Biological activities of Chrysanthemum morifolium and Chrysanthemum indicum: Molecular prospective

Nur Vaizura Mohamad Che Nur Mazadillina Che Zahari   

Open Access   

Published:  May 27, 2024

DOI: 10.7324/JAPS.2024.171645
Abstract

Chrysanthemum is an edible flower from a member of the Asteraceae family recognized for its wide variety of therapeutic benefits. The use of natural products as supplemental therapy has expanded dramatically due to the notion that they have fewer side effects. This current review attempts to summarise both Chrysanthemum morifolium and Chrysanthemum indicum health benefits and the molecular underpinnings of their biological effects with the addition of their recent use in green nanotechnology applications. Using PubMed and Scopus from 2008 to 2022, a literature search was done for relevant material addressing the biological activities of C. morifolium and C. indicum. Chrysanthemum’s anti-inflammatory, antioxidant, anticancer, anti-diabetic/anti-obesity, and antibacterial properties have been investigated. Both Chrysanthemum has been found to possess the ability to decrease pro-inflammatory proteins and genes, initiate apoptosis in cancer cells as well as modulate lipid metabolism to mitigate the development of obesity and diabetes. Moreover, it has been demonstrated that Chrysanthemum has antioxidant characteristics, thereby safeguarding against oxidative harm through the activation of cytoprotective and antioxidant genes. In addition, findings also demonstrated the green synthesis of silver nanoparticles from Chrysanthemum exhibits antimicrobial properties. Notably, no deleterious effects were seen following oral administration of both extracts in vivo. As demonstrated by preclinical investigations, the favorable effects of Chrysanthemum treatment need to be confirmed by more research or clinical trials.


Keyword:     Chrysanthemum anti-inflammatory antioxidant anticancer silver nanoparticles


Citation:

Mohamad NV, Zahari CNMC. Biological activities of Chrysanthemum morifolium and Chrysanthemum indicum: Molecular prospective. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.171645

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Su J, Jiang J, Zhang F, Liu Y, Ding L, Chen S, et al. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Hortic Res. 2019;6:109. https://doi.org/10.1038/s41438-019-0193-8

2. Zhao H, Liu Z, Hu X, Yin J, Li W, Rao G, et al. Chrysanthemum genetic resources and related genera of Chrysanthemum collected in China. Genet Resour Crop Evol. 2009;56 (7):937-46. https://doi.org/10.1007/s10722-009-9412-8

3. Dong M, Yu D, Duraipandiyan V, Abdullah Al-Dhabi N. The protective effect of Chrysanthemum indicum extract against ankylosing spondylitis in mouse models. BioMed Res Int. 2017;2017:8206281. https://doi.org/10.1155/2017/8206281

4. Hitmi A, Coudret A, Barthomeuf C. The production of pyrethrins by plant cell and tissue cultures of Chrysanthemum cinerariaefolium and Tagetes species. Crit Rev Plant Sci. 2000;19(1):69-89. https://doi.org/10.1080/07352680091139187

5. Li Y, Yang P, Luo Y, Gao B, Sun J, Lu W, et al. Chemical compositions of chrysanthemum teas and their anti-inflammatory and antioxidant properties. Food Chem. 2019;286:8-16. https://doi.org/10.1016/j.foodchem.2019.02.013

6. Yang Y, Sun X, Liu J, Kang L, Chen S, Ma B, et al. Quantitative and qualitative analysis of flavonoids and phenolic acids in snow chrysanthemum (Coreopsis tinctoria Nutt.) by HPLC-DAD and UPLC-ESI-QTOF-MS. Molecules. 2016;21(10):1307. https://doi.org/10.3390/molecules21101307

7. Yuan H, Jiang S, Liu Y, Daniyal M, Jian Y, Peng C, et al. The flower head of Chrysanthemum morifolium Ramat. (Juhua): a paradigm of flowers serving as Chinese dietary herbal medicine. J Ethnopharmacol 2020;261:113043. https://doi.org/10.1016/j.jep.2020.113043

8. Biswas S, Das R, Banerjee ER. Role of free radicals in human inflammatory diseases. Aims Biophys. 2017;4(4):596-614. https://doi.org/10.3934/biophy.2017.4.596

9. P?óciennikowska A, Hromada-Judycka A, Borz?cka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mole Life Sci. 2015;72(3):557-81. https://doi.org/10.1007/s00018-014-1762-5

10. Liu G, Zheng Q, Pan K, Xu X. Protective effect of Chrysanthemum morifolium Ramat. ethanol extract on lipopolysaccharide induced acute lung injury in mice. BMC Complement Med Ther. 2020;20(1):1-11. https://doi.org/10.1186/s12906-020-03017-z

11. Shi L, Shu Y, Hu X, Akram W, Wang J, Dong S, et al. An Optimized two-herb chinese food as medicine formula reduces cisplatin-induced nephrotoxicity in the treatment of lung cancer in mice. Front Pharmacol. 2022;13:827901. https://doi.org/10.3389/fphar.2022.827901

12. Tsai P-J, Chang M-L, Hsin C-M, Chuang C-C, Chuang L-T, Wu W-H. Antilipotoxicity activity of Osmanthus fragrans and Chrysanthemum morifolium flower extracts in hepatocytes and renal glomerular mesangial cells. Mediators Inflamm. 2017;2017:4856095. https://doi.org/10.1155/2017/4856095

13. Choi G, Yoon T, Cheon MS, Choo BK, Kim HK. Anti-inflammatory activity of Chrysanthemum indicum extract in acute and chronic cutaneous inflammation. J Ethnopharmacol. 2009;123(1):149-54. https://doi.org/10.1016/j.jep.2007.05.021

14. Wu X-L, Li C-W, Chen H-M, Su Z-Q, Zhao X-N, Chen J-N, et al. Anti-inflammatory effect of supercritical-carbon dioxide fluid extract from flowers and buds of Chrysanthemum indicum Linnén. Evid-Based Complement Altern Med. 2013;2013:413237. https://doi.org/10.1155/2013/413237

15. Morris CJ. Carrageenan-induced paw edema in the rat and mouse. Inflamm Protocols. 2003;225:115-21. https://doi.org/10.1385/1-59259-374-7:115

16. Loram L, Fuller A, Fick L, Cartmell T, Poole S, Mitchell D. Cytokine profiles during carrageenan-induced inflammatory hyperalgesia in rat muscle and hind paw. J Pain 2007;8(2):127-36. https://doi.org/10.1016/j.jpain.2006.06.010

17. Su J-Y, Tan L-R, Lai P, Liang H-C, Qin Z, Ye M-R, et al. Experimental study on anti-inflammatory activity of a TCM recipe consisting of the supercritical fluid CO2 extract of Chrysanthemum indicum, Patchouli Oil and Zedoary Turmeric Oil in vivo. J Ethnopharmacol. 2012;141(2):608-14. https://doi.org/10.1016/j.jep.2011.08.055

18. Yang H-M, Sun C-Y, Liang J-L, Xu L-Q, Zhang Z-B, Luo D-D, et al. Supercritical-carbon dioxide fluid extract from Chrysanthemum indicum enhances anti-tumor effect and reduces toxicity of bleomycin in tumor-bearing mice. Int J Mole Sci. 2017;18(3):465. https://doi.org/10.3390/ijms18030465

19. Zhang X, Wu J-Z, Lin Z-X, Yuan Q-J, Li Y-C, Liang J-L, et al. Ameliorative effect of supercritical fluid extract of Chrysanthemum indicum Linnén against D-galactose induced brain and liver injury in senescent mice via suppression of oxidative stress, inflammation and apoptosis. J Ethnopharmacol. 2019;234:44-56. https://doi.org/10.1016/j.jep.2018.12.050

20. Park M-J, Song J-H, Shon M-S, Kim HO, Kwon OJ, Roh S-S, et al. Anti-adipogenic effects of ethanol extracts prepared from selected medicinal herbs in 3T3-L1 cells. Prev Nutr Food Sci. 2016;21(3):227. https://doi.org/10.3746/pnf.2016.21.3.227

21. Wu J-Y, Chen Y-J, Fu X-Q, Li J-K, Chou J-Y, Yin C-L, et al. Chrysoeriol suppresses hyperproliferation of rheumatoid arthritis fibroblast-like synoviocytes and inhibits JAK2/STAT3 signaling. BMC Complement Med Ther. 2022;22(1):1-9. https://doi.org/10.1186/s12906-022-03553-w

22. Rose-John S, Waetzig GH, Scheller J, Grötzinger J, Seegert D. The IL-6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opin Ther Targets 2007;11(5):613-24. https://doi.org/10.1517/14728222.11.5.613

23. Kim J-E, Jun S, Song M, Kim J-H, Song Y-J. The extract of Chrysanthemum indicum Linne inhibits EBV LMP1-induced NF-κB activation and the viability of EBV-transformed lymphoblastoid cell lines. Food Chem Toxicol. 2012;50(5):1524-8. https://doi.org/10.1016/j.fct.2012.02.034

24. Lee HJ, Seo H-S, Ryu J, Yoon YP, Park SH, Lee CJ. Luteolin inhibited the gene expression, production and secretion of MUC5AC mucin via regulation of nuclear factor kappa B signaling pathway in human airway epithelial cells. Pulm Pharmacol Ther. 2015;31:117-22. https://doi.org/10.1016/j.pupt.2014.09.008

25. Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem. 2017;524:13-30. https://doi.org/10.1016/j.ab.2016.10.021

26. Wu T, Li J, Li Y, Song H. Antioxidant and hepatoprotective effect of swertiamarin on carbon tetrachloride-induced hepatotoxicity via the Nrf2/HO-1 pathway. Cell Physiol Biochem. 2017;41(6):2242-54. https://doi.org/10.1159/000475639

27. Tian Z, Jia H, Jin Y, Wang M, Kou J, Wang C, et al. Chrysanthemum extract attenuates hepatotoxicity via inhibiting oxidative stress in vivo and in vitro. Food Nutr Res. 2019;63. https://doi.org/10.29219/fnr.v63.1667

28. Steel RJ, O'Connell MA, Searcey M. Perfluoroarene-based peptide macrocycles that inhibit the Nrf2/Keap1 interaction, Bioorg Med Chem Lett. 2018;28(16):2728-31. https://doi.org/10.1016/j.bmcl.2018.03.003

29. Zou B, Xiao G, Xu Y, Wu J, Yu Y, Fu M. Persimmon vinegar polyphenols protect against hydrogen peroxide-induced cellular oxidative stress via Nrf2 signalling pathway. Food Chem. 2018;255:23-30. https://doi.org/10.1016/j.foodchem.2018.02.028

30. Verma AK, Yadav A, Singh SV, Mishra P, Rath SK. Isoniazid induces apoptosis: role of oxidative stress and inhibition of nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Life Sci. 2018;199:23-33. https://doi.org/10.1016/j.lfs.2018.02.037

31. Zhou Y, Wang C, Kou J, Wang M, Rong X, Pu X, et al. Chrysanthemi Flos extract alleviated acetaminophen-induced rat liver injury via inhibiting oxidative stress and apoptosis based on network pharmacology analysis. Pharm Biol. 2021;59(1):1376-85. https://doi.org/10.1080/13880209.2021.1986077

32. Jing S, Zhang X, Yan L-J. Antioxidant activity, antitumor effect, and antiaging property of proanthocyanidins extracted from Kunlun Chrysanthemum flowers. Oxid Med Cell Longev. 2015;2015:983484.33. Wu X-L, Feng X-X, Li C-W, Zhang X-J, Chen Z-W, Chen J-N, et al. The protective effects of the supercritical-carbon dioxide fluid extract of Chrysanthemum indicum against lipopolysaccharide-induced acute lung injury in mice via modulating Toll-like receptor 4 signaling pathway. Mediators Inflamm. 2014;2014:246407.34. Sun S, Jiang P, Su W, Xiang Y, Li J, Zeng L, et al. Wild chrysanthemum extract prevents UVB radiation-induced acute cell death and photoaging. Cytotechnology. 2016;68(2):229-40. https://doi.org/10.1007/s10616-014-9773-5

35. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516. https://doi.org/10.1080/01926230701320337

36. Parrish AB, Freel CD, Kornbluth S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol. 2013;5(6):a008672. https://doi.org/10.1101/cshperspect.a008672

37. Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene. 2008;27(48):6245-51. https://doi.org/10.1038/onc.2008.301

38. Hodaei M, Rahimmalek M, Behbahani M. Anticancer drug discovery from Iranian Chrysanthemum cultivars through system pharmacology exploration and experimental validation. Sci Rep. 2021;11(1):1-11. https://doi.org/10.1038/s41598-021-91010-y

39. Liu YH, Mou X, Zhou DY, Zhou DY, Shou CM. Extraction of flavonoids from Chrysanthemum morifolium and antitumor activity in vitro. Exp Ther Med. 2018;15(2):1203-10. https://doi.org/10.3892/etm.2017.5574

40. Chang T-L, Liou P-S, Cheng P-Y, Chang H-N, Tsai P-J. Borneol and Luteolin from Chrysanthemum morifolium regulate ubiquitin signal degradation. J Agric Food Chem. 2018;66(31):8280-90. https://doi.org/10.1021/acs.jafc.8b01972

41. Yang L, Wei D-D, Chen Z, Wang J-S, Kong L-Y. Reversal of multidrug resistance in human breast cancer cells by Curcuma wenyujin and Chrysanthemum indicum. Phytomedicine. 2011;18(8-9):710-8. https://doi.org/10.1016/j.phymed.2010.11.017

42. Nie J, Liu Y, Sun C, Zheng J, Chen B, Zhuo J, et al. Effect of supercritical carbon dioxide fluid extract from Chrysanthemum indicum Linné on bleomycin-induced pulmonary fibrosis. BMC Complement Med Ther. 2021;21(1):1-14. https://doi.org/10.1186/s12906-021-03409-9

43. Chen Y, Wang W, Liu F, Tang L, Tang R, Li W. Apoptotic effect of mtrix metalloproteinases 9 in the development of diabetic retinopathy. Int J Clin Exp Pathol. 2015;8(9):10452.

44. Seo D-W, Cho Y-R, Kim W, Eom SH. Phytochemical linarin enriched in the flower of Chrysanthemum indicum inhibits proliferation of A549 human alveolar basal epithelial cells through suppression of the Akt-dependent signaling pathway. J Med Food. 2013;16(12):1086-94. https://doi.org/10.1089/jmf.2012.2674

45. Wufuer Y, Yang X, Guo L, Aximujiang K, Zhong L, Yunusi K, et al. The antitumor effect and mechanism of total flavonoids from Coreopsis tinctoria nutt (snow Chrysanthemum) on lung cancer using network pharmacology and molecular docking. Front Pharmacol. 2022;13. https://doi.org/10.3389/fphar.2022.761785

46. Rubio-Moscardo F, Blesa D, Mestre C, Siebert R, Balasas T, Benito A, et al. Characterization of 8p21. 3 chromosomal deletions in B-cell lymphoma: TRAIL-R1 and TRAIL-R2 as candidate dosage-dependent tumor suppressor genes. Blood. 2005;106(9):3214-22. https://doi.org/10.1182/blood-2005-05-2013

47. Xu Z-F, Sun X-K, Lan Y, Han C, Zhang Y-D, Chen G. Linarin sensitizes tumor necrosis factor-related apoptosis (TRAIL)-induced ligand-triggered apoptosis in human glioma cells and in xenograft nude mice. BiomedPharmacother. 2017;95:1607-18. https://doi.org/10.1016/j.biopha.2017.08.021

48. Zhuo FF, Zhang C, Zhang H, Xia Y, Xue GM, Yang L, et al. Chrysanthemulide A induces apoptosis through DR5 upregulation via JNK-mediated autophagosome accumulation in human osteosarcoma cells. J Cell Physiol. 2019;234(8):13191-208. https://doi.org/10.1002/jcp.27991

49. Kim C, Kim MC, Kim SM, Nam D, Choi SH, Kim SH, et al. Chrysanthemum indicum L. extract induces apoptosis through suppression of constitutive STAT3 activation in human prostate cancer DU145 cells. Phytother Res. 2013;27(1):30-8. https://doi.org/10.1002/ptr.4689

50. Cockram C. The epidemiology of diabetes mellitus in the Asia-Pacific region. Hong Kong Med J. 2000;6(1):43-52.

51. Shon JC, Kim WC, Ryu R, Wu Z, Seo J-S, Choi M-S, et al. Plasma lipidomics reveals insights into anti-obesity effect of Chrysanthemum morifolium Ramat leaves and its constituent luteolin in high-fat diet-induced dyslipidemic mice. Nutrients. 2020;12(10):2973. https://doi.org/10.3390/nu12102973

52. Ryu R, Kwon E-Y, Choi J-Y, Shon JC, Liu K-H, Choi M-S. Chrysanthemum leaf ethanol extract prevents obesity and metabolic disease in diet-induced obese mice via lipid mobilization in white adipose tissue. Nutrients. 2019;11(6):1347. https://doi.org/10.3390/nu11061347

53. Sun J, Wang Z, Chen L, Sun G. Hypolipidemic effects and preliminary mechanism of Chrysanthemum flavonoids, its main components Luteolin and Luteoloside in hyperlipidemia rats. Antioxidants. 2021;10(8):1309. https://doi.org/10.3390/antiox10081309

54. Lee Y, Lee J, Lee M-S, Chang E, Kim Y. Chrysanthemum morifolium flower extract ameliorates obesity-induced inflammation and increases the muscle mitochondria content and AMPK/SIRT1 activities in obese rats. Nutrients. 2021;13(10):3660. https://doi.org/10.3390/nu13103660

55. Chen M, Wang K, Zhang Y, Zhang M, Ma Y, Sun H, et al. New insights into the biological activities of Chrysanthemum morifolium: Natural flavonoids alleviate diabetes by targeting α-glucosidase and the PTP-1B signaling pathway. Eur J Med Chem. 2019;178:108-15. https://doi.org/10.1016/j.ejmech.2019.05.083

56. Yamamoto J, Tadaishi M, Yamane T, Oishi Y, Shimizu M, Kobayashi-Hattori K. Hot water extracts of edible Chrysanthemum morifolium Ramat. Exert antidiabetic effects in obese diabetic KK-Ay mice. Biosci Biotechnol Biochem. 2015;79(7):1147-54. https://doi.org/10.1080/09168451.2015.1008975

57. Yamamoto J, Yamane T, Oishi Y, Shimizu M, Tadaishi M, Kobayashi-Hattori K. Chrysanthemum promotes adipocyte differentiation, adiponectin secretion and glucose uptake. Am J Chin Med. 2015;43(02):255-67. https://doi.org/10.1142/S0192415X15500172

58. Nishina A, Sato D, Yamamoto J, Kobayashi-Hattori K, Hirai Y, Kimura H. Antidiabetic-like effects of Naringenin-7-O-glucoside from Edible Chrysanthemum 'Kotobuki'and Naringenin by Activation of the PI3K/Akt Pathway and PPARγ. Chem Biodivers. 2019;16(1):e1800434. https://doi.org/10.1002/cbdv.201800434

59. Nepali S, Cha J-Y, Ki H-H, Lee H-Y, Kim Y-H, Kim D-K, et al. Chrysanthemum indicum inhibits adipogenesis and activates the AMPK pathway in high-fat-diet-induced obese mice. Am J Chin Med. 2018;46(01):119-36. https://doi.org/10.1142/S0192415X18500076

60. Lee J-H, Moon J-M, Kim Y-H, Lee B, Choi S-Y, Song B-J, et al. Effect of enzymatic treatment of Chrysanthemum indicum linne extracts on lipid accumulation and adipogenesis in high-fat-diet-induced obese male mice. Nutrients. 2019;11(2):269. https://doi.org/10.3390/nu11020269

61. Cha JY, Nepali S, Lee HY, Hwang SW, Choi SY, Yeon JM, et al. Chrysanthemum indicum L. ethanol extract reduces high fat diet induced obesity in mice. Exp Ther Med. 2018;15(6):5070-6. https://doi.org/10.3892/etm.2018.6042

62. Jay MA, Ren J. Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and type 2 diabetes mellitus. Curr Diabetes Rev. 2007;3(1):33-39. https://doi.org/10.2174/157339907779802067

63. Adisakwattana S, Ruengsamran T, Kampa P, Sompong W. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase. BMC Complement Med Ther. 2012;12(1):1-8. https://doi.org/10.1186/1472-6882-12-110

64. Yu Q, Chen W, Zhong J, Qing D, Yan C. Structural elucidation of three novel oligosaccharides from Kunlun Chrysanthemum flower tea and their bioactivities. Food Chem Toxicol. 2021;149:112032. https://doi.org/10.1016/j.fct.2021.112032

65. Mohammed S, Gorski L. Antimicrobial resistance and antimicrobial stewardship in home healthcare. Home Healthcare Now. 2021;39(5):238-46. https://doi.org/10.1097/NHH.0000000000001012

66. Hodaei M, Rahimmalek M, Arzani A. Variation in bioactive compounds, antioxidant and antibacterial activity of Iranian Chrysanthemum morifolium cultivars and determination of major polyphenolic compounds based on HPLC analysis. J Food Sci Technol. 2021;58(4):1538-48. https://doi.org/10.1007/s13197-020-04666-1

67. Mummed B, Abraha A, Feyera T, Nigusse A, Assefa S. In vitro antibacterial activity of selected medicinal plants in the traditional treatment of skin and wound infections in eastern Ethiopia. BioMed Res Int. 2018;2018. https://doi.org/10.1155/2018/1862401

68. Chang Y, Xing M, Hu X, Feng H, Wang Y, Guo B, et al. Antibacterial activity of Chrysanthemum buds crude extract against Cronobacter sakazakii and its application as a natural disinfectant. Front Microbiol. 2021;11:632177. https://doi.org/10.3389/fmicb.2020.632177

69. Yeasmin D, Swarna R, Nasrin M, Parvez S, Alam M. Evaluation of antibacterial activity of three flower colours Chrysanthemum morifolium Ramat. Against multi-drug resistant human pathogenic bacteria. Int J Biosci. 2016;9:78-87. https://doi.org/10.12692/ijb/9.2.78-87

70. Karnwal A. In vitro antibacterial activity of Hibiscus rosa sinensis, Chrysanthemum indicum, and Calendula officinalis flower extracts against Gram negative and Gram positive food poisoning bacteria. Orien Pharm Exp Med. 2022;22(3):607-19. https://doi.org/10.1007/s13596-021-00562-x

71. Tresch M, Mevissen M, Ayrle H, Melzig M, Roosje P, Walkenhorst M. Medicinal plants as therapeutic options for topical treatment in canine dermatology? A systematic review. BMC Vet Res 2019;15(1):1-19. https://doi.org/10.1186/s12917-019-1854-4

72. Ming K, Chen Y, Shi J, Yang J, Yao F, Du H, et al. Effects of Chrysanthemum indicum polysaccharide and its phosphate on anti-duck hepatitis a virus and alleviating hepatic injury. Int J Biol Macromole. 2017;102:813-21. https://doi.org/10.1016/j.ijbiomac.2017.04.093

73. Arokiyaraj S, Dinesh Kumar V, Elakya V, Kamala T, Park SK, Ragam M, et al. Biosynthesized silver nanoparticles using floral extract of Chrysanthemum indicum L.-potential for malaria vector control. Environ Sci Poll Res. 2015;22(13):9759-65. https://doi.org/10.1007/s11356-015-4148-9

74. Jang H-Y, Lee H-S, Noh E-m, Kim J-M, You Y-O, Lee G, et al. Aqueous extract of Chrysanthemum morifolium Ramat. Inhibits RANKL-induced osteoclast differentiation by suppressing the c-fos/NFATc1 pathway. Arch Oral Biol. 2021;122:105029. https://doi.org/10.1016/j.archoralbio.2020.105029

75. Kwon D, Kim C, Woo YK, Hwang J-K. Inhibitory effects of Chrysanthemum (Chrysanthemum morifolium Ramat.) Extract and its active compound isochlorogenic acid A on Sarcopenia. Prev Nutr Food Sci. 2021;26(4):408. https://doi.org/10.3746/pnf.2021.26.4.408

76. Li L, Gu L, Chen Z, Wang R, Ye J, Jiang H. Toxicity study of ethanolic extract of Chrysanthemum morifolium in rats. J Food Sci. 2010;75(6):T105-9. https://doi.org/10.1111/j.1750-3841.2010.01702.x

77. Luyen BTT, Tai BH, Thao NP, Lee YM, Lee SH, Jang HD, et al. The anti-osteoporosis and antioxidant activities of chemical constituents from Chrysanthemum indicum flowers. Phytother Res. 2015;29(4):540-8. https://doi.org/10.1002/ptr.5281

78. Kim O-K, Yun J-M, Lee M, Kim D, Lee J. Hypouricemic effects of Chrysanthemum indicum L. and Cornus officinalis on hyperuricemia-induced HepG2 cells, renal cells, and mice. Plants. 2021;10(8):1668. https://doi.org/10.3390/plants10081668

79. Lee Y-S, Kim S-H, Yuk HJ, Kim D-S. DKB114, a mixture of Chrysanthemum indicum linne flower and Cinnamomum cassia (L.) J. presl bark extracts, improves hyperuricemia through inhibition of xanthine oxidase activity and increasing urine excretion, Nutrients. 2018;10(10):1381. https://doi.org/10.3390/nu10101381

80. Zhang X, Xie Y-L, Yu X-T, Su Z-Q, Yuan J, Li Y-C, et al. Protective effect of super-critical carbon dioxide fluid extract from flowers and buds of Chrysanthemum indicum linnen against ultraviolet-induced photo-aging in mice. Rejuvenation Res. 2015;18(5):437-48. https://doi.org/10.1089/rej.2014.1651

81. Kwon J-K, An I-J, Lee J-S, Kim H-R, Park H-S, Kim D-C, et al. Acute oral toxicity and skin irritation studies on natural dyes extracted from chrysanthemum. J Food Hygiene Safety. 2012;27(2):188-93. https://doi.org/10.13103/JFHS.2012.27.2.188

82. Hwang ES, Kim GH. Safety evaluation of Chrysanthemum indicum L. flower oil by assessing acute oral toxicity, micronucleus abnormalities, and mutagenicity. Prev Nutr Food Sci. 2013;18(2):111-6. https://doi.org/10.3746/pnf.2013.18.2.111

83. Ma J-Y, Park H-Y, Choi H, Zee O-P, Lee J-H. Acute toxicity study on Mud Chrysanthemum indicum in mice. Korea J Herbol. 2008;23(2):81-5.

84. Takara T, Yamamoto K, Suzuki N, Yamashita S-I, Iio S-I, Kakinuma T, et al. Effects of luteolin-rich chrysanthemum flower extract on purine base absorption and blood uric acid in Japanese subjects. J Funct Foods Health Dis. 2022;12(1):12-25. https://doi.org/10.31989/ffhd.v12i1.863

85. Zhu Z, Qian S, Lu X, Xu C, Wang Y, Zhang X, et al. Protective properties of the extract of Chrysanthemum on patients with ischemic stroke. J Healthcare Eng. 2021;2021.86. John Alphonso K. Green synthesis of silver nanoparticles from Chrysanthemum indicum and its characterization. J Pharm Negat Res. 2022;13:4095-101. https://doi.org/10.1155/2021/3637456

87. Rajeshkumar S, Bharath L. Mechanism of plant-mediated synthesis of silver nanoparticles-a review on biomolecules involved, characterisation and antibacterial activity. Chem-Biol Interact. 2017;273:219-27. https://doi.org/10.1016/j.cbi.2017.06.019

88. Chowdhury A, Ara J, Islam MS. Green synthesis of phytochemical nanoparticles and their antimicrobial activity, a review study. Biomed J Sci Tech Res. 2021;34(4):26929-35. https://doi.org/10.26717/BJSTR.2021.34.005580

89. Arokiyaraj S, Arasu MV, Vincent S, Prakash NU, Choi SH, Oh Y-K, et al. Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: an in vitro study. Int J Nanomed. 2014;9:379-88. https://doi.org/10.2147/IJN.S53546

90. Wan H, Huang Q, Mia R, Tao X, Mahmud S, Liu H. Bioreduction and stabilization of nanosilver using Chrysanthemum phytochemicals for antibacterial and wastewater treatment. Chem Select. 2022;7(29):e202200649. https://doi.org/10.1002/slct.202200649

91. He Y, Du Z, Lv H, Jia Q, Tang Z, Zheng X, et al. Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. Extract and their application in clinical ultrasound gel. Int J Nanomed. 2013;8:1809-15. https://doi.org/10.2147/IJN.S43289

92. Yakupova EI, Bobyleva LG, Vikhlyantsev IM, Bobylev AG. Congo red and amyloids: history and relationship. Biosci Rep. 2019;39 (1):BSR20181415. https://doi.org/10.1042/BSR20181415

93. Kandiah M, De Silva LN. Microwave-assisted ecofriendly silver nanoparticle synthesis by varieties of Chrysanthemum morifolium Ramat: assessing their antioxidant, photocatalytic and antibacterial activities. J Metals Mater Miner. 2021;31(4):51-61.

94. López-López JR, Tejeda-Ochoa A, Cervantes-Gaxiola ME, Herrera-Ramirez JM, Méndez-Herrera PF. Photocatalytic activity of ZnO nanoparticles synthesized from zinc nitrate and botanical extracts of neem, chrysanthemum, Mexican marigold and shiitake mushroom. J Chem Technol Biotechnol. 2023;98(8):1810-8. https://doi.org/10.1002/jctb.7306

Article Metrics
70 Views 20 Downloads 90 Total

Year

Month

Related Search

By author names