Bioinspired nanofibers: advancing drug delivery for enhanced therapeutic applications

Amisha S. Raikar Bhavana B. Bhat Sandesh N. Somnache   

Open Access   

Published:  May 17, 2024

DOI: 10.7324/JAPS.2024.182424
Abstract

Nanomedicine is advancing with bioinspired nanofiber-based drug delivery systems (DDSs). This field explores the use of collagen and spider silk-like nanofibers to transport therapeutic agents to anatomical locations in the system. Nanofibers have a larger surface-area-to-volume ratio, mechanical strength, and ECM-mimicking properties. They are made with organic and artificial polymers, but natural polymers are better for biocompatibility and ECM resemblance. Synthetic polymers are versatile and can be customized to meet specific needs. Various techniques such as electrospinning, self-assembly, and templating are used to make bioinspired nanofibers. Electrospinning creates versatile and robust nanofibers that can be functionalized to boost therapeutic benefits. Control/extended DDSs using nanofibers are attainable by adjusting their physical and chemical properties (e.g., diameter, surface chemistry, and porosity). The nanofiber DDSs inspired by biology have shown promising use in wound healing, cancer therapy, and regenerative medicine. Creating these systems requires achieving biocompatibility, reducing toxicity, maintaining stability, long drug release, scalability, and cost-effectiveness.


Keyword:     Bioinspired nano-fibers electrospinning synthetic nanofibers natural nanofibers extracellular membrane template synthesis


Citation:

Raikar AS, Bhat BB, Somnache SN. Bioinspired nanofibers: advancing drug delivery for enhanced therapeutic applications. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.182424

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Verreck G, Chun I, Peeters J, Rosenblatt J, Brewster ME. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm Res. 2003;20:810-7. https://doi.org/10.1023/A:1023450006281

2. Yang S, Dong H. Modular design and self-assembly of multidomain peptides towards cytocompatible supramolecular cell penetrating nanofibers. RSC Adv. 2020;10(49):29469-74. https://doi.org/10.1039/D0RA04748A

3. Williams GR, Chatterton NP, Nazir T, Yu DG, Zhu LM, Branford-White CJ. Electrospun nanofibers in drug delivery: recent developments and perspectives. Ther Deliv. 2012;3(4):515-33. https://doi.org/10.4155/tde.12.17

4. Sunoqrot S, Al-Shalabi E, Messersmith PB. Facile synthesis and surface modification of bioinspired nanoparticles from quercetin for drug delivery. Biomater Sci. 2018;6(10), 2656-66. https://doi.org/10.1039/C8BM00587G

5. Hay ED. Extracellular matrix. J Cell Nano. 1981;91(3 Pt 2):205s-223s. https://doi.org/10.1083/jcb.91.3.205s

6. Bosman FT, Stamenkovic I. Functional structure and composition of the extracellular matrix. J Pathol J Pathol Soc Great Britain Ireland. 2003;200(4):423-8. https://doi.org/10.1002/path.1437

7. Vasvani S, Kulkarni P, Rawtani D. Hyaluronic acid: a review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromole. 2020;151:1012-29. https://doi.org/10.1016/j.ijbiomac.2019.11.066

8. Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B. 2018;8(1):34-50. https://doi.org/10.1016/j.apsb.2017.11.005

9. Halper J, Kjaer M. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Progress Heritable Soft Connective Tissue Diseases, 2014;802:31-47. https://doi.org/10.1007/978-94-007-7893-1_3

10. Audelo MLDP, Mendoza-Muñoz N, Escutia-Guadarrama L, Giraldo-Gomez D, González-Torres M, Florán B, et al. Recent advances in elastin-based biomaterial. J Pharm Pharm Sci. 2020;23:314-32. https://doi.org/10.18433/jpps31254

11. Labat-Robert J, Bihari-Varga M, Robert L. Extracellular matrix. FEBS Lett. 1990;268(2):386-93. https://doi.org/10.1016/0014-5793(90)81291-U

12. Villalba-Rodriguez AM, Parra-Saldivar R, Ahmed I, Karthik K, Malik YS, Dhama K, et al. Bio-inspired biomaterials and their drug delivery perspectives-a review. Current Drug Metab. 2017;18(10):893-904. https://doi.org/10.2174/1389200218666170925113132

13. Yang D, Li Y, Nie J. Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohydrate Polym. 2007;69(3):538-43. https://doi.org/10.1016/j.carbpol.2007.01.008

14. Law JX, Liau LL, Saim A, Yang Y, Idrus R. Electrospun collagen nanofibers and their applications in skin tissue engineering. Tissue Eng Regen Med. 2017;14:699-718. https://doi.org/10.1007/s13770-017-0075-9

15. Aguirre-Chagala YE, Altuzar V, León-Sarabia E, Tinoco-Magaña JC, Yañez-Limón JM, Mendoza-Barrera C. Physicochemical properties of polycaprolactone/collagen/elastin nanofibers fabricated by electrospinning. Mater Sci Eng C. 2017;76:897-907. https://doi.org/10.1016/j.msec.2017.03.118

16. Du J, Liu J, Yao S, Mao H, Peng J, Sun X, et al. Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. Acta Biomater. 2017;55:296-309. https://doi.org/10.1016/j.actbio.2017.04.010

17. Jayakumar R, Prabaharan M, Nair SV, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv. 2010;28(1):142-50. https://doi.org/10.1016/j.biotechadv.2009.11.001

18. Uppal R, Ramaswamy GN, Arnold C, Goodband R, Wang Y. Hyaluronic acid nanofiber wound dressing-production, characterization, and in vivo behavior. J Biomed Mater Res Part B Appl Biomater. 2011;97(1):20-29. https://doi.org/10.1002/jbm.b.31776

19. Farokhi M, Mottaghitalab F, Reis RL, Ramakrishna S, Kundu SC. Functionalized silk fibroin nanofibers as drug carriers: advantages and challenges. J Control Release. 2020;321:324-47. https://doi.org/10.1016/j.jconrel.2020.02.022

20. Edwards A, Jarvis D, Hopkins T, Pixley S, Bhattarai N. Poly (ε-caprolactone)/keratin-based composite nanofibers for biomedical applications. J Biomed Mater Res Part B Appl Biomater. 2015;103(1):21-30. https://doi.org/10.1002/jbm.b.33172

21. Huang ZM, Zhang YZ, Ramakrishna S, Lim CT. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer. 2004;45(15):5361-68. https://doi.org/10.1016/j.polymer.2004.04.005

22. Shaghaleh H, Xu X, Wang S. Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Adv. 2018;8(2):825-42. https://doi.org/10.1039/C7RA11157F

23. Taemeh MA, Shiravandi A, Korayem MA, Daemi H. abrication challenges and trends in biomedical applications of alginate electrospun nanofibers. Carbohydr Polym. 2020;228:115419. https://doi.org/10.1016/j.carbpol.2019.115419

24. Rammensee S, Hümmerich D, Hermanson KD, Scheibel T, Bausch AR. Rheological characterization of hydrogels formed by recombinantly produced spider silk. Appl Phys A. 2006;82:261-64. https://doi.org/10.1007/s00339-005-3431-x

25. Lin X, Wang J, Wu X, Luo Y, Wang Y, Zhao Y. Marine-derived hydrogels for biomedical applications. Adv Funct Mater. 2023;33(6):2211323. https://doi.org/10.1002/adfm.202211323

26. Zhao W, Li J, Jin K, Liu W, Qiu X, Li C. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Mater Sci Eng C, 2016;59:1181-94. https://doi.org/10.1016/j.msec.2015.11.026

27. Saini P, Arora M, Kumar MR. Poly (lactic acid) blends in biomedical applications. Adv Drug Delivery Rev. 2016;107:47-59. https://doi.org/10.1016/j.addr.2016.06.014

28. Teixeira MA, Amorim MTP, Felgueiras HP. Poly (vinyl alcohol)-based nanofibrous electrospun scaffolds for tissue engineering applications. Polymers. 2019;12(1):7. https://doi.org/10.3390/polym12010007

29. Lu JW, Zhu YL, Guo ZX, Hu P, Yu J. Electrospinning of sodium alginate with poly (ethylene oxide). Polymer. 2006;47(23):8026-31. https://doi.org/10.1016/j.polymer.2006.09.027

30. Ma Z, Kotaki M, Yong T, He W, Ramakrishna S. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials. 2005;26(15):2527-36. https://doi.org/10.1016/j.biomaterials.2004.07.026

31. Bertuoli PT, Ordono J, Armelin E, Perez-Amodio S, Baldissera AF, Ferreira CA, et al. Electrospun conducting and biocompatible uniaxial and Core-Shell fibers having poly (lactic acid), poly (ethylene glycol), and polyaniline for cardiac tissue engineering. ACS Omega. 2019;4(2):3660-72. https://doi.org/10.1021/acsomega.8b03411

32. Liu Y, Cui L, Guan F, Gao Y, Hedin NE, Zhu L, et al. Crystalline morphology and polymorphic phase transitions in electrospun nylon-6 nanofibers. Macromolecules. 2007;40(17):6283-90. https://doi.org/10.1021/ma070039p

33. Zhuo H, Hu J, Chen S, Yeung L. Preparation of polyurethane nanofibers by electrospinning. J Appl Polym Sci. 2008;109(1):406-11. https://doi.org/10.1002/app.28067

34. He JH, Wan YQ, Yu JY. ffect of concentration on electrospun polyacrylonitrile (PAN) nanofibers. Fibers Polym. 2008;9(2):140-42. https://doi.org/10.1007/s12221-008-0023-3

35. Van Do C, Nguyen TTT, Park JS. Fabrication of polyethylene glycol/polyvinylidene fluoride core/shell nanofibers via melt electrospinning and their characteristics. Solar Energy Mater Solar Cells. 2012;104:131-39. https://doi.org/10.1016/j.solmat.2012.04.029

36. Han J, Branford-White CJ, Zhu LM. Preparation of poly (ε-caprolactone)/poly (trimethylene carbonate) blend nanofibers by electrospinning. Carbohydr Polym. 2010;79(1):214-18. https://doi.org/10.1016/j.carbpol.2009.07.052

37. Hu J, Kai D, Ye H, Tian L, Ding X, Ramakrishna S, et al. Electrospinning of poly (glycerol sebacate)-based nanofibers for nerve tissue engineering. Mater Sci Eng: C. 2017;70:1089-94. https://doi.org/10.1016/j.msec.2016.03.035

38. Liu Y, Miao YL, Qin F, Cao C, Yu XL, Wu YH, et al. Electrospun poly (aspartic acid)-modified zein nanofibers for promoting bone regeneration. Int J Nanomed. 2019;9497-12. https://doi.org/10.2147/IJN.S224265

39. Liu L, Bai S, Yang H, Li S, Quan J, Zhu L, et al. Controlled release from anofib-sensitive PNVCL-co-MAA electrospun nanofibers: the effects of hydrophilicity/hydrophobicity of a drug. Mater Sci Eng C. 2016;67:581-9. https://doi.org/10.1016/j.msec.2016.05.083

40. Kitasono S, Yamamoto K, Kadokawa JI. Preparation and gelation behaviors of poly (2-oxazoline)-grafted chitin nanofibers. Carbohydr Polym. 2021;259:117709. https://doi.org/10.1016/j.carbpol.2021.117709

41. Oliveira JE, Moraes EA, Marconcini JM, Mattoso LHC, Glenn GM, Medeiros ES. Properties of poly (lactic acid) and poly (ethylene oxide) solvent polymer mixtures and nanofibers made by solution blow spinning. J Appl Polym Sci. 2013;129(6):3672-81. https://doi.org/10.1002/app.39061

42. Yingying M, Xiu-Xia L, Luyun C, Jianrong L. pH-sensitive ε-polylysine/polyaspartic acid/zein nanofiber membranes for the targeted release of polyphenols. Food Funct. 2022;13(12),6792-801. https://doi.org/10.1039/D1FO03051E

43. Rahim Labbafzadeh M, Vakili MH. Application of magnetic electrospun polyvinyl alcohol/collagen anofibers for drug delivery systems. Mole Simul. 2022;48(1):1-7. https://doi.org/10.1080/08927022.2020.1783462

44. Zhang M, Li Z, Liu L, Sun Z, Ma W, Zhang Z, et al. Preparation and characterization of vancomycin-loaded electrospun rana chensinensis skin collagen/Poly(L-lactide) nanofibers for drug delivery. Khatri Z, editor. Journal of Nanomaterials. 2016 Aug 18;2016:9159364. https://doi.org/10.1155/2016/9159364

45. Huo P, Han X, Zhang W, Zhang J, Kumar P, Liu B. Electrospun nanofibers of polycaprolactone/collagen as a sustained-release drug delivery system for artemisinin. Pharmaceutics. 2021;13(8):1228. https://doi.org/10.3390/pharmaceutics13081228

46. Sasmal P, Datta P. Tranexamic acid-loaded chitosan electrospun nanofibers as drug delivery system for hemorrhage control applications. J Drug Delivery Sci Technol. 2019;52:559-67. https://doi.org/10.1016/j.jddst.2019.05.018

47. Gouda M, Khalaf MM, Shaaban S, El-Lateef HMA. Fabrication of chitosan nanofibers containing some steroidal compounds as a drug delivery system. Polymers. 2022;14(10):2094. https://doi.org/10.3390/polym14102094

48. Patel PR, Singam A, Iyer AK, Gundloori RVN, Bioinspired hyaluronic acid based nanofibers immobilized with 3, 4- difluorobenzylidene curcumin for treating bacterial infections. J Drug Delivery Sci Technol, 2022;74:103480. https://doi.org/10.1016/j.jddst.2022.103480

49. Dadras Chomachayi M, Solouk A, Akbari S, Sadeghi D, Mirahmadi F, Mirzadeh H. Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: thyme essential oil and doxycycline monohydrate release study. J Biomed Mater Res Part A 2018;106A:1092-103. https://doi.org/10.1002/jbm.a.36303

50. Guidotti G, Soccio M, Bondi E, Posati T, Sotgiu G, Zamboni R, et al. Effects of the blending ratio on the design of keratin/poly(butylene succinate) nanofibers for drug delivery applications. Biomolecules. 2021;11(8):1194. https://doi.org/10.3390/biom11081194

51. Meng ZX, Xu XX, Zheng W, Zhou HM, Li L, Zheng YF, et al. Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids Surf B Biointerfaces. 2011;84(1):97-102. https://doi.org/10.1016/j.colsurfb.2010.12.022

52. Aytac Z, Sen HS, Durgun E, Uyar T. Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system. Colloids Surf B Biointerf. 2015;128:331-38. https://doi.org/10.1016/j.colsurfb.2015.02.019

53. Najafiasl M, Osfouri S, Azin R, Zaeri S. Alginate-based electrospun core/shell nanofibers containing dexpanthenol: a good candidate for wound dressing, J Drug Deliv Sci Technol, 2020;57:101708, ISSN 1773-2247. https://doi.org/10.1016/j.jddst.2020.101708

54. Qi R, Guo R, Zheng F, Liu H, Yu J, Shi X. Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers. Colloids Surf B Biointerf. 2013;110:148-55. https://doi.org/10.1016/j.colsurfb.2013.04.036

55. Huang X, Guan N, Li Q. A marine-derived anti-inflammatory scaffold for accelerating skin repair in diabetic mice. Marine Drugs. 2021;19(9):496. https://doi.org/10.3390/md19090496

56. Mamidi N, Zuníga AE, Villela-Castrejón J. Engineering and evaluation of forcespun functionalized carbon nano-onions reinforced poly (ε-caprolactone) composite nanofibers for pH-responsive drug release. Mater Sci Eng C 112, 2020, 110928, ISSN 0928-4931. https://doi.org/10.1016/j.msec.2020.110928

57. Rezaei S, Valipouri A, Hosseini Ravandi SA, Kouhi M, Ghasemi Mobarakeh L. Fabrication, characterization, and drug release study of vitamin C-loaded alginate/polyethylene oxide nanofibers for the treatment of a skin disorder. Polym Adv Technol. 2019;30:2447-57. https://doi.org/10.1002/pat.4692

58. Grumezescu AM, Stoica AE, Dima-B?lcescu M-?, Chircov C, Gharbia S, Balt? C, et al. Electrospun polyethylene terephthalate nanofibers loaded with silver nanoparticles: novel approach in anti-infective therapy. J Clin Med. 2019;8(7):1039. https://doi.org/10.3390/jcm8071039

59. Minisy IM, Salahuddin NA, Ayad MM. In vitro release study of ketoprofen-loaded chitosan/polyaniline nanofibers. Polym. Bull. 2021;78:5609-22. https://doi.org/10.1007/s00289-020-03385-z

60. Pavli?áková V, Fohlerová Z, Pavli?ák D, Khunová V, Vojtová L. Effect of halloysite nanotube structure on physical, chemical, structural and biological properties of elastic polycaprolactone/gelatin nanofibers for wound healing applications. Mater Sci Eng C. 2018;91:94-102. ISSN 0928-4931. https://doi.org/10.1016/j.msec.2018.05.033

61. Gencturk A, Kahraman E, Güngör S, Özhan G, Özsoy Y, Sarac AS. Polyurethane/hydroxypropyl cellulose electrospun nanofiber mats as potential transdermal drug delivery system: characterization studies and in vitro assays. Artif CellsNanomed Biotechnol. 2017;45(3):655-64. https://doi.org/10.3109/21691401.2016.1173047

62. Zhang X, Geven MA, Wang X, Qin L, Grijpma DW, Peijs T, et al. A drug eluting poly(trimethylene carbonate)/poly(lactic acid)-reinforced nanocomposite for the functional delivery of osteogenic molecules. Int J Nanomed. 2018;24(13):5701-18. https://doi.org/10.2147/IJN.S163219

63. Rezk AI, Kim K-S, Kim CS. Poly(ε-Caprolactone)/Poly(Glycerol Sebacate) composite nanofibers incorporating hydroxyapatite nanoparticles and simvastatin for bone tissue regeneration and drug delivery applications. Polymers. 2020;12(11):2667. https://doi.org/10.3390/polym12112667

64. Teo WE, Inai R, Ramakrishna S. Technological advances in electrospinning of nanofibers. Sci Technol Adv Mater. 2011 Feb 16;12(1):013002. https://doi.org/10.1088/1468-6996/12/1/013002

65. Li Z, Wang C. One-dimensional nanostructures: electrospinning technique and unique nanofibers. New York Dordrecht London: Springer Berlin Heidelberg. 2013. pp. 15-29. https://doi.org/10.1007/978-3-642-36427-3

66. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release. 2014;185:12-21. https://doi.org/10.1016/j.jconrel.2014.04.018

67. Greiner A, Wendorff JH. Functional self-assembled nanofibers by electrospinning. Self-assembled nanomaterials I: Nanofibers. 2008;168:107-71. https://doi.org/10.1007/12_2008_146

68. Stendahl JC, Rao MS, Guler MO, Stupp SI. Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv Funct Mater. 2006;16(4):499-508. https://doi.org/10.1002/adfm.200500161

69. Jiao Q, Liu Z, Li B, Tian B, Zhang N, Liu C, et al. Development of antioxidant and stable conjugated linoleic acid Pickering emulsion with protein nanofibers by microwave-assisted self-assembly. Foods. 2021;10(8):1892. https://doi.org/10.3390/foods10081892

70. Calahorra Y, Datta A, Famelton J, Kam D, Shoseyov O, Kar-Narayan S. Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers. Nanoscale. 2018;10(35):16812-21. https://doi.org/10.1039/C8NR04967J

71. Okesola BO, Mata A. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chem Soc Rev. 2018;47(10), 3721-36. https://doi.org/10.1039/C8CS00121A

72. Li D, Dai F, Li H, Wang C, Shi X, Cheng Y, et al. Chitosan and collagen layer-by-layer assembly modified oriented nanofibers and their biological properties. Carbohydr Polym. 2021;254:117438. https://doi.org/10.1016/j.carbpol.2020.117438

73. Shao J, Chen C, Wang Y, Chen X, Du C. Early stage evolution of structure and nanoscale property of nanofibers in thermally induced phase separation process. React Funct Polym. 2012:72(10):765-72. https://doi.org/10.1016/j.reactfunctpolym.2012.07.011

74. Xie F, Wang Y, Zhuo L, Jia F, Ning D, Lu Z. Electrospun wrinkled porous polyimide nanofiber-based filter via thermally induced phase separation for efficient high-temperature PMs capture. ACS Appl Mater Interf. 2020;12(50):56499-508. https://doi.org/10.1021/acsami.0c18143

75. Tao SL, Desai TA. Aligned arrays of biodegradable poly (?-caprolactone) nanowires and nanofibers by template synthesis. Nano Lett. 2007;7(6):1463-8. https://doi.org/10.1021/nl0700346

76. Morie A, Garg T, Goyal AK, Rath G. Nanofibers as novel drug carrier-an overview. Artif Cells Nanomed Biotechnol. 2016;44(1):135-43. https://doi.org/10.3109/21691401.2014.927879

77. Karim Haidar M, Eroglu H. Nanofibers: new insights for drug delivery and tissue engineering. Current Topics Med Chem. 2017;17(13):1564-79. https://doi.org/10.2174/1568026616666161222102641

78. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release. 2014;185:12-21. https://doi.org/10.1016/j.jconrel.2014.04.018

79. Chen Z, Chen Z, Zhang A, Hu J, Wang X, Yang Z. Electrospun nanofibers for cancer diagnosis and therapy. Biomater Sci. 2016;4(6):922-32. https://doi.org/10.1039/C6BM00070C

80. Alavi M, Nokhodchi A. Antimicrobial and wound healing activities of electrospun nanofibers based on functionalized carbohydrates and proteins. Cellulose. 2022;29(3):1331-47. https://doi.org/10.1007/s10570-021-04412-6

81. Sahoo S, Ang LT, Goh JCH, Toh SL. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res Part A Official J Soc Biomater Japanese Soc Biomater Austr Soc Biomater Korean Soc Biomater. 2010;93(4):1539-50. https://doi.org/10.1002/jbm.a.32645

82. Li J, Liu Y, Abdelhakim HE. Drug delivery applications of coaxial electrospun anofibers in cancer therapy. Molecules. 2022;27(6):1803. https://doi.org/10.3390/molecules27061803

83. Liu X, Xu H, Zhang M, Yu DG. Electrospun medicated nanofibers for wound healing. Membranes. 2021;11(10):770. https://doi.org/10.3390/membranes11100770

84. Mistry P, Chhabra R, Muke S, Narvekar A, Sathaye S, Jain R, et al. Fabrication and characterization of starch-TPU based nanofibers for wound healing applications. Mater Sci Eng C. 2021;119:111316. https://doi.org/10.1016/j.msec.2020.111316

85. Wang Y, Wang B, Qiao W, Yin T. A novel controlled release drug delivery system for multiple drugs based on electrospun nanofibers containing nanoparticles. J Pharm Sci. 2010;99(12):4805-11. https://doi.org/10.1002/jps.22189

86. Lee CH, Liu KS, Roth JG, Hung KC, Liu YW, Wang SH, et al. Telmisartan loaded nanofibers enhance re-endothelialization and inhibit neointimal hyperplasia. Pharm., 2021;13(11):1756. https://doi.org/10.3390/pharmaceutics13111756

87. Fleischer S, Tavakol DN, Vunjak-Novakovic G. From arteries to capillaries: approaches to engineering human vasculature. Adv Funct Mater. 2020;30(37):1910811. https://doi.org/10.1002/adfm.201910811

88. Kuraishi K, Iwata H, Nakano S, Kubota S, Tonami H, Toda M, et al. Development of nanofiber-covered stents using electrospinning: in vitro and acute phase in vivo experiments. J Biomed Mater Res Part B Appl Biomater Official J Soc Biomater, Japn Soc Biomater Austr Soc Biomater Korean Soc Biomater. 2009;88(1):230-39. https://doi.org/10.1002/jbm.b.31173

89. Kumar N, Sridharan D, Palaniappan A, Dougherty JA, Czirok A, Isai DG. et al. Scalable biomimetic coaxial aligned nanofiber cardiac patch: a potential model for "Clinical Trials in a Dish". Front Bioeng Biotechnol. 2020;8:567842. https://doi.org/10.3389/fbioe.2020.567842

90. Seif-Naraghi SB, Salvatore MA, Schup-Magoffin PJ, Hu DP, Christman, KL. Design and characterization of an injectable pericardial matrix gel: a potentially autologous scaffold for cardiac tissue engineering. Tissue Engineering Part A, 2010;16(6):2017-27. https://doi.org/10.1089/ten.tea.2009.0768

91. Ye G, Wen Z, Wen F, Song X, Wang L, Li C, et al. Mussel-inspired conductive Ti2C-cryogel promotes functional maturation of cardiomyocytes and enhances repair of myocardial infarction. Theranostics 2020;10(5):2047. https://doi.org/10.7150/thno.38876

92. Walker BW, Lara RP, Yu CH, Sani ES, Kimball W, Joyce S, et al. Engineering a naturally-derived adhesive and conductive cardiopatch. Biomaterials. 2019;207:89-101. https://doi.org/10.1016/j.biomaterials.2019.03.015

93. Coelho D, Veleirinho B, Mazzarino L, Alberti T, Buzanello E, Oliveira RE, et al. Polyvinyl alcohol-based electrospun matrix as a delivery system for nanoemulsion containing chalcone against Leishmania (Leishmania) amazonensis. Colloids Surf B Biointerf. 2021;198:111390. https://doi.org/10.1016/j.colsurfb.2020.111390

Article Metrics
100 Views 16 Downloads 116 Total

Year

Month

Related Search

By author names