Citrus wastes: A valuable raw material for biological applications

Tabisa Diniso Ayodeji O. Oriola Jerry O. Adeyemi Gugulethu M. Miya Yiseyon S. Hosu Opeoluwa O. Oyedeji Simon K. Kuria Adebola O. Oyedeji   

Open Access   

Published:  May 17, 2024

DOI: 10.7324/JAPS.2024.158781
Abstract

Agricultural wastes have become a worrying concern worldwide due to the increasing demand for more food items brought about by the ever-increasing population growth in recent times. In the quest toward maintaining a sustainable food production process and combating the issues of food security challenges, the accompanying agricultural waste has become a significant environmental concern to life. About 130 million tons of agricultural waste are generated by India and China alone yearly, which is a worrying amount by just two nations, most of which are not adequately managed and disposed of, posing severe threats to the environment and humans. Citrus is a prominent example of these agricultural wastes that have contributed substantially over the years. This is because citrus accounts for nearly a fifth of the total cultivars industrially processed into food materials, leading to a significant agricultural waste of about 120 million tons worldwide. The industrialization of citrus production due to their continuous usage as different dietary materials and nutritional benefits has led to this massive waste because only 45% of the total fruit weight is being harnessed. Nevertheless, these waste materials, such as peels, leaves, and seeds, have different phytochemicals such as naringin and hesperidin, which is indicative of their usefulness as biological agents for pharmaceutical, cosmeceutical, nanobiotechnology, food, and agricultural applications. Hence, this report briefly highlights the progress made in using citrus waste materials as biological agents by identifying some significant bioactive materials that have been found useful for various biological functions.


Keyword:     Citrus wastes agriculture phytochemicals biological applications


Citation:

Diniso T, Oriola AO, Adeyemi JO, Miya GM, Hosu YS2, Oyedeji OO, Kuria SK, Oyedeji AO. Citrus wastes: A valuable raw material for biological applications. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.158781

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Koul B, Yakoob M, Shah MP. Agricultural waste management strategies for environmental sustainability. Environ Res. 2022;206:112285. doi: https://doi.org/10.1016/j.envres.2021.112285

2. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, et al. Food security: the challenge of feeding 9 billion people. Science (1979). 2010;327:812–8. doi: https://doi.org/10.1126/science.1185383

3. Adejumo IO, Adebiyi OA. Agricultural solid wastes: causes, effects, and effective management. In: Saleh HM, editor. Strategies of sustainable waste management. London, UK: IntechOpen; 2020 [cited 2023 Feb 25]. doi: https://doi.org/10.5772/intechopen.93601

4. Singh Y, Sidhu HS. Management of cereal crop residues for sustainable rice-wheat production system in the Indo-Gangetic plains of India. Proc Indian Nat Sci Acad. 2014;80:95–114. doi: https://doi.org/10.16943/ptinsa/2014/v80i1/55089

5. Lynch J, Cain M, Frame D, Pierrehumbert R. Agriculture’s contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors. Front Sustain Food Syst. 2021;4:518039. doi: https://doi.org/10.3389/fsufs.2020.518039

6. Agamuthu P. Challenges and opportunities in agro-waste management: an Asian perspective. Inaugural Meeting of First Regional 3R Forum in Asia, Tokyo, Japan; 2009 [cited 2023 Feb 25]. vol. 11, pp 4153–8. Available from: https://www.uncrd.or.jp/content/documents/Session2_Agamuthu.pdf

7. Bracco S, Calicioglu O, Gomez San Juan M, Flammini A. Assessing the contribution of bioeconomy to the total economy: a review of national frameworks. Sustainability. 2018;10:1698. doi: https://doi.org/10.3390/su10061698

8. Duque-Acevedo M, Belmonte-Ureña LJ, Cortés-García FJ, Camacho-Ferre F. Agricultural waste: review of the evolution, approaches and perspectives on alternative uses. Glob Ecol Conserv. 2020;22:e00902. doi: https://doi.org/10.1016/j.gecco.2020.e00902

9. Seidavi A, Zaker-Esteghamati H, Scanes CG. Poultry byproducts. Byproducts from agriculture and fisheries. Oxford, UK: John Wiley & Sons; 2019. pp 123–46. doi: https://doi.org/10.1002/9781119383956.ch6

10. Tripathi N, Hills CD, Singh RS, Atkinson CJ. Biomass Waste utilisation in low-carbon products: harnessing a major potential resource. NPJ Clim Atmos Sci. 2019;2:35. doi: https://doi.org/10.1038/s41612-019-0093-5

11. Pattanaik L, Pattnaik F, Saxena DK, Naik SN. Chapter 5–Biofuels from agricultural wastes. In: Basile A, Dalena F, editors. Second and third generation of feedstocks. The evolution of biofuels. Amsterdam, The Netherlands: Elsevier; 2019. pp 103–42. doi: https://doi.org/10.1016/B978-0-12-815162-4.00005-7

12. Saini JK, Saini R, Tewari L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech. 2015;5:337–53. doi: https://doi.org/10.1007/s13205-014-0246-5

13. Riaz S, Ahmad A, Farooq R, Hussain N, Riaz T, Hussain K, et al. Citrus: an overview of food uses and health benefits. Advances in citrus production and research. London, UK: IntechOpen; 2022 [cited 2023 Feb 25]. doi: https://doi.org/10.5772/intechopen.106420

14. Russo C, Maugeri A, Lombardo GE, Musumeci L, Barreca D, Rapisarda A, et al. The second life of citrus fruit waste: a valuable source of bioactive compounds. Molecules. 2021;26:1–20. doi: https://doi.org/10.3390/molecules26195991

15. Chavan P, Singh AK, Kaur G. Recent progress in the utilization of industrial waste and by-products of citrus fruits: a review. J Food Process Eng. 2018;41:e12895. doi: https://doi.org/10.1111/jfpe.12895

16. Zema DA, Calabrò PS, Folino A, Tamburino V, Zappia G, Zimbone SM. Valorisation of citrus processing waste: a review. Waste Manag. 2018;80:252–73. doi: https://doi.org/10.1016/j.wasman.2018.09.024

17. Leporini M, Tundis R, Sicari V, Loizzo MR. Citrus species: modern functional food and nutraceutical-based product ingredient. Ital J Food Sci. 2021;33:63–107. doi: https://doi.org/10.15586/ijfs.v33i2.2009

18. Mahato N, Sharma K, Sinha M, Cho MH. Citrus waste derived nutra-/pharmaceuticals for health benefits: current trends and future perspectives. J Funct Foods. 2018;40:307–16. doi: https://doi.org/10.1016/j.jff.2017.11.015

19. Sharma K, Mahato N, Cho MH, Lee YR. Converting citrus wastes into value-added products: economic and environmental friendly approaches. Nutrition. 2017;34:29–46. doi: https://doi.org/10.1016/j.nut.2016.09.006

20. Klimek-Szczykutowicz M, Szopa A, Ekiert H. Citrus limon (lemon) phenomenon–a review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants. 2020;9:119. doi: https://doi.org/10.3390/plants9010119

21. Ahmed M, Saeid A. Citrus fruits: nutritive value and value-added products. Citrus—research development and biotechnology. London, UK: IntechOpen; 2021 [cited 2023 Feb 26]. doi: https://doi.org/10.5772/intechopen.95881

22. Rao MJ, Zuo H, Xu Q. Genomic insights into citrus domestication and its important agronomic traits. Plant Commun. 2020;2:100138. doi: https://doi.org/10.1016/j.xplc.2020.100138

23. Izquierdo L, Sendra JM. Citrus fruits: composition and characterization. Encyclopedia of food sciences and nutrition. San Diego, CA: Academic Press; 2003 [cited 2023 Feb 26]. doi: https://doi.org/10.1016/b0-12-227055-x/00241-8

24. Bora H, Kamle M, Mahato DK, Tiwari P, Kumar P. Citrus essential oils (CEOs) and their applications in food: an overview. Plants. 2020;9:357. doi: https://doi.org/10.3390/plants9030357

25. Rafiq S, Kaul R, Sofi SA, Bashir N, Nazir F, Ahmad Nayik G. Citrus peel as a source of functional ingredient: a review. J Saudi Soc Agric Sci. 2018;17:351–8. doi: https://doi.org/10.1016/j.jssas.2016.07.006

26. Espinosa-Pardo FA, Nakajima VM, Macedo GA, Macedo JA, Martínez J. Extraction of phenolic compounds from dry and fermented orange pomace using supercritical CO2 and cosolvents. Food Bioprod Proc. 2017;101:1–10. doi: https://doi.org/10.1016/j.fbp.2016.10.002

27. Suri S, Singh A, Nema PK. current applications of citrus fruit processing waste: a scientific outlook. Appl Food Res. 2022;2:100050. doi: https://doi.org/10.1016/j.afres.2022.100050

28. United Nations–Food and Agriculture Organization. Citrus fruit. Fresh and processed—statistical bulletin. Geneva, Switzerland: UN FAO; 2016 [cited 2023 Feb 26]. p 47. Available from: https://www.fao.org/3/i8092e/i8092e.pdf

29. Kuna A, Sowmya M, Sahoo MR, Mayengbam PD, Dasgupta M, Sreedhar M. Value addition and sensory evaluation of products made from underutilized Kachai lemon (Citrus jambhiri) Lush. fruits. J Pharmacogn Phytochem. 2018;7:3032–6.

30. Marín FR, Soler-Rivas C, Benavente-García O, Castillo J, Pérez-Alvarez JA. By-products from different citrus processes as a source of customized functional fibres. Food Chem. 2007;100:736–41. doi: https://doi.org/10.1016/j.foodchem.2005.04.040

31. Mahawar MK, Jalgaonkar K, Bibwe B, Bhushan B, Meena VS, Sonkar RK. Post-harvest processing and valorization of Kinnow Mandarin (Citrus reticulata L.): a review. J Food Sci Technol. 2020;57:799–815. doi: https://doi.org/10.1007/s13197-019-04083-z

32. Berk Z. Chapter 10—By-products of the citrus processing industry. In: Berk Z, editor. Citrus processing industry. San Diego, CA: Academic Press; 2016. pp 219–33. doi: https://doi.org/10.1016/B978-0-12-803133-9.00010-2

33. Abou Baker DH, Ibrahim EA, Salama ZAE. Citrus peels as a source of bioactive compounds with industrial and therapeutic applications. In: Badria FA, editor. Phenolic compounds—chemistry, synthesis, diversity, non-conventional industrial, pharmaceutical and therapeutic applications. London, UK: IntechOpen; 2021 [cited 2023 Feb 27]. doi: https://doi.org/10.5772/intechopen.99591

34. Dimou C, Karantonis HC, Skalkos D, Koutelidakis AE. Valorization of fruits by-products to unconventional sources of additives, oil, biomolecules and innovative functional foods. Curr Pharm Biotechnol. 2019;20:776–86. doi: https://doi.org/10.2174/1389201020666190405181537

35. Reis D, Jones T. Aromatherapy: using essential oils as a supportive therapy. Clin J Oncol Nurs. 2017;21:16–9. doi: https://doi.org/10.1188/17.CJON.16-19

36. Ho SC, Lin CC. Investigation of heat-treating conditions for enhancing the anti-inflammatory activity of citrus fruit (Citrus reticulata) peels. J Agric Food Chem. 2008;56:7976–82. doi: https://doi.org/10.1021/JF801434C

37. Otang WM, Afolayan AJ. Antimicrobial and antioxidant efficacy of Citrus limon L. peel extracts used for skin diseases by Xhosa tribe of Amathole District, Eastern Cape, South Africa. S Afr J Bot. 2016;102:46–9. doi: https://doi.org/10.1016/j.sajb.2015.08.005

38. Figuerola F, Hurtado ML, Estévez AM, Chiffelle I, Asenjo F. Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem. 2005;91:395–401. doi: https://doi.org/10.1016/j.foodchem.2004.04.036

39. Choi SY, Ko HC, Ko SY, Hwang JH, Park JG, Kang SH, et al. Correlation between flavonoid content and the NO production inhibitory activity of peel extracts from various citrus fruits. Biol Pharm Bull. 2007;30:772–8. doi: https://doi.org/10.1248/bpb.30.772

40. Choi SY, Hwang JH, Ko HC, Park JG, Kim SJ. Nobiletin from citrus fruit peel inhibits the dna-binding activity of NF-κB and ROS production in LPS-activated RAW 264.7 cells. J Ethnopharmacol. 2007;113:149–55. doi: https://doi.org/10.1016/j.jep.2007.05.021

41. ?nan Ö, Özcan MM, Aljuhaimi F. Effect of location and Citrus species on total phenolic, antioxidant, and radical scavenging activities of some citrus seed and oils. J Food Process Preserv. 2018;42:e13555. doi: https://doi.org/10.1111/jfpp.13555

42. Khettal B, Kadri N, Tighilet K, Adjebli A, Dahmoune F, Maiza-Benabdeslam F. Phenolic compounds from Citrus leaves: antioxidant activity and enzymatic browning inhibition. J Complement Integr Med. 2017;14:1–13. doi: https://doi.org/10.1515/JCIM-2016-0030

43. Song HY, Jo A, Shin J, Lim EH, Lee YE, Jeong DE, et al. Anti-inflammatory activities of isogosferol, a furanocoumarin isolated from Citrus junos seed shells through bioactivity-guided fractionation. Molecules. 2019;24:4088. doi: https://doi.org/10.3390/molecules24224088

44. Nikfar S, Behboudi AF. Limonene. Encyclopedia of toxicology. 3rd edition. Amsterdam, The Netherlands: Elsevier Inc; 2014. pp 78–82. doi: https://doi.org/10.1016/B978-0-12-386454-3.00628-X

45. Mahato N, Agarwal P, Mohapatra D, Sinha M, Dhyani A, Pathak B, et al. Biotransformation of citrus waste-II: bio-sorbent materials for removal of dyes, heavy metals and toxic chemicals from polluted water. Processes. 2021;9:1544. doi: https://doi.org/10.3390/pr9091544

46. Pinto D, Cádiz-Gurrea MDLL, Silva AM, Delerue-Matos C, Rodrigues F. Cosmetics–food waste recovery. Processing technologies, industrial techniques, and applications. San Diego, CA: Academic Press; 2021. pp 503–28. doi: https://doi.org/10.1016/B978-0-12-820563-1.00004-4

47. Apraj VD, Pandita NS. Evaluation of skin anti-aging potential of Citrus reticulata Blanco Peel. Pharmacogn Res. 2016;8:160. doi: https://doi.org/10.4103/0974-8490.182913

48. Murakami A. Chemoprevention with phytochemicals targeting inducible nitric oxide synthase. Forum Nutr. 2009;61:193–203. doi: https://doi.org/10.1159/000212751

49. Nair SA, Sr RK, Nair AS, Baby S. Citrus peels prevent cancer. Phytomedicine. 2018;50:231–7. doi: https://doi.org/10.1016/j.phymed.2017.08.011

50. Grohmann K, Manthey JA, Cameron RG, Buslig BS. Purification of citrus peel juice and molasses. J Agric Food Chem. 1999;47:4859–67. doi: https://doi.org/10.1021/JF9903049

51. Khan MK, Abert-Vian M, Fabiano-Tixier AS, Dangles O, Chemat F. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem. 2010;119:851–8. doi: https://doi.org/10.1016/j.foodchem.2009.08.046

52. Boluda-Aguilar M, López-Gómez A. Production of bioethanol by fermentation of lemon (Citrus limon L.) peel wastes pretreated with steam explosion. J Ind Crops Prod. 2013;41:188–97. doi: https://doi.org/10.1016/j.indcrop.2012.04.031

53. Abdelbasir SM, McCourt KM, Lee CM, Vanegas DC. Waste-derived nanoparticles: synthesis approaches, environmental applications, and sustainability considerations. Front Chem. 2020;8:782. doi: https://doi.org/10.3389/fchem.2020.00782/bibtex

54. Khabeeri OM, Al-Thabaiti SA, Khan Z. Citrus sinensis peel waste assisted synthesis of AgNPs: effect of surfactant on the nucleation and morphology. SN Appl Sci. 2020;2:2038. doi: https://doi.org/10.1007/s42452-020-03801-z

55. Annu, Ahmed S, Kaur G, Sharma P, Singh S, Ikram S. Fruit waste (peel) as bio-reductant to synthesize silver nanoparticles with antimicrobial, antioxidant and cytotoxic activities. J Appl Biomed. 2018;16:221–31. doi: https://doi.org/10.1016/j.jab.2018.02.002.

56. Hamdy AS, Gomaa M, Ali AM. Fundamentals of waste recycling for nanomaterial manufacturing. In: Topics in mining, metallurgy and materials engineering waste recycling technologies for nanomaterials manufacturing. Switzerland AG: Springer Nature; 2021 [cited 2023 Mar 01]. pp 3–24. Available from: https://link.springer.com/book/10.1007/978-3-030-68031-2

57. Hof F, Kampioti K, Huang K, Jaillet C, Derré A, Poulin P, et al. Conductive inks of graphitic nanoparticles from a sustainable carbon feedstock. Carbon NY. 2017;111:142–9. doi: https://doi.org/10.1016/j.carbon.2016.09.052

58. Teo EYL, Ali GAM, Algarni H, Cheewasedtham W, Rujiralai T, Chong KF. One-step production of pyrene-1-boronic acid functionalized graphene for dopamine detection. Mater Chem Phys. 2019;231:286–91. doi: https://doi.org/10.1016/j.matchemphys.2019.04.029

59. Veskoukis AS, Tsatsakis AM, Kouretas D. Dietary oxidative stress and antioxidant defense with an emphasis on plant extract administration. Cell Stress Chaperones. 2012;17:11. doi: https://doi.org/10.1007/S12192-011-0293-3

60. Costanzo G, Vitale E, Iesce MR, Naviglio D, Amoresano A, Fontanarosa C, et al. Antioxidant properties of pulp, peel and seeds of Phlegrean Mandarin (Citrus reticulata Blanco) at different stages of fruit ripening. Antioxidants (Basel). 2022;11:187. doi: https://doi.org/10.3390/antiox11020187

61. Zou Z, Xi W, Hu Y, Nie C, Zhou Z. Antioxidant activity of citrus fruits. Food Chem. 2016;196:885–96. doi: https://doi.org/10.1016/j.foodchem.2015.09.072

62. Lv X, Zhao S, Ning Z, Zeng H, Shu Y, Tao O, et al. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chem Cent J. 2015;9:68. doi: https://doi.org/10.1186/S13065-015-0145-9

63. Anwar F, Abbas A, Alkharfy KM, Gilani AH. Cardamom (Elettaria cardamomum Maton) oils. Essential oils in food preservation, flavor and safety. San Diego, CA: Academic Press; 2016. pp 295–301. doi: https://doi.org/10.1016/B978-0-12-416641-7.00033-X

64. Castro-Vazquez L, Alañón ME, Rodríguez-Robledo V, Pérez-Coello MS, Hermosín-Gutierrez I, Díaz-Maroto MC, et al. Bioactive flavonoids, antioxidant behaviour, and cytoprotective effects of dried grapefruit peels (Citrus paradisi Macf.). Oxid Med Cell Longev. 2016;2016:8915729. doi: https://doi.org/10.1155/2016/8915729

65. Kamal GM, Yasin Ashraf M, Hussain AI, Shahzadi A, Chughtai MI. Antioxidant potential of peel essential oils of three Pakistani Citrus species: Citrus reticulata, Citrus sinensis and Citrus paradisii. Pak J Bot. 2013;45:1449–54.

66. Moosavy MH, Hassanzadeh P, Mohammadzadeh E, Mahmoudi R, Khatibi SA, Mardani K. Antioxidant and antimicrobial activities of essential oil of lemon (Citrus limon) peel in vitro and in a food model. J Food Qual Hazards Control. 2017;4:42–8.

67. Janoti DS, Rana M, Rawat AKS. Comparative antioxidant activity of essential oil of leaves of Citrus limettioides and Citrus pseudolimon of Nainital district. J Pharmacogn Phytochem. 2014;2:24–6.

68. Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, et al. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules. 2015;20:21138–56. doi: https://doi.org/10.3390/molecules201219753

69. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204. doi: https://doi.org/10.18632/oncotarget.23208

70. Khansari N, Shakiba Y, Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov. 2009;3:73–80. doi: https://doi.org/10.2174/187221309787158371

71. Branco ACCC, Yoshikawa FSY, Pietrobon AJ, Sato MN. Role of histamine in modulating the immune response and inflammation. Med Inflamm. 2018;2018:9524075. doi: https://doi.org/10.1155/2018/9524075

72. Amorim JL, Simas DLR, Pinheiro MMG, Moreno DSA, Alviano CS, da Silva AJR, et al. Anti-inflammatory properties and chemical characterization of the essential oils of four Citrus species. PLoS One. 2016;11:e0153643. doi: https://doi.org/10.1371/journal.pone.0153643

73. Khodabakhsh P, Shafaroodi H, Asgarpanah J. Analgesic and anti-inflammatory activities of Citrus aurantium L. blossoms essential oil (Neroli): involvement of the nitric oxide/cyclic-guanosine monophosphate pathway. J Nat Med. 2015;69:324–31. doi: https://doi.org/10.1007/S11418-015-0896-6

74. Nasri M, Bedjou F, Porras D, Martínez-Flórez S. Activités antioxydantes, anti-inflammatoires et analgésiques des extraits des meuilles de Citrus reticulata Blanco: etude in vivo et in vitro. Phytotherapie. 2017;2017:1–13. doi: https://doi.org/10.1007/S10298-017-1094-8/metrics

75. Michel P, Dongmo J, Tchoumbougnang F, Boyom FF, Sonwa ET, Henri P, et al. Antiradical, antioxidant activities and anti-inflammatory potential of the essential oils of the varieties of Citrus limon and Citrus aurantifolia growing in Cameroon. J Asian Sci Res. 2013;3:1046–57.

76. Ihara H, Yamamoto H, Ida T, Tsutsuki H, Sakamoto T, Fujita T, et al. Inhibition of nitric oxide production and inducible nitric oxide synthase expression by a polymethoxyflavone from young fruits of Citrus unshiu in rat primary astrocytes. Biosci Biotechnol Biochem. 2012;76:1843–8. doi: https://doi.org/10.1271/BBB.120215

77. Kim GS, Kang SR, Han DY, Park K, Park HS, Cho YB, et al. Suppressive effect on lipopolysaccharide-induced proinflammatory mediators by Citrus aurantium L. in macrophage RAW 264.7 cells via NF-κB signal pathway. Evid Based Complement Alternat Med. 2011;2011:248592. doi: https://doi.org/10.1155/2011/248592

78. Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods. 2019;8(3):92. doi: https://doi.org/10.3390/foods8030092

79. Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, et al. Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods. 2010;7:1–19. doi: https://doi.org/10.1616/1476-2137.15880

80. Bamigbade GB, Subhash AJ, Kamal-Eldin A, Nystr?m L, Ayyash M. An updated review on prebiotics: insights on potentials of food seeds wastes as source of potential prebiotics. Molecules. 2022;18:5947. doi: https://doi.org/10.3390/molecules27185947

81. Foti P, Ballistreri G, Timpanaro N, Rapisarda P, Romeo FV. Prebiotic effects of citrus pectic oligosaccharides. Nat Prod Res. 2022;36:3173–6.

82. Swaroopa C, Kashmira L, Vikas G, Rajan W. Assessment of the prebiotic potential of seed coats from green gram (Vigna radiata) and black gram (Vigna mungo) J Food Sci Technol. 2022;59:583–8. doi: https://doi.org/10.1007/s13197-021-05043-2

83. Fallico B, Ballistreri G, Arena E, Brighina S, Rapisarda P. Bioactive compounds in blood oranges (Citrus sinensis (L.) Osbeck): level and intake. Food Chem. 2017;215:67–75.

84. Dranca F, Oroian M. Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Res Intern. 2018;113:327–50. doi: https://doi.org/10.1016/j.foodres.2018.06.065

85. Chung WSH, Meijerink M, Zeuner B, Holck J, Louis P, Meyer AS, et al. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiol Ecol. 2017;93:fix127. doi: https://doi.org/10.1093/femsec/fix127

86. Gómez B, Gullón B, Yáñez R, Schols H, Alonso JL. Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: a comparative evaluation. J Funct Foods. 2016;20:108–21. doi: https://doi.org/10.1016/j.jff.2015.10.029

87. Ho YY, Lin CM, Wu MC. Evaluation of the prebiotic effects of citrus pectin hydrolysate. J Food Drug Anal. 2017;25:550–8.

88. Li P-J, Xia J-L, Nie Z-Y, Shan Y. Pectic oligosaccharides hydrolyzed from orange peel by fungal multi-enzyme complexes and their prebiotic and antibacterial potentials. LWT Food Sci Tech. 2016;69:203–10.

89. Zhang S, Hu H, Wang L, Liu F, Pan S. Preparation and prebiotic potential of pectin oligosaccharides obtained from citrus peel pectin. Food Chem. 2018;244:232–7. doi: https://doi.org/10.1016/j.foodchem.2017.10.071

90. Míguez B, Vila C, Venema K, Parajó JC, Alonso JL. Prebiotic effects of pectooligosaccharides obtained from lemon peel on the microbiota from elderly donors using an in vitro continuous colon model (TIM-2). Food Funct. 2020;11:9984–99. doi: https://doi.org/10.1039/d0fo01848a

91. Ciriminna R, Fidalgo A, Delisi R. Pectin production and global market. Food Ind Hi Tech. 2016;27(5):17–20.

92. Ladaniya MS. Nutritive and medicinal values of citrus fruits. Citrus fruit. San Diego, CA: Academic Press; 2008. pp 501–14. doi: https://doi.org/10.1016/B978-012374130-1.50022-X

93. Franco-Vega A, Reyes-Jurado F, Cardoso-Ugarte GA, Sosa-Morales ME, Palou E, López-Malo A. Sweet orange (Citrus sinensis) oils. Essential oils in food preservation, flavor and safety. San Diego, CA: Academic Press; 2016. pp 783–90. doi: https://doi.org/10.1016/B978-0-12-416641-7.00089-4

94. Yabalak E, Erdo?an Eliuz EA, Nazl? MD. Evaluation of Citrus reticulata essential oil: chemical composition and antibacterial effectiveness incorporated gelatin on E. coli and S. aureus. Int J Environ Health Res. 2022;32:1261–70.

95. Vasek OM, Cáceres LM, Chamorro ER, Velasco GA. Antibacterial activity of Citrus paradisii essential oil. J Nat Prod. 2015;8:16–26.

96. Xiao Nan Y, Sun Chul K. Chemical composition, antioxidant and antibacterial activities of essential oil from Korean Citrus unshiu peel. J Agric Chem Environ. 2013;2013:42–9. doi: https://doi.org/10.4236/JACEN.2013.23007

97. Guo Y, Baschieri A, Amorati R, Valgimigli L. Synergic antioxidant activity of γ-terpinene with phenols and polyphenols enabled by hydroperoxyl radicals. Food Chem. 2021;345:128468. doi: https://doi.org/10.1016/j.foodchem.2020.128468

98. Kumar VR, Chaurasia L, Verma RK, Kumar M. Antifungal activity of essential oils against selected building fungi. Indian J Nat Prod Resour. 2011;2:448–51.

99. Al–Âni W, Tawfik N, Shehab E. Antimicrobial activity of grapefruit seeds extracts (in vitro study). Al-Rafidain Dent J. 2011;11:341–5. doi: https://doi.org/10.33899/RDEN.2011.9091

100. Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: an overview. Avicenna J Med. 2020;10:174–88. doi: https://doi.org/10.4103/AJM.AJM_53_20.

101. Schuster DP, Duvuuri V. Diabetes mellitus. Clin Podiatr Med Surg. 2002;19:79–107. doi: https://doi.org/10.1016/S0891-8422(03)00082-X

102. Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs. 2005;65:385–411. doi: https://doi.org/10.2165/00003495-200565030-00005

103. Khan UM, Sameen A, Aadil RM, Shahid M, Sezen S, Zarrabi A, et al. Citrus genus and its waste utilization: a review on health-promoting activities and industrial application. Evid Based Complement Alternat Med. 2021;2021:2488804. doi: https://doi.org/10.1155/2021/2488804

104. Oguntibeju OO. Hypoglycaemic and anti-diabetic activity of selected African medicinal plants. Int J Physiol Pathophysiol Pharmacol. 2019;11:224.

105. Azizah T, Suhendi A, Heng Yen K. Antidiabetic and antihypercholesterolemic activities of Citrus sinensis peel: in vivo study. Nat J Phys Pharm Pharmacol. 2015;5:382–5. doi: https://doi.org/10.5455/njppp.2015.5.2807201561

106. Ali AM, Gabbar MA, Abdel-Twab SM, Fahmy EM, Ebaid H, Alhazza IM, et al. Antidiabetic potency, antioxidant effects, and mode of actions of Citrus reticulata fruit peel hydroethanolic extract, hesperidin, and quercetin in nicotinamide/streptozotocin-induced Wistar diabetic rats. Oxid Med Cell Longev. 2020;2020:1730492. doi: https://doi.org/10.1155/2020/1730492

107. Naim M, Mohammad Amjad F, Sultana S, Nazrul Isalm S, Amjad Hossain M, Begum R, et al. A comparative study of antidiabetic activity of hexane-extract of lemon peel (Citrus limon) and glimepiride in alloxan-induced diabetic rats. Bangladesh Pharm J. 2012;15:131–4.

108. Kim SH, Hur HJ, Yang HJ, Kim HJ, Kim MJ, Park JH, et al. Citrus junos tanaka peel extract exerts antidiabetic effects via AMPK and PPAR-γ both in vitro and in vivo in mice fed a high-fat diet. Evid Based Complement Alternat Med. 2013;2013:921012. doi: https://doi.org/10.1155/2013/921012

109. Kundusen S, Haldar PK, Gupta M, Mazumder UK, Saha P, Bala A, et al. Evaluation of antihyperglycemic activity of Citrus limetta fruit peel in streptozotocin-induced diabetic rats. ISRN Endocrinol. 2011;2011:1–6. doi: https://doi.org/10.5402/2011/869273

110. Nurdin SU, Sabarina D, Subeki, Astuti S. Antidiabetic and antioxidant activities of bay, pandan, Citrus leaves and their combination in vitro. Biomed Pharmacol J. 2019;12:833–41. doi: https://doi.org/10.13005/BPJ/1707

111. Ghauri AO, Ahmad S, Rehman T. In vitro and in vivo anti-diabetic activity of Citrullus colocynthis pulpy flesh with seeds hydro-ethanolic extract. J Complement Integr Med. 2020;17: 1–9.. doi: https://doi.org/10.1515/JCIM-2018-0228

112. Sah AN, Joshi A, Juyal V, Kumar T. Antidiabetic and hypolipidemic activity of Citrus medica Linn. seed extract in streptozotocin induced diabetic rats. Pharmacogn J. 2011;3:80–4. doi: https://doi.org/10.5530/PJ.2011.23.12

113. Cooper GM. The development and causes of cancer. In: The cell: a molecular approach. 2nd edition. Sunderland, MA: Sinauer Associates; 2000.

114. Li Y, Li S, Meng X, Gan RY, Zhang JJ, Li H. Dietary natural products for prevention and treatment of breast cancer. Nutrients. 2017;9:728. doi: https://doi.org/10.3390/NU9070728

115. Jomaa S, Rahmo A, Alnori AS, Chatty ME. The cytotoxic effect of essential oil of Syrian Citrus limon peel on human colorectal carcinoma cell line (Lim1863). Middle East J Cancer. 2012;3:15–21.

116. Monajemi R, Oryan S, Haeri-Roohani A, Ghannadi A, Jafarian A. Cytotoxic effects of essential oils of some Iranian citrus peels. Iran J Pharm Res. 2005;3:183–7. doi: https://doi.org/10.22037/ijpr.2010.635

117. Li C, Cai Q, Wu X, Tan Z, Huang S, Wei C, et al. Variation in compositions and biological activities of essential oils from four Citrus species: Citrus limon, Citrus sinensis, Citrus paradisii, and Citrus reticulata. Chem Biodivers. 2022;19:e202100910. doi: https://doi.org/10.1002/CBDV.202100910

118. Kundusen S, Bala A, Kar B, Bhattacharya S, Mazumder UK, Gupta M, et al. Antitumor potential of Citrus limetta fruit peel in ehrlich ascites carcinoma bearing Swiss albino mice. Alternat Med Studies. 2012;2:e10. doi: https://doi.org/10.4081/ams.2012.e10

119. Ruknuddin G, Prajapati P, Chaudhari SY. Ethno-medicinal values of Citrus genus: a review. Med J Dr DY Patil Univ. 2016;9:560. doi: https://doi.org/10.4103/0975-2870.192146

120. Zaki NL, Naeem MMM. Antioxidant, antimicrobial and anticancer activities of citrus peels to improve the shelf life of yoghurt drink. Egypt J Food Sci. 2021;49:249–65. doi: https://doi.org/10.21608/EJFS.2021.58310.1092

121. Ho Y, Suphrom N, Daowtak K, Potup P, Thongsri Y, Usuwanthim K. Anticancer effect of Citrus hystrix DC. leaf extract and its bioactive constituents citronellol and citronellal on the triple negative breast cancer MDA-MB-231 cell line. Pharmaceuticals. 2020;13:476. doi: https://doi.org/10.3390/PH13120476

122. Kim J, Jayaprakasha GK, Uckoo RM, Patil BS. Evaluation of chemopreventive and cytotoxic effect of lemon seed extracts on human breast cancer (MCF-7) cells. Food Chem Toxicol. 2012;50:423–30. doi: https://doi.org/10.1016/j.fct.2011.10.057

123. United States Environmental Protection Agency (US EPA). Insecticides. Washington, DC: US EPA, CADDIS Vol. 2 [updated 2023 May 18; cited 2023 May 25]. Available from: https://www.epa.gov/caddis-vol2/insecticides

124. Damalas CA, Eleftherohorinos IG. Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health. 2011;8:1402. doi: https://doi.org/10.3390/IJERPH8051402

125. World Health Organization. Pesticide residues in food. Geneva, Switzerland: WHO; [updated 2022 Sep 15; cited 2023 May 25]. Available from: https://www.who.int/news-room/fact-sheets/detail/pesticide-residues-in-food

126. Ahmed N, Alam M, Saeed M, Ullah H, Iqbal T, Al-Mutairi KA, et al. Botanical insecticides are a non-toxic alternative to conventional pesticides in the control of insects and pests. Global decline of insects. London, UK: IntechOpen; 2021. doi: https://doi.org/10.5772/intechopen.100416

127. Hollingsworth RG. Limonene, a citrus extract, for control of mealybugs and scale insects. J Econ Entomol. 2005;98:772–9. doi: https://doi.org/10.1603/0022-0493-98.3.772

128. Musa AK, Sulyman A. Bioefficacy of single and mixed applications of Citrus paradisii Maef and Citrus aurantifolia Swingle peel extracts against seed beetle, Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae). Discourse J Agric Food Sci. 2014;2:85–90.

129. Author C, Kosar Abbas S, Ahmad F, Sagheer M, Yasir M, Ahmad S, et al. Insecticidal and growth inhibition activities of Citrus paradisii and Citrus reticulata essential oils against lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae). World J Zoo. 2012;7:289–94. doi: https://doi.org/10.5829/idosi.wjz.2012.7.4.62181

130. Akhtar M, Iram N. Repellent effects of certain plant extract against rice weevil Sitophilus oryzae L. (Coleoptera: Curculionidae). Int J Agric Appl Sci. 2013;5:69–73.

131. Guettal S, Tine S, Tine-Djebbar F, Soltani N. Evaluation of Citrus limonum (Sapindales: Rutaceae) L. essential oil as protectant against the granary weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae). Allelo J. 2020;51:79–92. doi: https://doi.org/10.26651/allelo.j/2020-51-1-1292

132. Fouad HA, da Camara CAG. Chemical composition and bioactivity of peel oils from Citrus aurantiifolia and Citrus reticulata and enantiomers of their major constituent against Sitophilus zeamais (Coleoptera: Curculionidae). J Stored Prod Res. 2017;73:30–6. doi: https://doi.org/10.1016/J.JSPR.2017.06.001

133. Oboh G, Ademosun AO, Olumuyiwa TA, Olasehinde TA, Ademiluyi AO, Adeyemo AC. Insecticidal activity of essential oil from orange peels (Citrus sinensis) against Tribolium confusum, Callosobruchus maculatus and Sitophilus oryzae and its inhibitory effects on acetylcholinesterase and Na+/K+-ATPase activities. Phytoparasitica. 2017;45:501–8. doi: https://doi.org/10.1007/S12600-017-0620-Z

134. Siskos EP, Konstantopoulou MA, Mazomenos BE. Insecticidal activity of Citrus aurantium peel extract against Bactrocera oleae and Ceratitis capitata adults (Diptera: Tephritidae). J Appl Entomol. 2009;133:108–16. doi: https://doi.org/10.1111/J.1439-0418.2008.01312.X

135. Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr. 2004;134:3479S–85S. doi: https://doi.org/10.1093/JN/134.12.3479S

136. Kennedy DO, Wightman EL. Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv Nutr. 2011;2:32. doi: https://doi.org/10.3945/AN.110.000117

137. Oz AT, Kafkas E, Oz AT, Kafkas E. Phytochemicals in fruits and vegetables. Superfood and functional food–an overview of their processing and utilization. London, UK: IntechOpen; 2017 [cited 2023 May 26]. doi: https://doi.org/10.5772/66987

138. Presentato A, Scurria A, Albanese L, Lino C, Sciortino M, Pagliaro M, et al. Superior antibacterial activity of integral lemon pectin extracted via hydrodynamic cavitation. Chem Open. 2020;9:628–30. doi: https://doi.org/10.1002/open.202000076

139. Wang J, Zhai Y, Ou M, Bian Y, Tang C, Zhang W, et al. Protective effect of lemon peel extract on oxidative stress in H9c2 rat heart cell injury. Drug Des Devel Ther. 2021;15:2047–58. doi: https://doi.org/10.2147/DDDT.S304624.

140. Singh N, Singh SK. Citrus limon extract: possible inhibitory mechanisms affecting testicular functions and fertility in male mice. Syst Biol Reprod Med. 2016;62:39–48. doi: https://doi.org/10.3109/19396368.2015.1078422

141. Rahman MM, Jahan FI, Mim SA. A brief phytochemical investigation and pharmacological uses of citrus seed: a review. PhOL. 2019;1:94–103.

142. Loizzo MR, Tundis R, Bonesi M, Menichini F, De Luca D, Colica C, et al. Evaluation of Citrus aurantifolia peel and leaves extracts for their chemical composition, antioxidant and anti-cholinesterase activities. J Sci Food Agric. 2012;92:2960–7. doi: https://doi.org/10.1002/JSFA.5708.

143. Bahaa Al-Rubai A, Hind Hussein OL, Tahrrer Hadi SA. Antimicrobial activity for crude watery extract of seeds of Citrus aurantifolia (lime fruit) against Gram positive and negative bacteria in vitro. J Al-Ma’moon Coll. 2016;27:404–16.

144. Favela-Hernández JMJ, González-Santiago O, Ramírez-Cabrera MA, Esquivel-Ferriño PC, Camacho-Corona MDR. Chemistry and pharmacology of Citrus sinensis. Molecules. 2016;21:247. doi: https://doi.org/10.3390/molecules21020247

145. Maia MF, Moore SJ. Plant-based insect repellents: a review of their efficacy, development and testing. Malaria J. 2011;10:1–15. doi: https://doi.org/10.1186/1475-2875-10-S1-S11/TABLES/3

146. Traboulsi AF, El-Haj S, Tueni M, Taoubi K, Nader NA, Mrad A. Repellency and toxicity of aromatic plant extracts against the mosquito Culex pipiens Molestus (Diptera: Culicidae). Pest Manag Sci. 2005;61:597–604. doi: https://doi.org/10.1002/PS.1017

147. Aldholmi M, Marchand P, Ourliac-Garnier I, le Pape P, Ganesan A. A decade of antifungal leads from natural products: 2010–2019. Pharmaceuticals. 2019;12:182. doi: https://doi.org/10.3390/PH12040182

148. Yekeen MO, Ajala OO, Alarape AB. Antifungal activities of Citrus sinensis seed oil against Lentinus sajor-caju. Pelagia Res Library Adv Appl Sci Res. 2014;5:109–13.

149. Bissim SM, Kenmogne SB, Lobe JS, Atangana AF, Bissoue AN, Langat MK, et al. The chemistry and biological activities of Citrus clementina Hort. Ex Tanaka (Rutaceae), a vegetatively propagated species. Nat Prod Res. 2021;35:4839–42. doi: https://doi.org/10.1080/14786419.2020.1731740

150. Leporini M, Loizzo MR, Sicari V, Pellicanò TM, Reitano A, Dugay A, et al. Citrus × clementina hort. juice enriched with its by-products (peels and leaves): chemical composition, in vitro bioactivity, and impact of processing. Antioxidants. 2020;9:298. doi: https://doi.org/10.3390/antiox9040298

151. Fayek NM, El-Shazly AH, Abdel-Monem AR, Moussa MY, Abd-Elwahab SM, El-Tanbouly ND. Comparative study of the hypocholesterolemic, antidiabetic effects of four agro-waste citrus peels cultivars and their HPLC standardization. Rev Bras Farmacogn. 2017;27:488–94. doi: https://doi.org/10.1016/j.bjp.2017.01.010

152. Liao J, Xu T, Liu YH, Wang SZ. A new limonoid from the seeds of Citrus reticulata Blanco. Nat Prod Res. 2012;26:756–61. doi: https://doi.org/10.1080/14786419.2010.537659

153. Kowalski S, Wyrzykowski D, Inkielewicz-St?pniak I. Molecular and cellular mechanisms of cytotoxic activity of vanadium compounds against cancer cells. Molecules. 2020;25:1757. doi: https://doi.org/10.3390/molecules25071757

154. Phetkul U, Phongpaichit S, Watanapokasin R, Mahabusarakam W. New depside from Citrus reticulata Blanco. Nat Prod Res. 2014;28:945–51. doi: https://doi.org/10.1080/14786419.2014.896010

155. Siahpoosh A, Javedani F. Antioxidative capacity of Iranian Citrus deliciosa peels. Free Rad Antioxidants. 2012;2(2):62–7. doi: https://doi.org/10.5530/ax.2012.2.11

156. Miya G, Nyalambisa M, Oyedeji O, Gondwe M, Oyedeji A. Chemical profiling, toxicity and anti-inflammatory activities of essential oils from three grapefruit cultivars from Kwazulu-Natal in South Africa. Molecules. 2021;26:3387. doi: https://doi.org/10.3390/molecules26113387

157. Adeneye AA. Methanol seed extract of Citrus paradisii Macfad lowers blood glucose, lipids and cardiovascular disease risk indices in normal Wistar rats. Nig Q J Hosp Med. 2008;18:16–20. doi: https://doi.org/10.4314/NQJHM.V18I1.44950

158. Adeneye AA. Hypoglycemic and hypolipidemic effects of methanol seed extract of Citrus paradisii Macfad (Rutaceae) in alloxan-induced diabetic Wistar rats. Nig Q J Hosp Med. 2008;18:211–5. doi: https://doi.org/10.4314/NQJHM.V18I4.45040

159. Cvetnic Z and V-KS. Antimicrobial activity of grapefruit seed and pulp ethanolic extract. Acta Pharm. 2004;54:243–50.

160. Maksoud S, Abdel-Massih RM, Rajha HN, Louka N, Chemat F, Barba FJ, et al. Citrus aurantium L. active constituents, biological effects and extraction methods. An updated review. Molecules. 2021;26:5832. doi: https://doi.org/10.3390/molecules26195832

Article Metrics
78 Views 20 Downloads 98 Total

Year

Month

Related Search

By author names