Prevalence patterns, virulence indices, and antibiotics resistance in Campylobacter

Manal Hadi Ghaffoori Kanaan Fatten Ahmad Mohammed Sura Saad Abdullah   

Open Access   

Published:  May 17, 2024

DOI: 10.7324/JAPS.2024.177646
Abstract

Infections caused by Campylobacter are consistently ranked among the top four leading causes of severe diarrheal enteritis throughout the globe. It is a common type of food poisoning, with symptoms ranging from mild to severe. Campylobacteriosis affects over 550 million people each year and kills approximately 33 million. More than 90% of cases are attributed to Campylobacter jejuni (C. jejuni), while only around 5% are attributed to Campylobacter coli (C. coli). Human campylobacteriosis is most usually caused by improper handling of raw chicken carcasses or eating of inadequately prepared poultry. Campylobacteriosis cases frequently resolve on their own with only supportive care. In extreme cases, macrolides and fluoroquinolones are employed. Gentamicin is an aminoglycoside and is the treatment of choice for severe instances of bacteremia as well as other forms of systemic infections with Campylobacter. Selection pressure resulting from misuse and abuse of antibiotics in both human and veterinary medicine is a main contributing factor in the evolution and spread of resistance in commensal bacteria as well as in human illnesses. Therefore, this paper aims to highlight the occurrence, pathogenicity, treatment options, and antibiotic resistance of this pathogen.


Keyword:     Antimicrobial resistance Campylobacter infections treatment virulence factors


Citation:

Kanaan MHG, Mohammed FA, Abdullah SS. Prevalence patterns, virulence indices, and antibiotics resistance in Campylobacter. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.177646

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. World Health Organization (WHO). The global view of campylobacteriosis: report of an expert consultation, Utrecht, Netherlands, 2013;9–11 July 2012.

2. Kanaan MHG, Abdullah SS. Emerging threats by campylobacter on public health. Germany: LAP LAMBERT Academic Publisher; ISBN: 978-620-4-74990-7; 2022.

3. Bahrndorff S, Rangstrup-Christensen L, Nordentoft S, Hald B. Foodborne disease prevention and broiler chickens with reduced Campylobacter infection. Emerg. Infect. Dis. 2013;19(3):425. doi: https://doi.org/10.3201/eid1903.111593

4. Mikulic M, Humski A, Njari B, Ostovic M, Duvnjak S, Cvetnic Z. Prevalence of thermotolerant campylobacter spp. in chicken meat in croatia and multilocus sequence typing of a small subset of Campylobacter jejuni and Campylobacter coli isolates. Food Technol Biotechnol. 2016;54(4):475–81. doi: https://doi.org/10.17113/ftb.54.04.16.4647

5. Tillotson, GS, Theriault N. New and alternative approaches to tackling antibiotic resistance. F1000prime reports. 2013;5(15). doi: https://doi.org/10.12703/P5-51

6. Iovine NM. Resistance mechanisms in Campylobacter jejuni. Virulence. 2013;4(3):230–40. doi: https://doi.org/10.4161/viru.23753

7. Chai LC, Fatimah AB, Ghazali FM, Lee HY, Tunung R, Shamsinar AT et al. Biosafety of Campylobacter jejuni from raw vegetables consumed as Ulam with reference to their resistance to antibiotics. Int. Food Res. 2008;15(2):125–135.

8. European Food Safety Authority (EFSA). Campylobacteriosis and salmonellosis still below pre-pandemic levels; West Nile virus infections on the rise. 12 December 2023. Available from https://www.efsa.europa.eu/en/news/campylobacteriosis-and-salmonellosis-still-below-pre-pandemic-levels-west-nile-virus

9. Taylor WJ. Isolation, antibiotic resistance, and molecular characterization of Campylobacter from poultry, swine and dairy cows. Doctoral Dissertation University of Tennessee, Knoxville. 2012.

10. Hadi Ghaffoori Kanaan M, Jebur Obayes Al-Isawi A, Ahmad Mohamme F. Antimicrobial resistance and antibiogram of thermotolerant campylobacter recovered from poultry meat in Baghdad Markets, Iraq. Arch. Razi Inst. 2022;77(1):231–37. doi: https://doi.org/10.22092/ari.2021.356362.1828

11. Kanaan, MHG 2017. Antimicrobial efficiency of ozonated water as an intervention against food-borne pathogen Campylobacter jejuni contaminating chicken meat Doctoral Dissertation, University of Baghdad, Iraq. 2017.

12. Kanaan MH, Khashan HT. Prevalence of multidrug resistant thermotolerant species of Campylobacter in retail frozen chicken meat in Baghdad Province. Curr Res Microbiol Biotechnol. 2018;6(1):1431–40.

13. Kanaan MHG, Abdulwahid MT. Prevalence rate, antibiotic resistance and biotyping of thermotolerant campylobacter isolated from poultry products vended in Wasit Markets. Curr. Res. Nutr. Food Sci. 2019;7(3):905–17. doi: https://dx.doi.org/10.12944/CRNFSJ.7.3.29

14. Lopes GV, Ramires T, Kleinubing NR, Scheik LK, Fiorentini ÂM, da Silva WP. Virulence factors of foodborne pathogen Campylobacter jejuni. Microb. Pathog. 2021;161(Pt A):105265. doi: https://doi.org/10.1016/j.micpath.2021.105265

15. Skarp CPA, Hänninen ML, Rautelin HIK. Campylobacteriosis: the role of poultry meat. Clin. Microbiol. Infect. 2016;22(2):103–108. doi: http://dx.doi.org/10.1016/j.cmi.2015.11.019

16. Deckert AE, Taboada E, Mutschall S, Poljak Z, Reid-Smith RJ, Tamblyn S et al. Molecular epidemiology of Campylobacter jejuni human and chicken isolates from two health units. Foodborne Pathog Dis. 2014;11(2),150–55. doi: http://doi.org/10.1089/fpd.2013.1610

17. Bessell PR, Rotariu O, Innocent GT, Smith-Palmer A, Strachan NJ, Forbes KJ et al. Using sequence data to identify alternative routes and risk of infection: a case-study of campylobacter in Scotland. BMC Infect. Dis. 2012;12(1):80. doi: https://doi.org/10.1186/1471-2334-12-80

18. Ellström P, Hansson I, Söderström C, Engvall EO, Rautelin H. A prospective follow-up study on transmission of Campylobacter from poultry to abattoir workers. Foodborne pathogens and disease. 2014;11(9):684–8. Doi: https://doi.org/10.1089/fpd.2014.1753.

19. de Perio MA, Niemeier RT, Levine SJ, Gruszynski K, Gibbins JD. Campylobacter infection in poultry-processing workers, Virginia, USA, 2008–2011. Emerg. Infect. Dis. 2013;19(2):286–8. doi: https://doi.org/10.3201/eid1902.121147

20. Kanaan MHG. Isolation and identification of methicillin resistant staphylococcus aureus (MRSA) from locally produced raw milk and soft cheese from Some Regions in Baghdad. Doctoral Dissertation, College of Veterinary Medicine, University of Baghdad, Iraq. 2013.

21. Silva J, Leite D, Fernandes Mena C, Gibbs PA, Teixeira P. Campylobacter spp.as a foodborne pathogen: a Review. Front. Microbiol. 2011;2(200):1–12. doi: https://doi.org/10.3389/fmicb.2011.00200

22. Allos BM, Blaser MJ. Campylobacter jejuni and related species. In: Mandell GL, Bennett JE and Dolin R, editors. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 7th ed. Philadelphia, PA: Churchill Livingstone. 2010. pp. 2793–802.

23. Whiley H, van den Akker B, Giglio S, Bentham R. The role of environmental reservoirs in human campylobacteriosis. Int. J. Environ. Res. Public Health. 2013;10(11):5886–907. doi: https://doi.org/10.3390/ijerph10115886

24. Nichols GL, Richardson JF, Sheppard SK, Lane C, Sarran C. Campylobacter epidemiology: a descriptive study reviewing 1 million cases in England and Wales between 1989 and 2011. BMJ Open. 2012;2(4):1179. doi: https://doi.org/10.1136/bmjopen-2012-001179

25. Haddad N, Marcé C, Magras C, Cappelier JM. An overview of methods used to clarify pathogenesis mechanisms of Campylobacter jejuni. J. Food Prot. 2010;73(4):786–802. doi: https://doi.org/10.4315/0362-028X-73.4.786

26. Dastia JI, Tareena AM, Lugerta R, Zautnera AE, Gro U. Campylobacter jejuni: a brief overview on pathogenicity associated factors and disease mediating mechanisms. Int. J. Med. Microbiol. 2010;300(4):205–11. doi: https://doi.org/10.1016/j.ijmm.2009.07.002

27. Bolton DJ. Campylobacter virulence and survival factors. Food Microbiol. 2015;48(5):99–108. doi: https://doi.org/10.1016/j.fm.2014.11.017

28. Murphy C, Carroll C, Jordan N. Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni. J Appl. Microbiol. 2006;100(4):623–32. doi: https://doi.org/10.1111/j.1365-2672.2006.02903.x

29. Park SF. The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. Int. J. Food Microbiol. 2002;74(3):177–88. doi: https://doi.org/10.1016/S0168-1605(01)00678-X

30. Wassenaar T, Newell D. The Genus Campylobacter. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E editors. 2006; The Prokaryotes. New York: Springer, pp. 119–38.

31. Poly F, Guerry P. Pathogenesis of Campylobacter. Curr. Opin. Gastroenterol. 2008;24(1):27–31. doi: https://doi.org/10.1097/MOG.0b013e3282f1dcb1

32. Van Deun K, Haesebrouck F, Hendrickx M, Favoreel H, Dewulf J, Ceelen L, Dumez L et al. Virulence properties of Campylobacter jejuni isolates of poultry and human origin. J. Med. Microbiol.2007; 56(Pt 10):1284–9. doi: https://doi.org/10.1099/jmm.0.47342-0

33. Newell DG, Fearnley C. Sources of Campylobacter colonization in broiler chickens. Appl. Environ. Microbiol. 2003; 69 (8): 4343–51. doi: https://doi.org/10.1128/AEM.69.8.4343-4351

34. Zilbauer M, Dorrell N, Wren BW, Bajaj-Elliott M. Campylobacter jejuni mediated disease pathogenesis: an update. Trans.R. Soc. Trop. Med. Hyg. 2008; 102(2):123–9. doi: https://doi.org/10.1016/j.trstmh.2007.09.019

35. Ge Z, Schauer DB, Foz JG. In vivo virulence properties of bacterial cytolethal-distending toxin. Cell. Microbi.ol. 2008;10(8):1599–607. doi: https://doi.org/10.1111/j.1462-5822.2008.01173.x

36. Zheng J, Meng J, Zhao S, Singh R, Song W. Campylobacter-induced interleukin-8 secretion in polarized human intestinal epithelial cells requires Campylobacter-secreted Cytolethal distending toxin- and toll-like receptor-mediated activation of NF-kappa B. Infect. Immun. 2008;76(10):4498–508. doi: https://doi.org/10.1128/IAI.01317-07

37. Gargi A, Reno M, Blanke SR. Bacterial toxin modulation of the eukaryotic cell cycle: are all Cytolethal distending toxins created equally? Front. Cell. Infect. Microbiol. 2012;2(124):124. doi: https://doi.org/10.3389/fcimb.2012.00124

38. Lin J. Novel approaches for Campylobacter control in poultry. Foodborne Pathog. Dis. 2009;6(7):755–65. doi: https://doi.org/10.1089/fpd.2008.0247

39. Piccirillo A, Dotto G, Salata C, Giacomelli M. Absence of class 1 and class 2 integrons among Campylobacter jejuni and Campylobacter coli isolated from poultry in Italy. J. Antimicrob. Chemother. 2013;68(11):2683–5. doi: https://doi.org/10.1093/jac/dkt242

40. Bunduru? IA, Balta I, ?tef L, Ahmadi M, Pe? I, McCleery D et al. Overview of virulence and antibiotic resistance in campylobacter spp. livestock isolates. Antibiotics. 2023;12(2):402. doi: https://doi.org/10.3390/antibiotics12020402

41. Kanaan MHG. Effect of biofilm formation in a hostile oxidative stress environment on the survival of Campylobacter jejuni recovered from poultry in Iraqi markets. Vet. World. 2024;17(1):136–42. doi: https://doi.org/10.14202/vetworld.2024.136-142

42. Wagenaar JA, Van Bergen MA, Mueller MA, Wassenaar TM, Carlton RM. Phage-therapy reduces Campylobacter jejuni colonization in broilers. Vet. Microbiol. 2005;109(3–4):275–83. doi: https://doi.org/10.1016/j.vetmic.2005.06.002

43. Havelaar AH, Haagsma JA, Mangen MJ, Kemmeren JM, Verhoef LP, Vijgen SM. Disease burden of foodborne pathogens in the Netherlands. Int. J Food Microbiol. 2009;156(3):231–8. doi: https://doi.org/10.1016/j.ijfoodmicro.2012.03.029

44. Alfredson DA, Korolik V. Antibiotic resistance and resistance mechanisms in Campylobacter jejuni and Campylobacter coli. FEMS Microbiol. Lett. 2008;277(2):123–32. doi: https://doi.org/10.1111/j.1574-6968.2007.00935.x

45. Ge B, Wang F, Sj?lund-Karlsson M, McDermott PF. Antimicrobial resistance in Campylobacter: susceptibility testing methods and resistance trends. J Microbiol Methods. 2013;95(1):57–67. doi: https://doi.org/10.1016/j.mimet.2013.06.021.

46. Centers for Diseases Control and Prevention (CDC). United States: Diagnosis and Treatment. 2019: Available from https://www.cdc.gov/campylobacter/diagnosis.html

47. Jara M, Lanzas C. Early evaluation of the Food and Drug Administration (FDA) guidance on antimicrobial use in food animals on antimicrobial resistance trends reported by the National Antimicrobial Resistance Monitoring System (2012–2019). One Health (Amsterdam, Netherlands), 17(1):100580–100580. doi: https://doi.org/10.1016/j.onehlt.2023.100580

48. Moore JE, Corcoran D, Dooley JS, Fanning S, Lucey B, Matsuda M et al. Campylobacter: review article. Vet. Res. 2005;36(3):351–382. doi: https://doi.org/10.1051/vetres:2005012

49. European Food Safety Authority (EFSA). Foodborne antimicrobial resistance as a biological hazard—Scientific Opinion of the Panel on Biological Hazards. EFSA J. 2008;6(8):765. doi: https://doi.org/10.2903/j.efsa.2008.765

50. Engberg J, Keelan M, Gerner-Smidt P. Antimicrobial resistance in Campylobacter. In: Aarestrup F (ed). Antimicrobial resistance in bacteria of animal origin. Washington, DC: ASM Press. 2006; 269–291.

51. Gibreel A, Taylor D. Macrolide resistance in Campylobacter jejuni and Campylobacter coli. J. Antimicrob. Chemother. 2006; 58(2):243–55. doi: https://doi.org/10.1093/jac/dkl210

52. Humphrey T, O’Brien S, Madsen M. Campylobacters as zoonotic pathogens: a food production perspective. Int. J. Food Microbiol. 2007; 117(3):237–57. doi: https://doi.org/10.1016/j.ijfoodmicro.2007.01.006

53. Kanaan MH. Antibacterial effect of ozonated water against methicillin-resistant Staphylococcus aureus contaminating chicken meat in Wasit Province, Iraq. Vet World. 2018;11(10):1445–53. doi: https://doi.org/10.14202/vetworld.2018.1445-1453

54. Kanaan MH. Prevalence, resistance to antimicrobials, and antibiotypes of Arcobacter species recovered from retail meat in Wasit marketplaces in Iraq. Int. J. One Health. 2021;7(1):142–50. doi: https://doi.org/10.14202/IJOH.2021.142-150

55. Kanaan MHG. Meat bio preservation as a promising method in food technology, EC Vet. Sci. 2019;4(3):1.

56. Kanaan MHG, Al-Shadeedi SM, Al-Massody AJ, Ghasemian A. Drug resistance and virulence traits of Acinetobacter baumannii from Turkey and chicken raw meat. Comp. Immunol. Microbiol. Infect. Dis. 2020;70(1):101451. doi: https://doi.org/10.1016/j.cimid.2020.101451

57. Kanaan MHG, Mohammed FA. Antimicrobial resistance of Campylobacter jejuni from Poultry meat in local markets of Iraq. Plant Arch. 2020;20(1):410–15.

58. Kanaan MH. Prevalence and antimicrobial resistance of Salmonella enterica serovars Enteritidis and Typhimurium isolated from retail chicken meat in Wasit markets, Iraq. Vet World. 2023;16(3):455–463. doi: https://doi.org/10.14202/vetworld.2023.455-463

59. Kanaan MHG, Abdullah SS. 2019. Methicillin-resistant Staphylococcus Aureus as a Superbug foodborne pathogen. Germany: LAP LAMBERT Academic Publisher; ISBN: 978-613-9-94418-7; 2019.

60. Kanaan MHG, Khashan HT. Molecular typing, virulence traits and risk factors of pandrug-resistant Acinetobacter baumannii spread in intensive care unit centers of Baghdad city, Iraq. Rev. Med. Microbiol. 2022;33(1):51–5. doi: https://doi.org/10.1097/MRM.0000000000000282

61. Kanaan MHG, Tarek AM. Innovative modern bio-preservation module of meat by lytic bacteriophages against emergent contaminants. Open Vet. J. 2022;12(6):1018–26. doi: https://doi.org/10.5455/OVJ.2022.v12.i6.30

62. Kanaan MHG, Khalil ZK, Khashan HT, Ghasemian A. Occurrence of virulence factors and carbapenemase genes in Salmonella enterica serovar Enteritidis isolated from chicken meat and egg samples in Iraq. BMC Microbiol. 2022;22(1):1–8. doi: https://doi.org/10.1186/s12866-022-02696-7

63. Kanaan MHG, Salim ID, Tarek AM, Abdullah SS. Assessment of the knowledge, attitude, and practice related to visceral leishmaniasis among residents of Al-Suwaira city, Wasit Governorate, Middle East of Iraq. J Prev Med Hyg. 2022;63(3):E429–E434. doi: https://doi.org/10.15167/2421-4248/jpmh2022.63.3.2573

64. Kanaan MHG, Tarek AM, Abdullah SS. Knowledge and attitude among samples from community members, pharmacists and health care providers about antibiotic resistance in Al-Suwaria city/Wassit province/Iraq. In IOP Conf. Ser.: Earth Environ. Sci. 2021;790(1):012059. doi: https://doi.org/10.1088/1755-1315/790/1/012059

65. Kanaan MHG, Tarek AM, Abdullah SS. Prevalence and antimicrobial resistance of Staphylococcus aureus in some types of dairy products in Baghdad Markets. J Dis Global Health. 2023;16(1),1–7. doi: https://doi.org/10.56557/JODAGH/2023/v16i18084

66. Kanaan MH, Anah G, Jasim GA, Ghasemian A. In-vitro protoscolicidal and immunomodulatory effects of Cinnamomum camphora and Ziziphora tenuior against Echinococcus granulosus protoscolices. Rev Med Microbiol. 2020;32(1):45–50. Doi: https://doi.org/10.1097/MRM.0000000000000221

67. Kanaan M, Abdullah S. Evaluation of aqueous Ozone as a method to combat multidrug-resistant Staphylococcus aureus tainting cattle meat sold in Wasit marketplaces. Mansoura Vet. Med. J. 2021; 22(3):117-123. doi: https://doi.org/10.21608/MVMJ.2021.196988

68. Engberg J, Aarestrup FM, Taylor DE, Gerner- Smidt P, Nachamkin I. Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: resistance mechanisms and trends in human isolates, Emerg. Infect. Dis. 2001;7(1):24–34. doi: https://doi.org/10.3201/eid0701.700024

69. Kanaan MH, Salim ID, Tarek AM, Abdullah SS. Knowledge, attitude, and hygiene practices of food handlers related to food safety in Al-Suwaira City, Wasit Province in Iraq. Int. J. One Health. 2023;9(2):150–58. https://doi.org/10.14202/ijoh.2023.150-158

70. Centers for Diseases Control and Prevention (CDC). United States: Antibiotic resistance threats in the United States. 2010; Available from https://www.cdc.gov/drugresistance/biggest-threats.html

71. Mudenda S, Nsofu E, Chisha P, Daka V, Chabalenge B, Mufwambi W et al. Prescribing patterns of antibiotics according to the WHO AWaRe classification during the COVID-19 pandemic at a teaching hospital in Lusaka, Zambia: implications for strengthening of antimicrobial stewardship programmes. Pharmacoepidemiology. 2023;2(1):42–53. doi: https://doi.org/10.3390/pharma2010005

72. Smith JL, Fratamico PM. Fluoroquinolone resistance in Campylobacter. J Food Prot. 2010; 73(6):1141–52. doi: https://doi.org/10.4315/0362-028X-73.6.1141

73. Pesavento G, Ducci B, Comodo N, Nostro AL. Antimicrobial resistance profile of Staphylococcus aureus isolated from raw meat: a research for methicillin resistant Staphylococcus aureus (MRSA). Food Control. 2007;18(3):196–200. doi: https://doi.org/10.1016/j.foodcont.2005.09.013

74. Johnson TJ, Nolan LK. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol. Mol. Biol. Rev. 2009;73(4):750–74. doi: https://doi.org/10.1128/MMBR.00015-09

75. Schroeder M, Brooks BD, Brooks AE. The complex relationship between virulence and antibiotic resistance. 2017;Genes. 8(1):39. doi: https://doi.org/10.3390/genes8010039

76. Krueger N, Anderson R, Krueger W. Prevalence and concentration of Campylobacter in rumen contents and feces in pasture and feedlot-fed cattle. 2008; Foodborne Pathog. Dis. 5(5):571–77. doi: https://doi.org/10.1089/fpd.2007.0059

77. European Food Safety Authority (EFSA). European Union: The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019-2020. EFSA J. 2020;20(3). doi: https://doi.org/10.2903/j.efsa.2022.7209

Article Metrics
133 Views 10 Downloads 143 Total

Year

Month

Related Search

By author names