author. Sci J Med Res. 2019;03:139–45. doi: https://doi.org/10.37623/SJMR.2019.31206

21. Meivelu Moovendhan, Seedevi P, Vairamani S, Shanmugam A. Exploring the chemical composition and anticancer potential of oil from squid (Loligo duvauceli) liver waste from fish processing industry. Waste Biomass Valor. 2019;10:2967–73.

https://doi.org/10.1007/s12649-018-0304-z

22. Gentile MT, Pastorino O, Bifulco M, Colucci-D’Amato L. HUVEC tube-formation assay to evaluate the impact of natural products on angiogenesis. J Vis Exp. 2019;24(148):e58591. doi: https://doi.org/10.3791/58591

23. Gupta P, Arumugam M, Azad RV, Saxena R, Ghose S, Biswas NR, et al. Screening of antiangiogenic potential of twenty-two marine invertebrate extracts of phylum Mollusca from South East Coast of India. Asian Pac J Trop Biomed. 2014 May;4(Suppl 1):S129–38. doi: https://doi.org/10.12980/APJTB.4.2014C701

24. Senthilkumar K, Jayachandran Venkatesan, Panchanathan Manivasagan, Se-Kwon Kim. Antiangiogenic effects of marine sponge derived compounds on cancer. Environ Toxicol Pharmacol. 2013;36(3):1097–108. doi: https://doi.org/10.1016/j.etap.2013.09.014

25. Subramanian U, Kishorekumar MS, Muthuraman S, Munusamy AP, Sundaram R. Marine algal secondary metabolites promising anti-angiogenesis factor against retinal neovascularization in CAM model. Res Rev J Life Sci. 2018;8:19–25.

26. Luay MAM, Gonzaga MFR, Po SKD, Arollado EC. Determination of the antiangiogenic activity of telescopium telescopium (horn snail) extract using in ovo chorioallantoic membrane (CAM) assay. Acta Medica Philippina. 2018;52(4):366–73. doi: https://doi.org/10.47895/amp.v52i4.379

27. Lee SH, Jeong D, Han YS, Baek MJ. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann Surg Treat Res. 2015 Jul;89(1):1–8. doi: https://doi.org/10.4174/astr.2015.89.1.1

28. Zimna A, Kurpisz M. Hypoxia-Inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed Res Int. 2015;2015:549412. doi: https://doi.org/10.1155/2015/549412

29. Hartwich J, Orr WS, Ng CY, Spence Y, Morton C, Davidoff AM. HIF-1α activation mediates resistance to anti-angiogenic therapy in neuroblastoma xenografts. J Pediatr Surg. 2013 Jan;48(1):39–46. doi: https://doi.org/10.1016/j.jpedsurg.2012.10.016

30. Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 2023 May 11;8(1):198. doi: https://doi.org/10.1038/s41392-023-01460-1

31. Hu W, Xu WS, Liao XF, He HJ. Bevacizumab in combination with first-line chemotherapy in patients with metastatic colorectal cancer: a meta-analysis. Minerva Chirurgica. 2015;70(6):451–58.

32. Lin PC, Lin YJ, Lee CT, Liu HS, Lee JC. Cyclooxygenase-2 expression in the tumor environment is associated with poor prognosis in colorectal cancer patients. Oncol Lett. 2013 Sep;6(3):733–9. doi: https://doi.org/10.3892/ol.2013.1426

33. Xue X, Shah YM. Hypoxia-inducible factor-2α is essential in activating the COX2/mPGES-1/PGE2 signaling axis in colon cancer. Carcinogenesis. 2013 Jan;34(1):163–9. doi: https://doi.org/10.1093/carcin/bgs313

Article Metrics
51 Views 1 Downloads 52 Total

Year

Month

Similar Articles

Related Search

By author names