Kerala’s anticancer flora: A comprehensive review

Mythili Srinivasan Ashwini Y. Chandane Amol A. Tagalpallewar Anil T. Pawar Manasi Nimbalkar Ranjit Nimbalkar Akshay M. Baheti   

Open Access   

Published:  May 22, 2024

DOI: 10.7324/JAPS.2024.180248
Abstract

This ethnobotanical investigation explored native healing herbs for anticancer efficacy in Kerala’s Wayanad and Kozhikode districts. Insights were gathered from various stakeholders, including spice dealers, exporters, Ayurveda practitioners, tribal communities, and farmers, through discussions, interviews, and questionnaires from February 2021 to August 2022. Field expeditions to tribal settlements yielded crucial data on botanical nomenclature, common identifiers, vernacular names, traditional applications, and anecdotal applications. Following PRISMA guidelines, a systematic review incorporated a meta-analysis of 311 articles from Ovid Medline, Scopus, Web of Science, and PubMed. Results showed a significant overall effect (p-value 0.001), variable subgroup effectiveness (RR = 0.4118, p 0.009), and study-related impacts (p = 0.4837). Reliability was confirmed through sensitivity testing with negligible bias (p > 0.05). Despite notable unexplained heterogeneity (I² = 87.82%, H² = 8.21), the study emphasized the statistical significance of the selected medicinal plants. This investigation advances the ethnobotanical knowledge of Malabar’s anticancer herbs, underscoring the imperative for future research to exploit their therapeutic potential. It serves as pivotal groundwork for future developments in herbal medicine.


Keyword:     Anticancer ayurveda folklore uses medicinal plants phytoconstituents tribal communities meta-analysis


Citation:

Srinivasan M, Chandane AY , Tagalpallewar AA, Pawar AT, Nimbalkar M, Nimbalkar R, Baheti AM. Kerala’s anticancer flora: A comprehensive review. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.180248

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Kumar S, Jawaid T, Dubey SD. Therapeutic plants of Ayurveda; a review on anticancer. Pharmacogn J. 2011;3(23):1–11. doi: https://doi.org/10.5530/pj.2011.23.1

2. Akbar S. Introduction. In: Handbook of 200 medicinal plants. Cham, Switzerland: Springer; 2020. doi: https://doi.org/10.1007/978-3-030-16807-0_1

3. Majola F, Becker Delwing LK, Marmitt DJ, Bustamante-Filho IC, Goettert MI. Medicinal plants and bioactive natural compounds for cancer treatment: important advances for drug discovery. Phytochem Lett. 2019;31:196–207. doi: https://doi.org/10.1016/j.phytol.2019.04.003

4. Pandey G, Madhuri S. Some medicinal plants as natural anticancer agents. Pharmacogn Rev. 2009;3(6):259–63.

5. Chhikara SB, Parang K. Global cancer statistics 2022: the trends projection analysis. Chem Biol Lett. 2023;10(1):451. Available from: https://pubs.thesciencein.org/journal/index.php/cbl/article/view/451

6. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. doi: https://doi.org/10.3322/caac.21763

7. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: https://doi.org/10.3322/caac.21492

8. Mehrotra R, Yadav K. Breast cancer in India: present scenario and the challenges ahead. World J Clin Oncol. 2022;13(3):209–18. doi: https://doi.org/10.5306/wjco. v13.i3.209

9. Bukhtoyarov OV, Samarin DM. Pathogenesis of cancer: cancer reparative trap. J Cancer Ther. 2015;06(05):399–412. doi: https://doi.org/10.4236/jct.2015.65043

10. Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79. doi: https://doi.org/10.1016/j.ejpb.2015.03.018

11. Kumari I, Kaurav H, Choudhary G. Rubia cordifolia (Manjishtha): a review based upon its Ayurvedic and medicinal uses. Himal J Heal Sci. 2021;6(2):17–28. doi: https://doi.org/10.22270/hjhs. v6i2.96

12. Shaikh R, Pund M, Dawane A, Iliyas S. Evaluation of anticancer, antioxidant, and possible anti-inflammatory properties of selected medicinal plants used in Indian traditional medication. J Tradit Complement Med. 2014;4(4):253–7. doi: https://doi.org/10.4103/2225-4110.128904

13. Pan L, Chai HB, Kinghorn AD. Discovery of new anticancer agents from higher plants. Front Biosci. 2012;4S(1):142–56. doi: https://doi.org/10.2741/257

14. Demain AL, Zhang L. Natural products and drug discovery. In: Zhang L, Demain AL, editors. Natural products. Totowa, NJ: Humana Press; 2005. pp. 3–29.

15. Butler MS. Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep. 2008;25(3):475–516. doi: https://doi.org/10.1039/b514294f

16. Shoeb M. Anticancer agents from medicinal plants. Bangladesh J Pharmacol. 2008;1(2):35–41. doi: https://doi.org/10.3329/bjp. v1i2.486

17. Mouid MG. Effect of ethanolic extract of aerial parts of Andrographis paniculata on the pharmacokinetics of gliclazide in rats. Asian J Biomed Pharm Sci. 2015;05(51):21–4. doi: https://doi.org/10.15272/ajbps. v5i51.755

18. Lichota A, Gwozdzinski K. Anticancer activity of natural compounds from plant and marine environment. Int J Mol Sci. 2018;19(11):3533. doi: https://doi.org/10.3390/ijms19113533

19. Tojo Jose VA, Sebastian A. Ethnobotanical study of traditional medicinal plants used by indigenous people in north Kerala. Indian J Appl Res. 2015;5(10):184–6.

20. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:n160. doi: https://doi.org/10.1136/bmj. n160

21. McKeown S, Mir ZM. Considerations for conducting systematic reviews: evaluating the performance of different methods for de-duplicating references. Syst Rev. 2021;10(1):4–11. doi: https://doi.org/10.1186/s13643-021-01583-y

22. Beheshti A, Chavanon ML, Christiansen H. Emotion dysregulation in adults with attention deficit hyperactivity disorder: a meta-analysis. BMC Psychiatry. 2020;20(1):120. doi: https://doi.org/10.1186/s12888-020-2442-7

23. Jain DL, Baheti AM, Jain SR, Khandelwal KR. Use of medicinal plants among tribes in Satpuda region of Dhule and Jalgaon districts of Maharashtra-an ethnobotanical survey. Indian J Tradit Knowl. 2010;9(1):152–7.

24. Morvin Yabesh JE, Prabhu S, Vijayakumar S. An ethnobotanical study of medicinal plants used by traditional healers in silent valley of Kerala, India. J Ethnopharmacol. 2014;154(3):774–89. doi: https://doi.org/10.1016/j.jep.2014.05.004

25. Drishya NS, Joseph S, Anusree N, Theertha PC, Atheena K. Ethnobotanical survey of medicinal plants in Urdhook hills, Kuttiady, Kozhikode District, Kerala. Int J Creat Res Thoughts. 2021;9(3):4029–40.

26. Soja S, Saradha M. Documentation of medicinal plants used by the traditional healers, Mayannur forest, Thrissur district, Kerala, India. Kongunadu Res J. 2021;8(2):8–26. doi: https://doi.org/10.26524/krj.2021.14

27. Raja R, Aswani BS. Identification and conservation status of medicinal plants in Chengottumala hills, Kerala. J Univ Shanghai Sci Technol. 2022;24(8):228–47.

28. Smitha PRB, Madhusoodanan PV. Anticancer activity of Acanthus illicifolius Linn. From chettuva mangroves, Kerala. Int J Bioassays. 2014;3(11):3452–5.

29. Singh D, Aeri V. Phytochemical and pharmacological potential of Acanthus ilicifolius. J Pharm Bioallied Sci. 2013;5(1):17–20. doi: https://doi.org/10.4103/0975-7406.106557

30. Rahamooz Haghighi S, Asadi MH, Akrami H, Baghizadeh A. Anti-carcinogenic and anti-angiogenic properties of the extracts of Acorus calamus on gastric cancer cells. Avicenna J phytomedicine. 2016;7(2):145–6. doi: https://doi.org/10.22038/ajp.2016.7485

31. Liu XC, Zhou LG, Liu ZL, Du SS. Identification of insecticidal constituents of the essential oil of Acorus calamus rhizomes against Liposcelis bostrychophila badonnel. Molecules. 2013;18(5):5684–96. doi: https://doi.org/10.3390/molecules18055684

32. Sharma V, Singh R. Achyranthes aspera: phytochemical estimation. Am J Pharmtech Res. 2013;3(2):243–51.

33. Tiwari P, Gond P, Koshale S, Tiwari CP. Phytochemical analysis of different parts of Achyranthes aspera. J Pharmacogn Phytochem. 2018;2(1):60–2.

34. Ahmed SM, Tasleem F, Mazhar F, Rizvi SRZ, Azhar I. Pharmacological evaluation on methanol extract of Adenanthera pavonina leaves. Pak J Pharmacol. 2018;35(1&2):57–63.

35. Bhadran S, George SA, Malla S, Harini BP. Screening of bioprotective properties of various plant extracts and gas chromatography-mass spectrometry profiling of Adenanthera pavonina stem extract. Asian J Pharm Clin Res. 2017;10(7):188–94. doi: https://doi.org/10.22159/ajpcr. 2017.v10i7.18141

36. Lindamulage IKS, Soysa P. Evaluation of anticancer properties of a decoction containing Adenanthera pavonina L. and Thespesia populnea L. BMC Complement Altern Med. 2016;16:70. doi: https://doi.org/10.1186/s12906-016-1053-9

37. Ali A, Khan N, Qadir A, Warsi MH, Ali A, Tahir A. Identification of the phytoconstituents in methanolic extract of Adhatoda vasica L. leaves by GC-MS analysis and its antioxidant activity. J AOAC Int. 2022;105(1):267–71. doi: https://doi.org/10.1093/jaoacint/qsab113

38. Shoaib A. A systematic ethnobotanical review of Adhatoda vasica (L.). Cell Mol Biol. 2021;67(4):248–63. doi: https://doi.org/10.14715/CMB/2021.67.4.28

39. Petricevich VL, Abarca-vargas R. Allamanda cathartica: a review of phytochemistry, pharmacology, toxicology, and biotechnology. Molecules. 2019;24(7):1238. doi: https://doi.org/10.3390/molecules24071238

40. Pandey K, Shekar C, Bairwa K, Kate AS. Pharmaceutical perspective on bioactives from Alstonia scholaris: ethnomedicinal knowledge, phytochemistry, clinical status, patent space, and future directions. Phytochem Rev. 2020;19:191–233. doi: https://doi.org/10.1007/s11101-020-09662-z

41. Wang CM, Yeh KL, Tsai SJ, Jhan YL, Chou CH. Anti-proliferative activity of triterpenoids and sterols isolated from Alstonia scholaris against non-small-cell lung carcinoma cells. Molecules. 2017;22(12):2119. doi: https://doi.org/10.3390/molecules22122119

42. Itam A, Wulandari A, Rahman MM, Ferdinal N. Preliminary phytochemical screening, total phenolic content, antioxidant and cytotoxic activities of Alstonia scholaris R. Br leaves and stem bark extracts. J Pharm Sci Res. 2018;10(3):518–22.

43. Riyama Shirin VK, Arthi I, Neethu Krishnan S, Fathima Suman P. Review on Alternanthera brasiliana (L.) Kuntze for its pharmacognostic, phytochemical, pharmacological perspectives. World J Pharm Res. 2021;10(11):382–92. doi: https://doi.org/10.20959/wjpr202111-21352

44. Kannan M, Chandran RP, Manju S. Preliminary phytochemical and antibacterial studies on leaf extracts of Alternanthera brasiliana (L.) Kuntze. Int J Pharm Res. 2017;6(7):626–8.

45. Taiwo BJ, Popoola TD, Van Heerden FR, Fatokun AA. Penta galloyl glucose, isolated from the leaf extract of Anacardium occidentale L., could elicit rapid and selective cytotoxicity in cancer cells. BMC Complement Med Ther. 2020;20(1):1–9. doi: https://doi.org/10.1186/s12906-020-03075-3

46. Salehi B, Gültekin-Özgüven M, Kirkin C, Özçelik B, Morais-Braga MFB, Carneiro JNP, et al. Antioxidant, antimicrobial, and anticancer effects of Anacardium plants: an ethnopharmacological perspective. Front Endocrinol (Lausanne). 2020;11:295. doi: https://doi.org/10.3389/fendo.2020.00295

47. Shankar A, Gopinath SM, Shareef MI. Phyto sensitization and cytotoxic studies of Anacardium occidentale L. on cancer cell lines—a herbaceutical approach. Int J Curr Microbiol Appl Sci. 2020;9(2):1589–603. doi: https://doi.org/10.20546/ijcmas.2020.902.183

48. Sundaram V, Thiyagarajan D, Lawrence AV, Mohammed SSS, Selvaraj A. In-vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using Anacardium occidentale leaves extract. Saudi J Biol Sci. 2019;26(3):455–9. doi: https://doi.org/10.1016/j.sjbs.2018.12.001

49. Souza NC, de Oliveira JM, Morrone MDS, Albanus RD, Amarante MDSM, Camillo CDS, et al. Antioxidant and anti-inflammatory properties of Anacardium occidentale leaf extract. Evid Based Complement Alternat Med. 2017;2017:2787308. doi: https://doi.org/10.1155/2017/2787308

50. Khan I, Khan F, Farooqui A, Ansari IA. Andrographolide exhibits anticancer potential against human colon cancer cells by inducing cell cycle arrest and programmed cell death via augmentation of intracellular reactive oxygen species level. Nutr Cancer. 2018;70(5):787–803. doi: https://doi.org/10.1080/01635581.2018.1470649

51. Wanandi SI, Limanto A, Yunita E, Syahrani RA, Louisa M, Wibowo AE, et al. In silico and in vitro studies on the anti-cancer activity of andrographolide targeting survivin in human breast cancer stem cells. PLoS One. 2020;15(11):e0240020. doi: https://doi.org/10.1371/journal.pone.0240020

52. Alaqeel NK, Almalki WH, Binothman N, Aljadani M, Al-Dhuayan IS, Alnamshan MM, et al. The inhibitory and anticancer properties of Annona squamosa L. seed extracts. Braz J Biol. 2023;82:e268250. doi: https://doi.org/10.1590/1519-6984.268250

53. Abd-Elghany AA, Ahmed SM, Masoud MA, Atia T, Waggiallah HA, El-Sakhawy MA, et al. Annona squamosa L. extract-loaded niosome and its anti-Ehrlich Ascites’ carcinoma activity. ACS Omega. 2022;7(43):38436–47. doi: https://doi.org/10.1021/acsomega.2c03649

54. Fadholly A, Purnama R, Iskandar D. In vitro anticancer activity Annona squamosa extract nanoparticle on WiDr cells. J Adv Pharm Technol Res. 2019;10(1):149–54. doi: https://doi.org/10.4103/japtr.JAPTR

55. Shehata MG, Abu-Serie MM, Abd El-Aziz NM, El-Sohaimy SA. Nutritional, phytochemical, and in vitro anticancer potential of sugar apple (Annona squamosa) fruits. Sci Rep. 2021;11(1):6224. doi: https://doi.org/10.1038/s41598-021-85772-8

56. Vinodhini R, Saravanan D, Baskaran D, Ramalingam S. In vitro free radical scavenging and anticancer potential of Aristolochia indica against MCF-7 cell line. Int J Pharm Sci. 2015;7(6):392–6.

57. Subramanian PV, AlSalhi MS, Devanesan S, Thomas PA. Evaluation of antioxidant, anticancer and DNA binding potentials of noble metal nanoparticles synthesized using Aristolochia indica and Indigofera tinctoria. J Clust Sci. 2021;32(4):917–27. doi: https://doi.org/10.1007/s10876-020-01858-9

58. Siwan D, Nandave D, Nandave M. Artemisia vulgaris Linn: an updated review on its multiple biological activities. Future J Pharm Sci. 2022;8(47):1–14. doi: https://doi.org/10.1186/s43094-022-00436-2

59. Ekiert H, Pajor J, Klin P, Rzepiela A, ?lesak H, Szopa A. Significance of Artemisia vulgaris L. (Common Mugwort) in the history of medicine and its possible contemporary applications substantiated by phytochemical and pharmacological studies. Molecules. 2020;25(19):4415. doi: https://doi.org/10.3390/molecules25194415

60. Singh NB, Devi ML, Biona T, Sharma N, Das S, Chakravorty J, et al. Phytochemical composition and antimicrobial activity of essential oil from the leaves of Artemisia vulgaris L. Molecules. 2023;28(5):2279. doi: https://doi.org/10.3390/molecules28052279

61. Tandyekkal A, Pandurangan NN, Mohanan J, Nehru J, Botanic T. Asystasia gangetica var. krishnae (Acanthaceae): a new variety from Kerala, India. Rheedea. 2019;29(2):174–7. doi: https://doi.org/10.22244/rheedea.2019.29.2.02

62. Barbaza MYU, De Castro-Cruz KA, Hsieh CL, Tsai PW. Determination of the chemical constituent contents and antioxidation properties of Asystasia gangetica. Indian J Pharm Educ Res. 2021;55(3):863–1. doi: https://doi.org/10.5530/ijper.55.3.160

63. Ahmad Eid NE, Jaradat N. A review of chemical constituents and traditional usage of neem plant (Azardirachta indica). Palest Med Pharm J. 2017;2(2):75–81. doi: https://doi.org/10.59049/2790-0231.1060

64. Gupta A, Ansari S, Gupta S, Narwani M. Therapeutics role of neem and its bioactive constituents in disease prevention and treatment. J Pharmacogn Phytochem. 2019;8(3):680–91.

65. Singh A, Singh N, Pabla D. A review on medicinal uses of Bauhinia variegata Linn. Pharma Tutor. 2019;7(6):12–6. doi: https://doi.org/10.29161/PT. v7.i6.2019.12

66. Pandey S. In vivo antitumor potential of extracts from different parts of Bauhinia variegata linn. against b16f10 melanoma tumour model in c57bl/6 mice. Appl Cancer Res. 2017;37(1):33–41. doi: https://doi.org/10.1186/s41241-017-0039-3

67. Shahi NP, Sharma O, Shahi SR. Kanchnara (Bauhinia variegata Linn.)-a review. World J Pharm Res. 2022;11(8):386–94. doi: https://doi.org/10.20959/wjpr20228-24522

68. El Khalki L, Maire V, Dubois T. Berberine impairs the survival of triple negative breast cancer cells: cellular and molecular analyses. Molecules. 2020;25(3):506. doi: https://doi.org/10.3390/molecules25030506

69. Imenshahidi M, Hosseinzadeh H. Berberine and barberry (Berberis vulgaris): a clinical review. Phytother Res. 2019;33(3):504–23. doi: https://doi.org/10.1002/ptr.6252

70. Li J, Yang L, Shen R, Gong L, Tian Z, Qiu H, et al. Self-nanoemulsifying system improves oral absorption and enhances anti-acute myeloid leukaemia activity of berberine. J Nanobiotechnol. 2018;16(1):76. doi: https://doi.org/10.1186/s12951-018-0402-x

71. Kuo TF, Yang G, Chen TY, Wu YC, Minh HTN, Chen LS, et al. Bidens pilosa: nutritional value and benefits for metabolic syndrome. Food Front. 2021;2(1):32–45. doi: https://doi.org/10.1002/fft2.63

72. Mtenga DV, Ripanda AS. A review on the potential of underutilized Blackjack (Biden Pilosa) naturally occurring in sub-Saharan Africa. Heliyon. 2022;8(6):e09586. doi: https://doi.org/10.1016/j.heliyon. 2022.e09586

73. Mtambo SE, Krishna SB, Govender P. Physico-chemical, antimicrobial and anticancer properties of silver nanoparticles synthesised from organ-specific extracts of Bidens pilosa L. S Afr J Bot. 2019;126:196–206. doi: https://doi.org/10.1016/j.sajb.2019.07.046

74. Giridharan B, Sachidanandam M, Meenakumari K. In vitro anticancer activity of Biophytum sensitivum whole plant. Int J Pharm Sci Res. 2016;7(12):2320–5148. doi: https://doi.org/10.13040/IJPSR.0975-8232.7(12).5128-35

75. Saravanan K, Jayabal P, Elavarasi S, Santhi MP, Palanivel K. Anticancer activity of Biophytum sensitivum in breast cancer mcf-7 cell line. J Cell Tissue Res. 2016;16(1):5387–91.

76. Dirar AI, Wada M, Watanabe T, Devkota HP. Phenolic compounds from the aerial parts of Blepharis linariifolia Pers. and their free radical scavenging and enzyme inhibitory activities. Medicines (Basel). 2019;6(113):113. doi: https://doi.org/10.3390/medicines6040113

77. Baskar A, Al Numair K, Alsaif M, Ignacimuthu S. In vitro antioxidant and antiproliferative potential of medicinal plants used in traditional Indian medicine to treat cancer. Redox Rep. 2012;17(4):145–56. doi: https://doi.org/10.1179/1351000212Y.0000000017

78. Vidhya RU, Bhuminathan S, Rekha M, Nandhini MS, Ravishankar. Therapeutic and pharmacological efficacy of plant Boerhaavia diffusa -a review. Int J Appl Pharm. 2022;14(TI):58–62. doi: https://doi.org/10.22159/ijap. 2022.v14ti.41

79. Kaur H. Boerhaavia diffusa: bioactive compounds and pharmacological activities. Biomed Pharmacol J. 2019;12(4):1675–82. doi: https://doi.org/10.13005/bpj/1797

80. Thuy TT, Thu Trang NT, Hoa PN, Trang PT, Khoi NM, Hoang VD, et al. A new coumaronochromone from Boerhaavia diffusa. Nat Prod Commun. 2019;14(6):2019. doi: https://doi.org/10.1177/1934578X19856253

81. Friedman JR, Richard SD, Merritt JC, Brown KC, Denning KL, Tirona MT, et al. Capsaicinoids: multiple effects on angiogenesis, invasion and metastasis in human cancers. Biomed Pharmacother. 2019;118:109317. doi: https://doi.org/10.1016/j.biopha.2019.109317

82. Chilczuk B, Marciniak B, Stochmal A, Pecio ?, Kontek R, Jackowska I, et al. Anticancer potential and capsianosides identification in lipophilic fraction of sweet pepper (Capsicum annuum L.). Molecules. 2020;25(13):3097. doi: https://doi.org/10.3390/molecules25133097

83. Al-Samydai A, Alshaer W, Al-Dujaili EAS, Azzam H, Aburjai T. Preparation, characterization, and anticancer effects of capsaicin-loaded nanoliposomes. Nutrients. 2021;13(11):3995. doi: https://doi.org/10.3390/nu13113995

84. Abdel-Halim SA, Ibrahim MT, Mohsen MMA, Abou-Setta LM, Sleen AA, Morsey FA, et al. Phytochemical and biological investigation of Carica papaya Linn. leaves cultivated in Egypt (Family Caricaceae). J Pharmacogn Phytochem. 2020;9(5):47–54. doi: https://doi.org/10.22271/phyto.2020.v9.i5a.12421

85. Gadge S, Game M, Salode V. Marvelous plant Carica papaya Linn: a herbal therapeutic option. Phytopathology. 2020;9(4):629–33. doi: https://doi.org/10.22271/PHYTO.2020.V9.I4I.11771

86. Rafiqi UN, Gul I, Saifi M, Nasrullah N, Ahmad J, Dash P, et al. Cloning, identification, and in silico analysis of terpene synthases involved in the competing pathway of artemisinin biosynthesis pathway in Artemisia annua L. Pharmacogn Mag. 2019;15(62):38–46. doi: https://doi.org/10.4103/pm.pm_244_18

87. Nalinratana N, Suriya U, Laprasert C, Wisidsri N, Poldorn P, Rungrotmongkol T, et al. In vitro and in silico studies anti—inflammatory lignans from Carallia brachiata as p38 MAP kinase inhibitors. Sci Rep. 2023;13(1):3558. doi: https://doi.org/10.1038/s41598-023-30475-5

88. Kuthi NA, Chandren S, Basar N. Biosynthesis of gold nanoisotrops using Carallia brachiata leaf extract and their catalytic application in the reduction of 4-nitrophenol. Front Chem. 2022;9:800145. doi: https://doi.org/10.3389/fchem.2021.800145

89. Junejo JA, Zaman K, Rudrapal M, Mondal P, Singh KD, Verma VK. Preliminary phytochemical and physicochemical evaluation of Carallia brachiata (Lour.) Merr. leaves. J Appl Pharm Sci. 2014;4:123–7. doi: https://doi.org/10.7324/JAPS.2014.41221

90. Kanwal A, Azeem F, Nadeem H, Ashfaq UA, Aadil RM, Kober AKMH, et al. Molecular mechanisms of Cassia fistula against epithelial ovarian cancer using network pharmacology and molecular docking approaches. Pharmaceutics. 2022;14(9):1970. doi: https://doi.org/10.3390/pharmaceutics14091970

91. Kaur S, Kumar A, Thakur S, Kumar K, Sharma R, Sharma A, et al. Antioxidant, antiproliferative and apoptosis-inducing efficacy of fractions from Cassia fistula L. leaves. Antioxidants (Basel). 2020;9(2):173. doi: https://doi.org/10.3390/antiox9020173

92. Bahorun T, Neergheen VS, Aruoma OI. Phytochemical constituents of Cassia fistula. Afr J Biotechnol. 2005;4(13):1530–40.

93. Bevelle CA, Handy GA, Segal RA, Cordell GA, Farnsworth NR. Isocentratherin, a cytotoxic germacranolide from Centratherum punctatum (compositae). Phytochemistry. 1981;20(7):1605–7.

94. Krithika KS, Shabir AG, Arun KP, Brindha P, Vijayalakshmi M. In silico and in vitro evaluation of the anti-inflammatory potential of Centratherum punctatum cass-A. J Biomol Struct Dyn. 2017;35(4):765–80. doi: https://doi.org/10.1080/07391102.2016.1160840

95. Chukwujekwu JC, Ndhlala AR, De Kock CA, Smith PJ, Van Staden J. Antiplasmodial, HIV-1 reverse transcriptase inhibitory and cytotoxicity properties of Centratherum punctatum Cass. and its fractions. S Afr J Bot. 2014;90:17–9. doi: https://doi.org/10.1016/j.sajb.2013.10.001

96. Aggarwal S, Bhadana K, Singh B, Rawat M. Cinnamomum zeylanicum extract and its bioactive component cinnamaldehyde show anti-tumor effects via inhibition of multiple cellular pathways. Front Pharmacol. 2022;13:918479. doi: https://doi.org/10.3389/fphar.2022.918479

97. Dutta A, Chakraborty A. Cinnamon in anticancer armamentarium: a molecular approach. J Toxicol. 2018;2018:8978731. doi: https://doi.org/10.1155/2018/8978731

98. Kubatka P, Kello M, Kajo K, Samec M, Jasek K, Vybohova D, et al. Chemopreventive and therapeutic efficacy of Cinnamomum zeylanicum L. bark in experimental breast carcinoma: mechanistic in vivo and in vitro analyses. Molecules. 2020;25(6):1399. doi: https://doi.org/10.3390/molecules25061399

99. Sen Z, Zhan XK, Jing JIN, Yi Z, Wanqi Z. Chemosensitizing activities of cyclotides from Clitoria ternatea in paclitaxel-resistant lung cancer cells. Oncol Lett. 2013;5(1):641–4. doi: https://doi.org/10.3892/ol.2012.1042

100. Alshaya DS, Awad NS. Antiproliferative effect of Clitoria ternatea ethanolic extract against colorectal, breast, and medullary thyroid cancer cell lines. Seperations. 2022;9(11):331. doi: https://doi.org/10.3390/separations9110331

101. Oluwole OB, Obode OC, Elemo GN, Ibekwe D, Adesioye T, Raji FA, et al. Anti-inflammatory and anti-cancer properties of selected green leafy vegetables—a review. J Nutr Food Process. 2021;1(11):1–5. doi: https://doi.org/10.31579/2637-8914/070

102. Tosoc JPS, Nuñeza OM, Sudha T, Darwish NHE, Mousa SA. Anticancer effects of the Corchorus olitorius aqueous extract and its bioactive compounds on human cancer cell lines. Molecules. 2021;26(19):6033. doi: https://doi.org/10.3390/molecules26196033

103. Soykut G, Becer E, Calis I, Yucecan S, Vatansever S. Apoptotic effects of Corchorus olitorius L. leaf extracts in colon adenocarcinoma cell lines. Prog Nutr. 2018;20(4):689–98. doi: https://doi.org/10.23751/pn. v20i4.6892

104. Ashalatha, Gopinath SM. Phytochemical profiling of Coscinium fenestratum (Gaertn.) Colebr Cultivar, by liquid chromatography-mass spectrometry. Int J Curr Microbiol App Sci. 2019;8(1):3194–201.

105. Tungpradit R, Sinchaikul S, Phutrakul S, Wongkham W, Chen ST. Anti-cancer compound screening and isolation: Coscinium fenestratum, Tinospora crispa and Tinospora cordifolia. Chiang Mai J Sci. 2010;37(3):476–88.

106. Potikanond S, Chiranthanut N, Khonsung P, Teekachunhatean S. Cytotoxic effect of Coscinium fenestratum on human head and neck cancer cell line (HN31). Evid Based Complement Alternat Med. 2015;2015:701939. doi: https://doi.org/10.1155/2015/701939

107. Kumar D, Sharma S, Kumar S. Botanical description, phytochemistry, traditional uses, and pharmacology of Crataeva nurvala Buch. Ham.: an updated review. Futur J Pharm Sci. 2020;6:113. doi: https://doi.org/10.1186/s43094-020-00106-1

108. Gharge S, Hiremath SI, Kagawad P, Jivaje K, Palled MS, Suryawanshi SS. Curcuma zedoaria Rosc (Zingiberaceae): a review on its chemical, pharmacological and biological activities. Futur J Pharm Sci. 2021;7:166. doi: https://doi.org/10.1186/s43094-021-00316-1

109. Puspita SD, Yulianti R, Mozartha M. The effectiveness of white turmeric (Curcuma zedoaria) extracts as root canal irrigation alternative material on Streptococcus viridans. J Phys Conf Ser. 2019;1246:012040. doi: https://doi.org/10.1088/1742-6596/1246/1/012040

110. Mishra J, Bhardwaj A, Misra K. Curcuma sp.: the nature’s souvenir for high-altitude illness. In: Misra K, Sharma P, Bhardwaj A, editors. Management of high-altitude pathophysiology. Cambridge, MA: Academic Press; 2018. pp. 153–69.

111. Venkatadri B, Shanparvish E, Rameshkumar MR, Arasu MV, Al-Dhabi NA, Ponnusamy VK, et al. green synthesis of silver nanoparticles using aqueous rhizome extract of Zingiber officinale and Curcuma longa: in-vitro anti-cancer potential on human colon carcinoma HT-29 cells. Saudi J Biol Sci. 2020;27(11):2980–6. doi: https://doi.org/10.1016/j.sjbs.2020.09.021

112. Poompavai S, Gowri Sree V. Anti-proliferative efficiency of pulsed electric field treated Curcuma longa (Turmeric) extracts on breast cancer cell lines. IETE J Res. 2020;68(6):4555–69. doi: https://doi.org/10.1080/03772063.2020.1799873

113. Tong R, Wu X, Liu Y, Liu Y, Zhou J, Jiang X, et al. Curcumin-induced DNA demethylation in human gastric cancer cells is mediated by the DNA-damage response pathway. Oxid Med Cell Longev. 2020;2020:2543504. doi: https://doi.org/10.1155/2020/2543504

114. Liu P, Ying Q, Liu H, Yu SQ, Bu LP, Shao L, et al. Curcumin enhances anti-cancer efficacy of either gemcitabine or docetaxel on pancreatic cancer cells. Oncol Rep. 2020;44(4):1393–402. doi: https://doi.org/10.3892/or.2020.7713

115. Suja S, Varkey IC. Medicinal and pharmacological values of Cyanthillium cinereum (Poovamkurunilla) extracts: investigating the antibacterial and anti-cancer activity in Mcf-7 breast. Int J Res Anal Rev. 2019;6(1):412–5.

116. Ariya SS, Baby J. Anticancer effect of phytochemicals from Cyanthillium cinereum against cancer target matrix metallopeptidase. Int J Adv Res Eng Technol. 2020;11(4):204–17.

117. Bhagya N, Chandrashekar KR, Prabhu A, Rekha PD. Tetrandrine isolated from Cyclea peltata induces cytotoxicity and apoptosis through ROS and caspase pathways in breast and pancreatic cancer cells. In Vitro Cell Dev Biol Anim. 2019;55(5):331–40. doi: https://doi.org/10.1007/s11626-019-00332-9

118. Jayaraman S, Variyar EJ. Immunomodulatory, anticancer and antioxidant activities of Cyclea peltata (Lam.) Hook. F. and Thomson. Int J Pharm Sci. 2019;11(10):40–6.

119. Yamuna CV, Arthi I, Rajagopal PL, Sajith Kumar PN, Lithashabin PK, Anjana AK. Cyclea peltata (Lam.) Hook.F. & Thomson: a pharmacological review. World J Pharm Res. 2020;9(4):265–73. doi: https://doi.org/10.20959/wjpr20204-17020

120. Trang DT, Hoang TKV, Nguyen TTM, Van Cuong P, Dang NH, Dang HD, et al. Essential oils of Lemongrass (Cymbopogon citratus Stapf) induces apoptosis and cell cycle arrest in A549 lung cancer cells. Biomed Res Int. 2020;2020:5924856. doi: https://doi.org/10.1155/2020/5924856

121. Alwaili MA. Protective effects of lemongrass (Cymbopogon citratus STAPF) extract mediated mitochondrial fission and glucose uptake inhibition in SW1417. Food Sci Technol. 2023;43:e94522. doi: https://doi.org/10.1590/fst.94522

122. Pan D, Machado L, Bica CG, Machado AK, Steffani JA, Cadoná FC. In vitro evaluation of antioxidant and anticancer activity of Lemongrass (Cymbopogon citratus (D.C.) Stapf). Nutr Cancer. 2022;74(4):1474–88. doi: https://doi.org/10.1080/01635581.2021.1952456

123. Rojas-Armas JP, Arroyo-Acevedo JL, Palomino-Pacheco M, Herrera-Calderón O, Ortiz-Sánchez JM, Rojas-Armas A, et al. The essential oil of Cymbopogon citratus stapt and carvacrol: an approach of the antitumor effect on 7,12-dimethylbenz-[α]-anthracene (DMBA)-induced breast cancer in female rats. Molecules. 2020;25(14):3284. doi: https://doi.org/10.3390/molecules25143284

124. Mukarram M, Choudhary S, Khan MA, Poltronieri P, Khan MMA, Ali J, et al. Lemongrass essential oil components with antimicrobial and anticancer activities. Antioxidants (Basel). 2021;11(1):20. doi: https://doi.org/10.3390/antiox11010020

125. Bezzera JJL, Pinheiro AAV. Traditional uses, phytochemistry, and anticancer potential of Cyperus rotundus L. (Cyperaceae): a systematic review. S Afr J Bot. 2022;144:175–86. doi: https://doi.org/10.1016/j.sajb.2021.08.010

126. Nafisah W, Pinanti HN, Christina YI, Rifa’i M, Djati MS. Computational biological activity and pharmacological properties analysis for anticancer Cyperus rotundus bioactive compounds. AIP Conf Proc. 2021;2353:030118. doi: https://doi.org/10.1063/5.0052746

127. Simorangkir D, Masfria M, Harahap U, Satria D. Activity of anticancer n-hexane fraction of Cyperus rotundus L. rhizome against breast cancer MCF-7 cell line. Open Access Maced J Med Sci. 2019;7(22):3904–6. doi: https://doi.org/10.3889/oamjms.2019.530

128. Lin CH, Peng SF, Chueh FS, Cheng ZY, Kuo CL, Chung JG. The ethanol crude extraction of Cyperus rotundus regulates apoptosis-associated gene expression in HeLa human cervical carcinoma cells in vitro. Anticancer Res. 2019;39(7):3697–709. doi: https://doi.org/10.21873/anticanres.13518

129. Mannarreddy P, Denis M, Munireddy D, Pandurangan R, Thangavelu KP, Venkatesan K. Cytotoxic effect of Cyperus rotundus rhizome extract on human cancer cell lines. Biomed Pharmacother. 2017;95:1375–87. doi: https://doi.org/10.1016/j.biopha.2017.09.051

130. Karim R, Begum MM, Jui Y, Islam T, Billah M, Arafat Y, et al. In-vitro cytotoxic and anti-Vibrio cholerae activities of alcoholic extracts of Desmodium triflorum (L.) whole plant and Terminalia citrina (Roxb.) fruits. Clin. Phytosci. 2021;7:36. doi: https://doi.org/10.1186/s40816-021-00272-6

131. Dhanabal SP, Dhamodaran P, Chaitnya NL, Duraiswamy B. Ethnopharmacological and phytochemical profile of three potent Desmodium species: Desmodium gangeticum (L.) DC, Desmodium triflorum Linn and Desmodium triquetrum Linn. J Chem Pharm Res. 2016;8(7):91–7.

132. Lai SC, Ho YL, Huang SC, Huang TH, Lai ZR, Wu CR, et al. Antioxidant and antiproliferative activities of Desmodium triflorum (L.) DC. Am J Chin Med. 2010;38(2):329–42. doi: https://doi.org/10.1142/S0192415X10007889

133. Alzandi AA, Taher EA, Al-Sagheer NA, Al-Khulaidi AW, Azizi M, Naguib DM. Phytochemical components, antioxidant and anticancer activity of 18 major medicinal plants in Albaha region, Saudi Arabia. Biocatal Agric Biotechnol. 2021;34:102020. doi: https://doi.org/10.1016/j.bcab.2021.102020

134. Malik FH, Haq I, Fatima H, Ahmad M, Naz I, Mirza B, et al. Bioprospecting Dodonaea viscosa Jacq.; a traditional medicinal plant for antioxidant, cytotoxic, antidiabetic and antimicrobial potential. Arab J Chem. 2022;15(3):103688. doi: https://doi.org/10.1016/j.arabjc.2022.103688

135. Kaigongi MM, Lukhoba CW, Ochieng’ PJ, Taylor M, Yenesew A, Makunga NP. LC-MS-based metabolomics for the chemosystematics of Kenyan Dodonaea viscosa Jacq (Sapindaceae) populations. Molecules. 2020;25(18):4130. doi: https://doi.org/10.3390/molecules25184130

136. Alghamdi MD, Nazreen S, Ali NM, Amna T. ZnO nanocomposites of Juniperus procera and Dodonaea viscosa extracts as antiproliferative and antimicrobial agents. Nanomaterials (Basel). 2022;12(4):664. doi: https://doi.org/10.3390/nano12040664

137. Christina YI, Rifa’i M, Widodo N, Djati MS. The combination of Elephantopus scaber and Phaleria macrocarpa leaves extract promotes anticancer activity via downregulation of ER-α, Nrf2 and PI3K/AKT/mTOR pathway. J Ayurveda Integr Med. 2022;13(4):100674. doi: https://doi.org/10.1016/j.jaim.2022.100674

138. Silalahi M. Utilization of Elephantopus scaber as traditional medicine and its bioactivity. GSC Biol Pharm Sci. 2021;15(1):112–8. doi: https://doi.org/10.30574/gscbps.2021.15.1.0106

139. Jasmine R, Abarna N, Verghese S. Anticancer potential of Elephantopus scaber L. leaves against MCF-7 cell lines. Asian J Adv Med Sci. 2021;3(4):94–8.

140. Ho WY, Liew SS, Yeap SK, Alitheen NB. Synergistic cytotoxicity between Elephantopus scaber and tamoxifen on MCF-7-derived multicellular tumor spheroid. Evid-Based Complement Altern Med. 2021;2021:6355236. doi: https://doi.org/10.1155/2021/6355236

141. Kabeer FA, Rajalekshmi DS, Nair MS, Prathapan R. In vitro and in vivo antitumor activity of deoxyelephantopin from a potential medicinal plant Elephantopus scaber against Ehrlich ascites carcinoma. Biocatal Agric Biotechnol. 2019;19:101106. doi: https://doi.org/10.1016/j.bcab.2019.101106

142. Beeran AA, Maliyakkal N, Rao CM, Udupa N. The enriched fraction of Elephantopus scaber triggers apoptosis and inhibits multi-drug resistance transporters in human epithelial cancer cells. Pharmacogn Mag. 2015;11(42):257–68. doi: https://doi.org/10.4103/0973-1296.153077

143. Almeer RS, Alnasser M, Aljarba N, AlBasher GI. Effects of Green cardamom (Elettaria cardamomum Maton) and its combination with cyclophosphamide on Ehrlich solid tumors. BMC Complement Med. Ther. 2021;21(1):133. doi: https://doi.org/10.1186/s12906-021-03305-2

144. Qiblawi S, Kausar MA, Shahid SMA, Saeed M, Alazzeh AY. Therapeutic interventions of Cardamom in cancer and other human diseases. J Pharm Res Int. 2020;32(22):60087.

145. Vutakuri N, Somara S. Natural and herbal medicine for breast cancer using Elettaria cardamomum (L.) Maton. Int J Herb Med. 2018;6(2):91–6.

146. Elguindy NM, Yacout GA, El Azab EF, Maghraby HK. Chemoprotective effect of Elettaria cardamomum against chemically induced hepatocellular carcinoma in rats by inhibiting NF-κB, oxidative stress, and activity of ornithine decarboxylase. South African J Bot. 2016;105:251–8. doi: https://doi.org/10.1016/j.sajb.2016.04.001

147. Arbade GK, Kumar V, Tripathi V, Menon A, Bose S, Patro TU. Emblica officinalis-loaded poly(?-caprolactone) electrospun nanofiber scaffold as potential antibacterial and anticancer deployable patch. New J Chem. 2019;43(19):7427–40. doi: https://doi.org/10.1039/c9nj01137d

148. Thoidingjam S, Tiku AB. Therapeutic efficacy of Phyllanthus emblica-coated iron oxide nanoparticles in A549 lung cancer cell line. Nanomedicine. 2019;14(17):2355–71. doi: https://doi.org/10.2217/nnm-2019-0111

149. Baby B, Antony P, Vijayan R. Antioxidant and anticancer properties of berries. Crit Rev Food Sci Nutr. 2018;58(15):2491–507. doi: https://doi.org/10.1080/10408398.2017.1329198

150. Chaitanya MV, Suresh P. The neglected anticancer phytoceutical treasures from the Nilgiris biosphere: a short review. J Pharm Res Int. 2018;22(1):1–13. doi: https://doi.org/10.9734/JPRI/2018/40529

151. Rajalakshmi P, Sumathi, Pugalenthi MR. Antioxidant activity of Erigeron karvinskianus DC. and Ageratina adenophora (Spreng.) King (leaves). Int J Food Sci Nutr. 2016;1:64–8.

152. Sulaiman CT, Deepak M, Praveen TK, Lijini KR, Salman M, Satheesh N, et al. Metabolite profiling and anti-cancer activity of two medicinally important Euphorbia species. Med Omi. 2023;7:100018. doi: https://doi.org/10.1016/j.meomic.2022.100018

153. Linga Raju K, Naika HR, Nagabhushana H, Nagaraju G. Euphorbia heterophylla (L.) mediated fabrication of ZnO NPs: characterization and evaluation of antibacterial and anticancer properties. Biocatal Agric Biotechnol. 2019;18:100894. doi: https://doi.org/10.1016/j.bcab.2018.10.011

154. Aleksandrov M, Maksimova V, Koleva Gudeva L. Review of the anticancer and cytotoxic activity of some species from genus euphorbia. Agric Conspec Sci. 2019;84(1):1–5.

155. Manikandarajan PA, Sathish M, Suresh R, Suresh AJ. Isolation, characterization, docking and anti-cancer activity of quercetin from leaves of Euphorbia heterophylla Linn. Int J Pharm Sci Res. 2018;9(1):197–202. doi: https://doi.org/10.13040/IJPSR.0975-8232.9(1).197-02

156. Yusuf H, Satria D, Suryawati S, Fahriani M. Combination therapy of eurycomanone and doxorubicin as anticancer on T47D and MCF- 7 cell lines. Syst Rev Pharm. 2020;11(10):335–41. doi: https://doi.org/10.31838/srp.2020.10.55

157. Moses LB, Abu Bakar MF, Mamat H, Aziz ZA. Unfermented freeze-dried leaf extract of Tongkat Ali (Eurycoma longifolia Jack.) induced cytotoxicity and apoptosis in MDA-MB-231 and MCF-7 breast cancer cell lines. Evid Based Complement Altern Med. 2021;2021:8811236. doi: https://doi.org/10.1155/2021/8811236

158. Rahman EY, Kusworini K, Ali M, Purnomo BB, Kania N. The cytotoxic effect of Eurycoma longifolia jack root extract on the prostate adenocarcinoma pc-3 cells through apoptosis enhancement. Open Access Maced J Med Sci. 2020;8(A):317–22. doi: https://doi.org/10.3889/oamjms.2020.4420

159. Rehman SU, Choe K, Yoo HH. Review on a traditional herbal medicine, Eurycoma longifolia Jack (Tongkat Ali): its traditional uses, chemistry, evidence-based pharmacology and toxicology. Molecules. 2016;21(3):331. doi: https://doi.org/10.3390/molecules21030331

160. Andueza N, Giner RM, Portillo MP. Nutraceutical, functional, and therapeutic properties of Garcinia cambogia: a review. Int J Food Prop. 2023;26(1):729–38. doi: https://doi.org/10.1080/10942912.2023.2178458

161. Baky MH, Fahmy H, Farag MA. Recent advances in Garcinia cambogia nutraceuticals in relation to its hydroxy citric acid level. A comprehensive review of its bioactive production, formulation, and analysis with future perspectives. ACS Omega. 2022;7(30):25948–57. doi: https://doi.org/10.1021/acsomega.2c02838

162. Cock IE, Gailot C, Shalom J. An examination of the antimicrobial and anticancer properties of Mangosteen pericarp extracts. Acta Hortic. 2015;1106:231–7. doi: https://doi.org/10.17660/ActaHortic.2015.1106.35

163. Aggarwal V, Tuli HS, Kaur J, Aggarwal D. Garcinol exhibits anti-neoplastic effects by targeting diverse oncogenic factors in tumor cells. Biomedicines. 2020;8(5):103. doi: https://doi.org/10.3390/biomedicines8050103

164. Wang J, Wang L, Ho CT, Zhang K, Liu Q, Zhao H. Garcinol from Garcinia indica downregulates cancer stem-like cell biomarker ALDH1A1 in nonsmall cell lung cancer A549 cells through DDIT3 activation. J Agric Food Chem. 2017;65(18):3675–83. doi: https://doi.org/10.1021/acs.jafc.7b00346

165. Ullah MF, Ahmad A. Critical dietary factors in cancer chemoprevention. Cham, Switzerland: Springer; 2015.

166. Zhang M, Lu Q, Hou H, Sun D, Chen M, Ning F, et al. Garcinol inhibits the proliferation of endometrial cancer cells by inducing cell cycle arrest. Oncol Rep. 2021;45(2):630–40. doi: https://doi.org/10.3892/or.2020.7900

167. Shylla A, Roy B. Phytochemical screening and toxicological assessment of crude extract of Aesculus assamica Griff. and Gaultheria fragrantissima Wall. in Swiss albino mice. Gorteria J. 2021;34(8):140–51. doi: https://doi.org/10.22159/ajpcr.2017.v10i1.15481

168. Yan-Ling X, Du XY, Yi-Rong L, Lu L. The complete chloroplast genome of Gaultheria fragrantissima Wall. (Ericaceae) from Yunnan, China, an aromatic medicinal plant in the wintergreens. Mitochondrial DNA B Resour. 2021;6(6):1761–2. doi: https://doi.org/10.1080/23802359

169. Narayanan DP, Rexliene MJ, Suresh S. Assessment of carrageenan-induced anti-inflammatory activity of Gaultheria fr agrantissima Wall. and Byttneria herbaceae Roxb. collected from Idukki district. Int J Pharmacogn Phytochem Res. 2020;12(3):138–2. doi: https://doi.org/10.25258/phyto.12.3.3

170. Kumar M, Sarma P, Dkhar MS, Kayang H, Raghuvanshi R, Dubey NK. Assessment of chemically characterised Gaultheria fragrantissima Wall. essential oil and its major component as safe plant-based preservative for millets against fungal, aflatoxin contamination and lipid peroxidation during storage. J Food Sci Technol. 2018;55(1):111–9. doi: https://doi.org/10.1007/s13197-017-2842-y

171. Pandey BP, Thapa R, Upreti A. Chemical composition, antioxidant and antibacterial activities of essential oil and methanol extract of Artemisia vulgaris and Gaultheria fragrantissima collected from Nepal. Asian Pac J Trop Med. 2017;10(10):952–9. doi: https://doi.org/10.1016/j.apjtm.2017.09.005

172. Goel B, Dey B, Chatterjee E, Tripathi N, Bhardwaj N, Kumar S, et al. Antiproliferative potential of gloriosine: a lead for anticancer drug development. ACS Omega. 2022;7(33):28994–9001. doi: https://doi.org/10.1021/acsomega.2c02688

173. Ionkova I, Shkondrov A, Zarev Y, Kozuharova E, Krasteva I. Anticancer secondary metabolites: from ethnopharmacology and identification in native complexes to biotechnological studies in species of genus Astragalus L. and Gloriosa L. Curr Issues Mol Biol. 2022;44(9):3884–904. doi: https://doi.org/10.3390/cimb44090267

174. Pandey DK, Kaur P, Kumar V, Banik RM, Malik T, Dey A. Screening the elite chemotypes of Gloriosa superba L. in India for the production of anticancer colchicine: simultaneous microwave-assisted extraction and HPTLC studies. BMC Plant Biol. 2021;21(1):77. doi: https://doi.org/10.1186/s12870-021-02843-8

175. Balkrishna A, Das SK, Pokhrel S, Joshi A, Laxmi, Verma S, et al. Colchicine: isolation, LC–MS QT of screening, and anticancer activity study of Gloriosa superba seeds. Molecules. 2019;24(2772):2772. doi: https://doi.org/10.3390/molecules24152772

176. Teja PK, Patel P, Bhavsar D, Bindusri C, Jadhav K, Chauthe SK. Traditional uses, phytochemistry, pharmacology, toxicology and formulation aspects of Glycosmis species: a systematic review. Phytochemistry. 2021;190:112865. doi: https://doi.org/10.1016/j.phytochem.2021.112865

177. Amutha S, Sridhar S. Green synthesis of magnetic iron oxide nanoparticle using leaves of Glycosmis. J Innov Pharm Biol Sci. 2018;5(2):22–6.

178. Shoja MH, Reddy ND, Nayak PG, Biswas S, Srinivasan KK, Rao CM. In vitro mechanistic and in vivo anti-tumor studies of Glycosmis pentaphylla (Retz.) DC against breast cancer. J Ethnopharmacol. 2016;186:159–68. doi: https://doi.org/10.1016/j.jep.2016.04.002

179. Ghosh AR, Alsayari A, Habib AH, Wahab S, Nadig APR, Rafeeq MM, et al. Anti-tumor potential of Gymnema sylvestre saponin rich fraction on in vitro breast cancer cell lines and in vivo tumor-bearing mouse models. Antioxidants (Basel). 2023;12(1):134. doi: https://doi.org/10.3390/antiox12010134

180. Packialakshmi B, Raga Sowndriya S. Anti-cancer effect of Gymnema sylvestre leaf extract against MG63, human osteosarcoma cell line—an in vitro analysis. Int J Curr Res Rev. 2019;11(11):18–24. doi: https://doi.org/10.31782/IJCRR.2019.11114

181. Chakraborty D, Ghosh S, Bishayee K, Mukherjee A, Sikdar S, Khuda-Bukhsh AR. Antihyperglycemic drug Gymnema sylvestre also shows anticancer potentials in human melanoma A375 cells via reactive oxygen species generation and mitochondria-dependent caspase pathway. Integr Cancer Ther. 2013;12(5):433–41. doi: https://doi.org/10.1177/1534735413485419

182. Yasukawa K, Okuda S, Nobushi Y. Inhibitory effects of gymnema (Gymnema sylvestre) leaves on tumour promotion in two-stage mouse skin carcinogenesis. Evid Based Complement Altern Med. 2014;2014:328684. doi: https://doi.org/10.1155/2014/328684

183. Arunachalam KD, Arun LB, Annamalai SK, Arunachalam AM. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles. Int J Nanomed. 2014;10:31–41. doi: https://doi.org/10.2147/IJN.S71182

184. Tummala PK, Nannapaneni S, Durvasula SP, Chadalavada S, Venigandla S, Vemuru S, et al. Evaluation of Hemidesmus indicus plant compounds for anti-cancer studies—an in-silico approach. J Pharm Res Int. 2021;33:64–9. doi: https://doi.org/10.9734/jpri/2021/v33i26a31472

185. Nandy S, Mukherjee A, Pandey DK, Ray P, Dey A. Indian Sarsaparilla (Hemidesmus indicus): recent progress in research on ethnobotany, phytochemistry and pharmacology. J Ethnopharmacol. 2020;254:112609. doi: https://doi.org/10.1016/j.jep.2020.112609

186. Turrini E, Catanzaro E, Ferruzzi L, Guerrini A, Tacchini M, Sacchetti G, et al. Hemidesmus indicus induces apoptosis via proteasome inhibition and generation of reactive oxygen species. Sci Rep. 2019;9(1):7199. doi: https://doi.org/10.1038/s41598-019-43609-5

187. Joshi A, Lad H, Sharma H, Bhatnagar D. Evaluation of phytochemical composition and antioxidative, hypoglycaemic and hypolipidaemic properties of methanolic extract of Hemidesmus indicus roots in streptozotocin-induced diabetic mice. Clin Phytosci. 2018;4:7. doi: https://doi.org/10.1186/s40816-018-0064-0

188. Statti G, Marrelli M, Conforti F, Spagnoletti A, Tacchini M, Fimognari C, et al. Inhibition of cancer cell proliferation and antiradical effects of decoction, hydroalcoholic extract, and principal constituents of Hemidesmus indicus R. Br. Phyther Res. 2015;29(6):857–63. doi: https://doi.org/10.1002/ptr.5322

189. ?liwi?ski T, Kowalczyk T, Sitarek P, Kolanowska M. Orchidaceae-derived anticancer agents: a review. Cancers (Basel). 2022;14(3):754. doi: https://doi.org/10.3390/cancers14030754

190. Satish B, Vishwanatha D. Screening for cytotoxic activity of Habenaria longicorniculata J graham tubers- an in-vitro study. J Phytopharm. 2020;9(5):367–70. doi: https://doi.org/10.31254/phyto.2020.9513

191. Shana KM, Vishnupriya VV, Fahmeeda PP, Prajna PP, Reshmi R, Jothi ET. A review on the phytochemistry and pharmacology of Hemigraphis colorata. World J Biol Pharm Heal Sci. 2022;12(2):105–9. doi: https://doi.org/10.30574/wjbphs.2022.12.2.0195

192. Hallier H, Mathew F. Phytochemical screening of Hemigraphis colorata (Blume) H.G. Hallier. J Pharmacogn Phytochem. 2021;10(6):360–3.

193. Sasidharan S, Pottail L. Anti-bacterial and skin-cancer activity of AuNP, rGO and AuNP-rGO composite using Hemigraphis alternata (Burm.F.) T. Anderson. Biocatal Agric Biotechnol. 2020;25:101596. doi: https://doi.org/10.1016/j.bcab.2020.101596

194. Zahara K, Panda SK, Swain SS, Luyten W. Metabolic diversity and therapeutic potential of Holarrhena pubescens: an important ethnomedicinal plant. Biomolecules. 2020;10(9):1341. doi: https://doi.org/10.3390/biom10091341

195. Cheenpracha S, Boapun P, Limtharakul Née Ritthiwigrom T, Laphookhieo S, Pyne SG. Antimalarial and cytotoxic activities of pregnene-type steroidal alkaloids from Holarrhena pubescens roots. Nat Prod Res. 2019;33(6):782–8. doi: https://doi.org/10.1080/14786419.2017.1408108

196. Yoon H, Park J, Park KK, Kim J, Bandara NC, Bandara BMR, et al. Methanol extract of Holarrhena antidysenterica inhibits the growth of human oral squamous cell carcinoma cells and osteoclastogenesis of bone marrow macrophages. Evid Based Complement Alternat Med. 2017;2017:7272947. doi: https://doi.org/10.1155/2017/7272947

197. Yende A, Rama Bhat P, Zainab A, Acharya S, Padyana S. Evaluation of antioxidant and antimicrobial activities of Holigarna arnottiana Hook. f. Photon. 2013;139:278–88.

198. Manilal A, Idhayadhulla A. Potential in vitro antimicrobial efficacy of Holigarna arnottiana (Hook F). Asian Pac J Trop Biomed. 2014;4(1):25–9. doi: https://doi.org/10.1016/S2221-1691(14)60203-3

199. Ravi A, Saj OP. Antioxidant and cytotoxic potential of the plant Holigarna arnottiana hook.f. bark ethanolic extract. World J Pharm Res. 2013;2(5):1685–703.

200. Du Q, Chan LY, Gilding EK, Henriques ST, Condon ND, Ravipati AS, et al. Discovery and mechanistic studies of cytotoxic cyclotides from the medicinal herb Hybanthus enneaspermus. J Biol Chem. 2020;295(32):10911–25. doi: https://doi.org/10.1074/jbc.ra120.012627

201. Murugan M, Kamaraj M, Naidu T. Green synthesis of CeO2 nanoparticles using Hybanthus enneaspermus and their cytotoxic effects against human breast cancer cell line (MCF-7). J Emerg Technol Innov Res. 2018;5(11):316–5. doi: https://doi.org/10.15297/JETIR191184

202. Jaikumar K, Sheik Noor Mohamed M, Marimuthu S, Anantha Padmanabhan S, Anand D, Saravanan P. In vitro anticancer activity of ethanolic leaf extract of Acampe praemorsa (Roxb.). Indo Am J Pharm Res. 2018;7(7):1020–5. doi: https://doi.org/10.5281/zenodo.1318534

203. Beaula Stary BL, Uma Devi S, Johnsi Cristobel G, Beena L. Phytochemical screening of Hybanthus enneaspermus (Linn) F. Muell. Int J Innov Sci Eng Technol. 2008;1(5):111–22.

204. Kato K, Nagane M, Aihara N, Kamiie J, Miyanabe M, Hiraki S, et al. Lipid-soluble polyphenols from sweet potato exert antitumor activity and enhance chemosensitivity in breast cancer. J Clin Biochem Nutr. 2021;68(1):193–200. doi: https://doi.org/10.3164/jcbn.20-73

205. Silva-Correa CR, Vargas JH, Torre VEVL, Calderon-Pena AA, Gonzalez-Siccha AD, Aspajo-Villalaz CL, et al. Potential anticancer activity of bioactive compounds from Ipomoea batatas. Pharmacogn J. 2022;14(3):650–9. doi: https://doi.org/10.5530/pj.2022.14.84

206. Lin HH, Lin KH, Wu KF, Chen YC. Identification of Ipomoea batatas anti-cancer peptide (IbACP)-responsive genes in sweet potato leaves. Plant Sci. 2021;305:110849. doi: https://doi.org/10.1016/j.plantsci.2021.110849

207. Budiman MR, Wiraswati HL, Rezano A. Purple sweet potato phytochemicals: potential chemo-preventive and anticancer activities. Open Access Maced J Med Sci. 2021;9(F):288–98. doi: https://doi.org/10.3889/oamjms.2021.6784

208. Sun Y, Pan Z, Yang C, Jia Z, Guo X. Comparative assessment of phenolic profiles, cellular antioxidant and antiproliferative activities in ten varieties of sweet potato (Ipomoea batatas) storage roots. Molecules. 2019;24(24):4476. doi: https://doi.org/10.3390/molecules24244476

209. Das G, Patra JK, Basavegowda N, Vishnuprasad CN, Shin HS. Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.) lam. Int J Nanomed. 2019;14:4741–54. doi: https://doi.org/10.2147/IJN.S210517

210. Kang HG, Jeong SH, Cho JH. Antimutagenic and anticarcinogenic effect of methanol extracts of sweet potato (Ipomea batata) leaves. Toxicol Res. 2010;26(1):29–35. doi: https://doi.org/10.5487/TR.2010.26.1.029

211. Ashraf VKM, Kalaichelvan VK, Venkatachalam VV, Ragunathan R. In vitro anticancer potential of aerial parts of Ipomoea horsfalliae hook in different human cancer cell lines. Ind Crops Prod. 2020;155:112746. doi: https://doi.org/10.1016/j.indcrop.2020.112746

212. Babu K, Dharishini P, Austin A. Studies on anatomy and phytochemical analysis of Ipomoea pes-tigridis L. J Pharmacogn Phytochem. 2018;7(1):791–4.

213. Venkateshan N, Subramaniyam M, Santhanakumar M. Review of Ipomoea pes-tigridis L.: ethnobotanical characteristics, pharmacological activities. Int J Curr Pharm Res. 2018;10(6):1–4. doi: https://doi.org/10.22159/ijcpr.2018v10i6.30968

214. Begum SS, Aruna A, Sivakumar T, Premanand C. In vitro cytotoxic activity on ethanolic extracts of leaves of Ipomoea pes-tigridis (Convolulaceae) against liver Hepg2 cell line. Int J Ayu Her Med. 2015;5(3):1778–84.

215. Carneiro MRB, Sallum LO, Martins JLR, Peixoto JC, Napolitano HB, Rosseto LP. Overview of the Justicia genus: insights into its chemical diversity and biological potential. Molecules. 2023;28(3):1190. doi: https://doi.org/10.3390/molecules28031190

216. Kumar S, Singh R, Dutta D, Chandel S, Bhattacharya A, Ravichandiran V, et al. In vitro anticancer activity of methanolic extract of Justicia adhatoda leaves with special emphasis on human breast cancer cell line. Molecules. 2022;27(23):8222. doi: https://doi.org/10.3390/molecules27238222

217. Sudevan S, Parasivam R, Sundar S, Velauthan H, Ramasamy V. Investigation of anti-inflammatory and anti-cancer activity of Justicia adathoda metabolites. Pak J Pharm Sci. 2019;32(4):1555–61.

218. Jiju V. Assessment of in vivo anticancer activity of Justicia adathoda using Dal cell lines. East Afr J Med Sci. 2019;2(7):438–42. doi: https://doi.org/10.36349/easms. 2019.v02i0

219. Mangai AS. A cytotoxic approach of Justica gendarussa Burm.F against human cancer cell lines. Int Res J Pharm. 2018;8(12):34–7. doi: https://doi.org/10.7897/2230-8407.0812247

220. Chandra S, Lo D. A review on the bioactivities of Justicia gendarussa. IOP Conf Ser Earth Environ Sci. 2021;794(1):012137. doi: https://doi.org/10.1088/1755-1315/794/1/012137

221. Ayob Z, Mohd Bohari SP, Abd Samad A, Jamil S. Cytotoxic activities against breast cancer cells of local Justicia gendarussa crude extracts. Evid Based Complement Alternat Med. 2014;2014:732980. doi: https://doi.org/10.1155/2014/732980

222. Joseph L, Ranjani JM, Pai KSR, Srinivasan KK. Promising anticancer activities of Justicia simplex D. Don. in cellular and animal models. J Ethnopharmacol. 2017;199:231–9. doi: https://doi.org/10.1016/j.jep.2017.01.046

223. Eswari MG, Rathi RL, Harini J, Aruna R. Phytochemical screening of Justicia simplex D. Don a valuable medicinal plant extract against dental pathogens. Int Lett Nat Sci. 2014;21:10–21. doi: https://doi.org/10.18052/www.scipress.com/ilns.21.10

224. Ravi L, Sreenivas BKA, Kumari GRS, Archana O. Anticancer cytotoxicity and antifungal abilities of green-synthesized cobalt hydroxide (Co (OH)2) nanoparticles using Lantana camara L. Beni-Suef Univ J Basic Appl Sci. 2022;11:124. doi: https://doi.org/10.1186/s43088-022-00304-1

225. Al-Hakeim HK, Al-Zabibah RS, Alzihari HF, Almensoori AK, Al-Zubaidi HA. Anticancer and antiangiogenic activities of alkaloids isolated from Lantana camara by adsorption on the magnetic nanoparticles. Karbala Int J Mod Sci. 2021;7(1):11. doi: https://doi.org/10.33640/2405-609X.2577

226. Bhaskar D, Mashrea DS, Amresh N, Sathyamurthy B. In vitro studies on the effect of Lantana camara Linn. in liver. Eur J Pharm Med Res. 2017;4(9):539–45.

227. Han EB, Chang BY, Jung YS, Kim SY. Lantana camara induces apoptosis by Bcl-2 family and caspases activation. Pathol Oncol Res. 2015;21(2):325–31. doi: https://doi.org/10.1007/s12253-014-9824-4

228. Radhakrishnan R, Liakath F, Khan A, Muthu A. Green synthesis of copper oxide nanoparticles mediated by aqueous leaf extracts of Leucas aspera and Morinda tinctoria. Lett Appl Nano Biosci. 2021;10(4):2706–14. doi: https://doi.org/10.33263/lianbs104.27062714

229. Madhu GC, Kannaiyan J, Paulraj B, Veeramani V. Anti-diabetic, anti-cancer activity and associated toxicity of Leucas aspera extract in Wistar albino rats. Int J Pharm Sci Drug Res. 2019;11(06):387–92. doi: https://doi.org/10.25004/ijpsdr.2019.110617

230. Mohan A, Nair SV, Lakshmanan VK. Leucas aspera nanomedicine shows superior toxicity and cell migration retarded in prostate cancer cells. Appl Biochem Biotechnol. 2017;181(4):1388–400. doi: https://doi.org/10.1007/s12010-016-2291-5

231. Rasul A, Riaz A, Wei W, Sarfraz I, Hassan M, Li J, et al. Mangifera indica extracts as novel PKM2 inhibitors for treatment of triple negative breast cancer. Biomed Re Int. 2021;2021:5514669. doi: https://doi.org/10.1155/2021/5514669

232. Yap KM, Sekar M, Seow LJ, Gan SH, Bonam SR, Mat Rani NNI, et al. Mangifera indica (Mango): a promising medicinal plant for breast cancer therapy and understanding its potential mechanisms of action. Breast Cancer (Dove Med Press). 2021;13:471–503. doi: https://doi.org/10.2147/BCTT.S316667

233. Morozkina SN, Nhung Vu TH, Generalova YE, Snetkov PP, Uspenskaya MV. Mangiferin as new potential anti-cancer agent and Mangiferin-integrated polymer systems-a novel research direction. Biomolecules. 2021;11(1):79. doi: https://doi.org/10.3390/biom11010079

234. Kumar M, Saurabh V, Tomar M, Hasan M, Changan S, Sasi M, et al. Mango (Mangifera indica L.) leaves: nutritional composition, phytochemical profile, and health-promoting bioactivities. Antioxidants. 2021;10(2):299. doi: https://doi.org/10.3390/antiox10020299

235. Kemegne GA, Bettache N, Nyegue MA, Etoa FX, Menut C. Cytotoxic activities of Psidium guajava and Mangifera indica plant extracts on human healthy skin fibroblasts and human hepatocellular carcinoma. Issues Biol Sci Pharma Res. 2020;8(4):58–64. doi: https://doi.org/10.15739/ibspr.20.007

236. Chaudhary MK, Misra A, Srivastava S. Comparative pharmacognostical studies of three Mahonia species: exploring the possibilities as a substitute for the Ayurvedic drug ‘Daruharidra’. Indian J Tradit Knowl. 2022;21(4):774–81. doi: https://doi.org/10.56042/ijtk. v21i4.42479

237. Tuzimski T, Petruczynik A, Kapro? B, Makuch-Kocka A, Szultka-M?y?ska M, Misiurek J, et al. Determination of cytotoxic activity of selected isoquinoline alkaloids and plant extracts obtained from various parts of Mahonia aquifolium collected in various vegetation seasons. Molecules. 2021;26(4):816. doi: https://doi.org/10.3390/molecules26040816

238. Latha R, Rajanathan TM, Khusro A, Chidambaranathan N, Agastian P, Nagarajan S. Anticancer activity of Mahonia leschenaultii methanolic root extract and berberine on Dalton’s ascitic lymphoma in mice. Asian Pac J Trop Med. 2019;12(6):264–71. doi: https://doi.org/10.4103/1995-7645.261273

239. He JM, Mu Q. The medicinal uses of the genus Mahonia in traditional Chinese medicine: an ethnopharmacological, phytochemical and pharmacological review. J Ethnopharmacol. 2015;175:668–3. doi: https://doi.org/10.1016/j.jep.2015.09.013

240. Lestari OA, Palupi NS, Setiyono A, Kusnandar F, Yuliana ND. In vitro antioxidant potential and phytochemical profiling of Melastoma malabathricum leaf water extract. Food Sci Technol Campinas. 2022;42:e92021. doi: https://doi.org/10.1590/fst.92021

241. Kumar V, Sachan R, Rahman M, Rub RA, Patel DK, Sharma K, et al. Chemopreventive effects of Melastoma malabathricum L. extract in mammary tumor model via inhibition of oxidative stress and inflammatory cytokines. Biomed Pharmacother. 2021;137:111298. doi: https://doi.org/10.1016/j.biopha.2021.111298

242. Idris A, Ahmad S. Melastoma malabathricum ethyl acetate fraction induces secondary necrosis in human breast and lung cancer cell lines. Pharmacogn Mag. 2017;13(Suppl 4):179–88. doi: https://doi.org/10.4103/pm.pm

243. Adib JC, Yunos N. Anti-cancer, antimicrobial, and antioxidative potentials of Mesua ferrea L. and its phytochemical constituents: a review. Asian J Pharmacogn. 2019;3(3):5–19.

244. Asif M, Shafaei A, Abdul Majid AS, Ezzat MO, Dahham SS, Ahamed MBK, et al. Mesua ferrea stem bark extract induces apoptosis and inhibits metastasis in human colorectal carcinoma HCT 116 cells, through modulation of multiple cells signalling pathways. Chin J Nat Med. 2017;15(7):505–14. doi: https://doi.org/10.1016/S1875-5364(17)30076-6

245. Rajendran K, Reddy EV, Khanna A. Anticancer effect of Mesua ferrea extracts on human pancreatic cancer cell line. Int J Life Sci Res. 2016;2(2):198–205.

246. Yesmin R, Das PK, Belal H, Aktar S, Siddika MA, Asha SY, et al. Anticancer potential of Michelia champaca Linn. bark against Ehrlich Ascites carcinoma (EAC) cells in Swiss albino mice. Nat Prod J. 2021;11(1):85–96. doi: http://dx.doi.org/10.2174/2210315509666191120105647

247. Sinha R, Varma R. Antioxidant activity in leaf extracts of Michelia champaca L. J Adv Pharm Educ Res. 2017;7(2):86–8.

248. Zuhrotun A, Suganda AG, Wirasutisna KR, Wibowo MS. Isolation of bioactive compound of Michelia champaca L. bark and its activity test using mechanism-based yeast bioassay. Asian J Pharm Clin Res. 2016;9(5):158–61. doi: https://doi.org/10.22159/ajpcr. 2016.v9i5.12856

249. Ginting B, Mustanir, Nurdin, Maulidna, Murniana, Safrina. Evaluation of antioxidant and anticancer activity of Myristica fragrans houtt. bark. Pharmacogn J. 2021;13(3):780–6. doi: 10.5530/pj.2021.13.99

250. Ginting B, Saidi N, Murniana, Mustanir, Maulidna, Simanjuntak P. Lignan compound isolated from n-hexane extract Myristica fragrans Houtt root as antioxidant and antitumor activities against MCF-7 cell lines data. Data Brief. 2020;31:105997. doi: https://doi.org/10.1016/j.dib.2020.105997

251. Le TV, Nguyen PH, Choi HS, Yang J, Kang KW, Ahn S, et al. Diarylbutane-type lignans from Myristica fragrans (Nutmeg) show the cytotoxicity against breast cancer cells through activation of AMP-activated protein kinase. Nat Prod Sci. 2017;23(1):21–8. doi: https://doi.org/10.20307/nps.2017.23.1.21

252. Rengasamy G, Venkataraman A, Veeraraghavan VP, Jainu M. Cytotoxic and apoptotic potential of Myristica fragrans Houtt. (mace) extract on human oral epidermal carcinoma KB cell lines. Braz J Pharm Sci. 2018;54(3):e18028. doi: https://doi.org/10.1590/s2175-97902018000318028

253. Prakash E, Gupta DK. Cytotoxic activity of ethanolic extract of Myristica fragrans (Houtt) against seven human cancer cell lines. Univers J Food Nutr Sci. 2013;1(1):1–3. doi: https://doi.org/10.13189/ujfns.2013.010101

254. Vallinayagam S, Rajendran K, Sekar V. Pro-apoptotic property of phytocompounds from Naringi crenulata in HER2+ breast cancer cells in vitro. Biotechnol Equip. 2021;35(1):354–65. doi: https://doi.org/10.1080/13102818.2020.1868333

255. Manjula V, Norman TSJ, Senthilnathan S. Naringi crenulata (Roxb.)—a potential drug for the future. Pharma Innov J. 2017;6(10):261–3.

256. Pratheeba T, Vivekanandhan P, Nur Faeza AK, Natarajan D. Chemical constituents and larvicidal efficacy of Naringi crenulata (Rutaceae) plant extracts and bioassay guided fractions against Culex quinquefasciatus mosquito (Diptera: Culicidae). Biocatal Agric Biotechnol. 2019;19:101137. doi: https://doi.org/10.1016/j.bcab.2019.101137

257. Rashan LJ, Özenver N, Boulos JC, Dawood M, Roos WP, Franke K, et al. Molecular modes of action of an aqueous Nerium oleander extract in cancer cells in vitro and in vivo. Molecules. 2023;28(4):1871. doi: https://doi.org/10.3390/molecules28041871

258. Barai AC, Paul K, Dey A, Manna S, Roy S, Bag BG, et al. Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity. Nano Converg. 2018;5(1):10. doi: https://doi.org/10.1186/s40580-018-0142-5

259. Hamad O, Obaidi SA. Studies on antibacterial and anticancer activity of Nerium oleander extracts. Eur Chem Bull. 2014;3(3):259–62.

260. Ahmed SS, Rahman MO, Algahtani AS, Sultana N, Almarfadi OM, Ali MA, et al. Anticancer potential of phytochemicals from Oroxylum indicum targeting lactate dehydrogenase a through bioinformatic approach. Toxicol Rep. 2023;10:56–75. doi: https://doi.org/10.1016/j.toxrep.2022.12.007

261. Menon S, Albaqami JJ, Hamdi H, Lawrence L, Padikkala J, Mathew SE, et al. Oroxylum indicum vent root bark extract inhibits the proliferation of cancer cells and induce apoptotic cell death. Processes. 2023;11(1):188. doi: https://doi.org/10.3390/pr11010188

262. Rai D, Aswatha Ram HN, Neeraj Patel K, Babu UV, Sharath Kumar LM, Kannan R. In vitro immuno-stimulatory and anticancer activities of Oroxylum indicum (L.) Kurz.: evidence for substitution of aerial parts for conservation. J Ayurveda Integr Med. 2022;13(2):100523. doi: https://doi.org/10.1016/j.jaim.2021.09.001

263. Sharmila KP, Shetty SS, Kumari S, Harishkumar M, Prabhu A, Satheesh Kumar Bhandary B. Oroxylum indicum stem bark extract exerts antitumor potential against Ehrlich’s ascites carcinoma in Swiss albino mice. Biomedicine. 2022;42(4):686–92. doi: https://doi.org/10.51248/.v42i4.1559

264. Rishu K, Nutan K. Review on Oroxylum indicum: unfathomed source of anticancer drug. Scope Phytochem Unexplored Med Plants. 2017;2017:99–109.

265. Saahene RO, Agbo E, Barnes P, Yahaya ES, Amoani B, Nuvor SV, et al. A review: mechanism of Phyllanthus urinaria in cancers—NF-κB, P13K/AKT, and MAPKs signaling activation. Evid Based Complement Altern Med. 2021;2021:4514342. doi: https://doi.org/10.1155/2021/4514342

266. Pammi S, Giri A. In vitro cytotoxic activity of Phyllanthus amarus Schum. & Thonn. World J Biol Pharm Heal Sci. 2021;6(2):34–42. doi: https://doi.org/10.30574/wjbphs.2021.6.2.0050

267. Omoregie FO, Eriyamremu GE, Kapur S. Therapeutic effects of aqueous and ethanolic extracts of Phyllanthus amarus on 1, 2 dimethylhydrazine induced colon carcinogenesis in Balb/c mice. Int J Biochem Res Rev. 2020;29(7):36–43. doi: https://doi.org/10.9734/ijbcrr/2020/v29i730206

268. Ahmad MS, Bano S, Anwar S. Cancer ameliorating potential of Phyllanthus amarus: in vivo and in vitro studies against aflatoxin B1 toxicity. Egypt J Med Hum Genet. 2015;16(4):343–53. doi: https://doi.org/10.1016/j.ejmhg.2015.05.005

269. Tang YQ, Jaganath I, Manikam R, Sekaran SD. Phyllanthus suppresses prostate cancer cell, PC-3, proliferation and induces apoptosis through multiple signalling pathways (MAPKs, PI3K/Akt, NFκB). Evid Based Complement Alternat Med. 2013; 2013:609581. doi: https://doi.org/10.1155/2013/609581

270. Mitra S, Anand U, Jha NK, Shekhawat MS, Saha SC, Nongdam P, et al. Anticancer applications and pharmacological properties of piperidine and piperine: a comprehensive review on molecular mechanisms and therapeutic perspectives. Front Pharmacol. 2022;12:772418. doi: https://doi.org/10.3389/fphar.2022.85307

271. Turrini E, Sestili P, Fimognari C. Overview of the anticancer potential of the ‘King of spices’ Piper nigrum and its main constituent piperine. Toxins (Basel). 2020;12(12):747. doi: https://doi.org/10.3390/toxins12120747

272. Ngo QMT, Cao TQ, Hoang LS, Ha MT, Woo MH, Min BS. Cytotoxic activity of alkaloids from the fruits of Piper nigrum. Nat. Prod. Commun. 2018;13(11):1467–9. doi: https://doi.org/10.1177/1934578x1801301114

273. Prashant A, Rangaswamy C, Yadav AK, Reddy V, Sowmya MN, Madhunapantula S. In vitro anticancer activity of ethanolic extracts of Piper nigrum against colorectal carcinoma cell lines. Int J Appl Basic Med Res. 2017;7(1):67–72. doi: https://doi.org/10.4103/2229-516x.198531

274. Krishnan V, Bupesh G, Manikandan E, Thanigai Arul K, Mangesh S, Kalyanaraman R, et al. green synthesis of silver nanoparticles using Piper nigrum concoction and its anticancer activity against MCF-7 and Hep-2 Cell lines. J Antimicrob Agents. 2016;2(3):1000123. doi: https://doi.org/10.4172/2472-1212.1000123

275. Chen YC, Chia YC, Huang BM. Phytochemicals from Polyalthia species: potential and implication on anti-oxidant, anti-inflammatory, anti-cancer, and chemoprevention activities. Molecules. 2021;26(17):5369. doi: https://doi.org/10.3390/molecules26175369

276. Afolabi SO, Olorundare OE, Babatunde A, Albrecht RM, Koketsu M, Syed DN, et al. Polyalthia longifolia extract triggers ER stress in prostate cancer cells concomitant with induction of apoptosis: insights from in vitro and in vivo studies. Oxid Med Cell Longev. 2019;2019:6726312. doi: https://doi.org/10.1155/2019/6726312

277. Vijayarathna S, Chen Y, Kanwar JR, Sasidharan S. Standardized Polyalthia longifolia leaf extract (PLME) inhibits cell proliferation and promotes apoptosis: the anti-cancer study with various microscopy methods. Biomed Pharmacother. 2017;91:366–77. doi: https://doi.org/10.1016/j.biopha.2017.04.112

278. Luna PYM, Limbo CA, Jacinto SD. Cytotoxicity of fractions from Quisqualis indica Linn. against selected human cancer cell lines. Int J Biosci. 2019;15(5):518–26. doi: https://doi.org/10.12692/ijb/15.5.518-526

279. Ub Wijerathne C, Park HS, Jeong HY, Song JW, Moon OS, Seo YW, et al. Quisqualis indica improves benign prostatic hyperplasia by regulating prostate cell proliferation and apoptosis. Biol Pharm Bull. 2017;40(12):2125–33. doi: https://doi.org/10.1248/bpb. b17-00468

280. Mukhopadhyay R, Kazi J, Debnath MC. Synthesis and characterization of copper nanoparticles stabilized with Quisqualis indica extract: evaluation of its cytotoxicity and apoptosis in B16F10 melanoma cells. Biomed Pharmacother. 2018;97:1373–85. doi: https://doi.org/10.1016/j.biopha.2017.10.167

281. Abraham S, Selvaraj J, Gayatri R, Dilipan E. In-vitro anticancer activity of Rauvolfia tetraphylla extract on mcf-7 breast cancer cell lines. Bioinformation. 2023;19(1):43–7. doi: https://doi.org/10.6026/97320630019043

282. Vanjari K, Bangar S, Thorve A, Wagh S. Medicinal plant Rauvolfia tetraphylla l its medicinal uses and pharmacological activities. J Med Plants Stud. 2022;10(5):119–21.

283. Das S, Langbang L, Haque M, Belwal VK, Aguan K, Singha Roy A. Biocompatible silver nanoparticles: an investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies. J Pharm Anal. 2021;11(4):422–34. doi: https://doi.org/10.1016/j.jpha.2020.12.003

284. Iqbal AAM, Khan FAK, Khan M. Ethno-phyto-pharmacological overview on Rauwolfia tetraphylla L. Int J Pharm Phytopharm Res. 2013;2(4):247–51.

285. Arora S, Meena S. Bio-activity in flowers of Sarcostemma viminale (L.) R.Br.- an endangered medicinal plant from Thar Desert of Rajasthan (India). Pharmacogn J. 2018;10(5):871–4. doi: https://doi.org/10.5530/pj.2018.5.146

286. Brestovac B, Coghlan O, Jackaman C, Nelson D, Townsend D. Sarcostemma viminale activates macrophages to a pro-inflammatory phenotype. Comp Clin Path. 2015;24:817–26. doi: https://doi.org/10.1007/s00580-014-1988-5

287. Brian B, Jessica S, Gaywin E, Alexander P, David T. Sarcostemma viminale: a potential anticancer therapy. Comp Clin Path. 2015;24:9-–17. doi: https://doi.org/10.1007/s00580-013-1843-0

288. Girme AS, Bhalke RD, Nirmal SA, Chavan MJ. Chromatographic and chemical analysis of Sarcostemma viminale R. Br. Pharm Exp Med. 2014;14:279–84. doi: https://doi.org/10.1007/s13596-014-0157-3

289. Sulaiman CT, Deepak M, Praveen TK, Lijini KR, Anandan EM, Salman M, et al. Purification of Bhallathaka (Semecarpus anacardium L.f.) enhanced anti-cancer activity. Regul Toxicol Pharmacol. 2021;122:104898. doi: https://doi.org/10.1016/j.yrtph.2021.104898

290. Joseph JP, Raval SK, Sadariya KA, Jhala M, Kumar P. Anti-cancerous efficacy of ayurvedic milk extract of Semecarpus anacardium nuts on hepatocellular carcinoma in Wistar rats. Afr J Tradit Compliment Altern Med. 2013;10(5):299–304.

291. Premalatha B, Muthulakshmi V, Sachdanandam P. Anticancer potency of the milk extract of Semecarpus anacardium Linn. nuts against aflatoxin B1 mediated hepatocellular carcinoma bearing Wistar rats with reference to tumour marker enzymes. Phyther Res. 1999;13(3):183–7. doi: https://doi.org/10.1002/(SICI)1099-1573(199905)13:3<183: AID-PTR420>3.0.CO;2-5

292. Kowalczyk T, Merecz-Sadowska A, Rijo P, Mori M, Hatziantoniou S, Górski K, et al. Hidden in plants-a review of the anticancer potential of the Solanaceae family in in vitro and in vivo studies. Cancers (Basel). 2022;14(6):1455. doi: https://doi.org/10.3390/cancers14061455

293. Helilusiatiningsih N, Yunianta A, Harijono A, Wijanarko SB. Cytotoxic activity and selectivity index of Solanum torvum fruit on T47D breast cancer cells. Indian J Public Heal Res Dev. 2020;11(2):1592. doi: https://doi.org/10.37506/v11/i2/2020/ijphrd/195053

294. Balachandran C, Emi N, Arun Y, Yamamoto Y, Ahilan B, Sangeetha B, et al. In vitro anticancer activity of methyl caffeate isolated from Solanum torvum Swartz. fruit. Chem Biol Interact. 2015;242:81–90. doi: https://doi.org/10.1016/j.cbi.2015.09.023

295. Panigrahi S, Muthuraman MS, Natesan R, Pemiah B. Anticancer activity of ethanolic extract of Solanum torvum sw. Int J Pharm Sci. 2014;6(1):93–8.

296. Li R, Yang JJ, Song XZ, Wang YF, Corlett RT, Xu YK, et al. Chemical composition and the cytotoxic, antimicrobial, and anti-inflammatory activities of the fruit peel essential oil from Spondias pinnata (Anacardiaceae) in Xishuangbanna, Southwest China. Molecules. 2020;25(2):343. doi: https://doi.org/10.3390/molecules25020343

297. Patathananone S, Daduang J, Koraneekij A, Li CY. Tyrosinase inhibitory effect, antioxidant and anticancer activities of bioactive compounds in ripe hog plum (Spondias pinnata) fruit extracts. Orient J Chem. 2019;35(3):916–26. doi: https://doi.org/10.13005/ojc/350302

298. Chaudhuri D, Ghate NB, Singh SS, Mandal N. Methyl gallate isolated from Spondias pinnata exhibits anticancer activity against human glioblastoma by induction of apoptosis and sustained extracellular signal-regulated kinase ½ activation. Pharmacogn Mag. 2015;11(42):269–76. doi: https://doi.org/10.4103/0973-1296.153078

299. Zhu X, Xu Y, Sun D, Li H, Chen L. The genus Strobilanthes: phytochemistry and pharmacology. TMR Mod Herb Med. 2022;5(3):15. doi: https://doi.org/10.53388/mhm2022b0701001

300. Senniyappan V, Subban R, Kaveri S, Ramasamy K. Acetylcholinesterase inhibitory and cytotoxic activity of extracts and isolated compounds from Strobilanthes ciliatus Nees. Int J Pharm Sci Rev Res. 2022;77(25):155–9. doi: https://doi.org/10.47583/ijpsrr. 2022.v77i01.025

301. Farzana H, Aysha OS. Phytochemical, antioxidant, antibacterial and mutagenic property (AMES) in vitro analysis of Strobilanthes barbatus. Int J Innov Res Technol. 2021;7(11):728–35.

302. Puranik SI, Hiremath MB, Nerli RB, Ghagane SC. Evaluation of in vitro antioxidant and anticancer activity of Tabernaemontana divaricata leaf extracts against T-24 human bladder cancer cell lines. Int J Cancer Res. 2018;14(2):100–8. doi: https://doi.org/10.3923/ijcr.2018.100.108

303. Selvakumar S, Kumar A. Antiproliferative efficacy of Tabernaemontana divaricata against HEP2 cell line and Vero cell line. Pharmacogn Mag. 2015;11(Suppl 1):S46–52. doi: https://doi.org/10.4103/0973-1296.157682

304. Poornima K, Gopalakrishnan VK. Anticancer activity of Tabernaemontana coronaria against carcinogen-induced clear cell renal cell carcinoma. Chin J Biol. 2014;2014:584074. doi: https://doi.org/10.1155/2014/584074

305. Akhila SD, Shankar Guru P, Ramya Devi D, Vedha Hari BN. Evaluation of in vitro anticancer activity of hydroalcoholic extract of Tabernaemontana divaricata. Asian J Pharm Clin Res. 2012;5(4):59–61.

306. Chandrasekaran C, Ramar K. Molecular docking studies of potential anticancer agents from Thunbergia fragrans against colorectal cancer mutant genes through in-silico study. Int J Ayurvedic Med. 2021;12(4):792–5. doi: https://doi.org/10.47552/ijam. v12i4.2263

307. Kumar PY, Subramaniyan M. Phytochemical evaluation and pharmacological activities of Thunbergia species—a comprehensive review. Int J Biol Pharm Allied Sci. 2021;10(11):233–43. doi: https://doi.org/10.31032/ijbpas/2021/10.11.1017

308. Pal P, Gupta N, Jain S. Preparation, characterization and evaluation of silver nanoparticles of Thunbergia grandiflora and its antimicrobial activity. J Drug Deliv Ther. 2019;9(s):229–35.

309. El-Hakim A, Kinasih A, Putri R, Putri SU, Kurniawan FY, Semiarti E. In silico study of secondary metabolite in Vanilla planifolia to inhibit nudt5 as breast cancer target. 1st Bioinformatics and Biodiversity Conference; 2021; Jawa Timur, Indonesia: NST Proceedings.

310. Kaliappan V, Kumaravelu P. Antiproliferative effects of Vanilla planifolia leaf extract against breast cancer MCF-7 cells. Int J Basic Clin Pharmacol. 2019;8(1):51–5.

311. Vijaybabu K, Punnagai K. In-vitro anti-proliferative effects of ethanolic extract of Vanilla planifolia leaf extract against A431 human epidermoid carcinoma cells. Biomed Pharmacol J. 2019;12(3):1141–6. doi: https://doi.org/10.13005/bpj/1742

312. D’Souza JN, Nagaraja GK, Prabhu A, Navada KM, Kouser S, Manasa DJ. AgVI and Ag/ZnOVI nanostructures from Vateria indica (L.) exert antioxidant, antidiabetic, anti-inflammatory and cytotoxic efficacy on triple negative breast cancer cells in vitro. Int J Pharm. 2022;615:121450. doi: https://doi.org/10.1111/j.1533-869X.2003.01102. x

313. Siddiqui A, Tabassum K, Anjum A. Pharmacological activities of Kahruba (Vateria indica Linn.)-a literary review. Int J Adv Res Dev. 2019;4(2):6–9.

314. Mishima S, Matsumoto K, Futamura Y, Araki Y, Ito T, Tanaka T, et al. Antitumor effect of stilbenoids from Vateria indica against allografted sarcoma S-180 in animal model. J Exp Ther Oncol. 2003;3(5):283–88. doi: https://doi.org/10.1111/j.1533-869X.2003.01102. x

315. Pakpisutkul J, Suwapraphan J, Sripaya N, Sitkhuntod N, Loyrat S, Yahayo W, et al. The effects of Vernonia cinerea less extracts on antioxidant gene expression in colorectal cancer cells. Asian Pac J Cancer Prev. 2022;23(11):3923–30. doi: https://doi.org/10.31557/APJCP.2022.23.11.3923

316. Amuthan A, Devi V, Shreedhara CS, Rao V, Jasphin S, Kumar N. Vernonia cinerea regenerates tubular epithelial cells in cisplatin induced nephrotoxicity in cancer-bearing mice without affecting antitumor activity. J Tradit Complement Med. 2020;11(3):279–86. doi: https://doi.org/10.1016/j.jtcme.2020.08.004

317. Chandra S, Das A, Ray T, Mukherjee L, Samanta J. Putative role of Moringa oleifera in prophylaxis of chemotherapy-induced neuropathic pain in mice. J Drug Deliv Ther. 2019;9(3Suppl.):615–20.

318. Khay M, Toeng P, Mahiou-Leddet V, Mabrouki F, Sothea K, Ollivier E, et al. HPLC analysis and cytotoxic activity of Vernonia cinerea. Nat Prod Commun. 2012;7(10):1259–62. doi: https://doi.org/10.1177/1934578x1200701001

319. Vo GV, Nguyen TH, Nguyen TP, Do TH, Tran NM, Nguyen HT, et al. In silico and in vitro studies on the anti-cancer activity of Artemetin, Vitexicarpin and Penduletin compounds from Vitex negundo. Saudi Pharm J. 2022;30(9):1301–14. doi: https://doi.org/10.1016/j.jsps.2022.06.018

320. Gouthami K, Veeraraghavan V, Nagaraja P. In-silico characterization of phytochemicals identified from Vitex negundo (L) extract as potential therapy for Wnt-signaling proteins. Egypt J Med Hum Genet. 2022;3:23. doi: https://doi.org/10.1186/s43042-022-00219-7

321. Edwin Jose B, Manikandan S, Jebaseelan S, Meera DR. Phytochemical investigation and anti-cancer activity of Vitex negundo. Int J Pharm Sci Rev Res. 2021;66(1):65–9. doi: https://doi.org/10.47583/ijpsrr. 2021.v66i01.012

322. Winarno EK, Susanto, Winarno H. Antiproliferative activity against cancer cell lines of gamma irradiated ‘legundi’ (Vitex trifolia L.) leaves and its chromatogram profiles. AIP Conf Proc. 2020;2296:020068. doi: https://doi.org/10.1063/5.0030628

323. Lacombe J, Cretignier T, Meli L, Wijeratne EMK, Veuthey JL, Cuendet M, et al. Withanolide D enhances radiosensitivity of human cancer cells by inhibiting DNA damage non-homologous end-joining repair pathway. Front Oncol. 2020;9:1468. doi: https://doi.org/10.3389/fonc.2019.01468

324. Aziz A, Azhar MF. Antioxidant and phytochemical composition of leaves, stem and root extracts of Withania coagulans and Withania somnifera. J Med Spice Plants. 2020;24(1):27–30.

325. Akhtar N, Baig MW, Haq IU, Rajeev V, Cutillas PR. Withanolide metabolites inhibit PI3K/AKT and MAPK pro-survival pathways and induce apoptosis. Biomedicines. 2020;8(9):333. doi: https://doi.org/10.3390/biomedicines8090333

326. Saleem S, Muhammad G, Hussain MA, Altaf M, Bukhari SNA. Withania somnifera L.: insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. Iran J Basic Med Sci. 2020;23(12):1501–26. doi: https://doi.org/10.22038/ijbms.2020.44254.10378

327. Thakur S, Kaurav H, Chaudhary G. A Review on Woodfordia fruticosa Kurz (Dhatki): ayurvedic, folk and modern uses. J Drug Deliv Ther. 2021;11(3):126–31. doi: https://doi.org/10.22270/jddt. v11i3.4839

328. Raji NR, Roshni P, Latha MS. Induction of apoptosis by the ethyl acetate fraction of Woodfordia fruticosa Kurz. flowers through NFκB mediation in hepatocellular carcinoma. Int J Adv Res. 2017;5(8):885–93. doi: https://doi.org/10.21474/ijar01/5132

329. Kumar D, Sharma M, Sorout A, Saroha K, Verma S. Woodfordia fruticosa Kurz.: a review on its botany, chemistry and biological activities. J Pharmacogn Phytochem. 2016;5(3):293–8.

330. Rao BG, Devarakonda R, Battu H. Phytochemical and pharmacological studies on Wrightia tinctoria. World J Pharm Sci. 2019;7(4):562–85. doi: https://doi.org/10.20959/wjpps20184-11336

331. Jose B. Evaluation of anticancer potential of the medicinal plant Wrightia tinctoria (Roxb) R. Br., from South India. J Forensic Res. 2016;7(5Suppl):74.

332. Fatima N, Ahmad MK. Ansari JA, Ali Z, Khan AR, Mahdi AA. Anticancer, antioxidant potential and profiling of polyphenolic compounds of Wrightia tinctoria Roxb. (R.Br.) bark. J Adv Pharm Technol Res. 2016;7(4):159–65. doi: https://doi.org/10.4103/2231-4040.191428

333. Wang Y, Chinnathambi A, Nasif O, Alharbi SA. Green synthesis and chemical characterization of a novel anti-human pancreatic cancer supplement by silver nanoparticles containing Zingiber officinale leaf aqueous extract. Arab J Chem. 2021;14(4):103081. doi: https://doi.org/10.1016/j.arabjc.2021.103081

334. Qian S, Fang H, Zheng L, Liu M. Zingerone suppresses cell proliferation via inducing cellular apoptosis and inhibition of the PI3K/AKT/mTOR signaling pathway in human prostate cancer PC-3 cells. J Biochem Mol Toxicol. 2021;35(1):e22611. doi: https://doi.org/10.1002/jbt.22611

335. Abbas A, Ali A, Seidmostafa N, Elaheh A, Rezvan A, Elham M, et al. Apoptotic effects of ginger extract (Zingiber officinale) on esophageal cancer cells ESO26: an in vitro study. J Reports Pharm Sci. 2020;9(2):183–8. doi: https://doi.org/10.4103/jrptps.JRPTPS_98_19

336. Mathiyazhagan J, Kodiveri Muthukaliannan G. Combined Zingiber officinale and Terminalia chebulic induces apoptosis and modulates mTOR and hTERT gene expressions in MCF-7 cell line. Nutr Cancer. 2020;73(7):1207–16. doi: https://doi.org/10.1080/01635581.2020.1792518

337. Zhao L, Rupji M, Choudhary I, Osan R, Kapoor S, Zhang HJ, et al. Efficacy based ginger fingerprinting reveals potential antiproliferative analytes for triple negative breast cancer. Sci Rep. 2020;10:19182. doi: https://doi.org/10.1038/s41598-020-75707-0

338. Sarmoko S, Solihati I, Setyono J, Ekowati H, Fadlan A. Zingiber officinale Var. rubrum extract increases the cytotoxic activity of 5-fluorouracil in colon adenocarcinoma widr cells. Indonesian J Pharm. 2020;31(4):266–72. doi: https://doi.org/10.22146/ijp.859

339. Dissanayake K, Waliwita W, Liyanage R. A review on medicinal uses of Zingiber officinale (Ginger). Int J Heal Sci Res. 2020;10(6):142–8.

340. Maslikah SI, Lestari SR, Amin M, Amalia A. Anticancer activity of phenolic leaves of Bidara (Ziziphus mauritiana) against breast cancer by in silico. AIP Conf Proc. 2021;2353:030042. doi: https://doi.org/10.1063/5.0053086

341. Beg MA, Teotia UVS, Farooq S. In vitro antibacterial and anticancer activity of Ziziphus. JMPS. 2016;4(5):230–3. doi: 10.1088/1742-6596/1341/3/032042

342. Bhatia A, Mishra T, Khullar M. Anticancer potential of aqueous ethanol seed extract of Ziziphus mauritiana against cancer cell lines and Ehrlich ascites carcinoma. J Evid Based Complement Alternat Med. 2011;2011:765029. doi: https://doi.org/10.1155/2011/765029

Article Metrics
159 Views 20 Downloads 179 Total

Year

Month

Related Search

By author names