Prebiotic fructooligosaccharides ameliorate the lipop olysaccharides-induced oxidative stress of mice brain

Shreya Banalata Mohanty   

Open Access   

Published:  Sep 07, 2023

DOI: 10.7324/JAPS.2023.159123
Abstract

A bacterial endotoxin called lipopolysaccharide (LPS) causes brain oxidative stress, which in turn causes neurotoxicity and psychological disorders. In the current investigation, the pharmacological effects of prebiotic fructooligosaccharides (FOS) were assessed in mice brains that had undergone oxidative stress induced by LPS. Eight-week-old female adult Swiss albino mice were maintained in six groups: Group I as control and LPS (1 mg/kg bw) was administered intraperitoneally to Groups II–IV. FOS supplementation was given through oral gavaging to Group III (2 g/kg bw) and IV (4 g/kg bw) for 4 weeks following a 5-day LPS exposure, but not to Group II. Group V (2 g/kg bw) and VI (4 g/kg bw) received FOS for 4 weeks. Results showed that the LPS-induced brain oxidative stress by increasing malondialdehyde (MDA) and oxidized glutathione (GSSG) content, whereas decreased the antioxidant defence enzymes activity. After FOS supplementation, LPS-induced oxidative stress was modulated in a dose-dependent way by decreasing levels of MDA, and GSSG, and increased antioxidant defence enzyme activity such as glutathione reductase, catalase, superoxide dismutase, total, and reduced glutathione. Moreover, the FOS modulated the LPS-led decreased body and brain weight to control level. Thus, the antioxidative property of FOS modulates the LPS-induced oxidative stress of mice brains.


Keyword:     Lipopolysaccharide neurotoxicity oxidative stress prebiotics fructooligosaccharides


Citation:

Shreya, Mohanty B. Prebiotic fructooligosaccharides ameliorate the lipopolysaccharides-induced oxidative stress of mice brain. J Appl Pharm Sci. 2023. Online First.  http://doi.org/10.7324/JAPS.2023.159123

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Ayeni EA, Aldossary AM, Ayejoto DA, Gbadegesin LA, Alshehri AA, Alfassam HA, et al. Neurodegenerative diseases: implications of environmental and climatic influences on neurotransmitters and neuronal hormones activities. Int J Environ Res Public Health. 2022;19(19):12495. doi: https://doi.org/10.3390/ijerph191912495

2. Bains M, Hall ED. Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta. 2012;1822(5):675–84. doi: https://doi.org/10.1016/j.bbadis.2011.10.017

3. Bhatt S, Nagappa AN, Patil CR. Role of oxidative stress in depression. Drug Discov Today. 2020;25(7):1270–6. doi: https://doi.org/10.1016/j.drudis.2020.05.001

4. Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, De Oliveira ACP. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci. 2019;20(9):2293. doi: https://doi.org/10.3390/ijms20092293

5. Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer’s disease. J Alzheimers Dis. 2017;58(1):1–15. doi: https://doi.org/10.3233/JAD-161141 6. Cuesta CM, Guerri C, Ureña J, Pascual M. Role of microbiota-derived extracellular vesicles in gut-brain communication. Int J Mol Sci. 2021;22(8):4235. doi: https://doi.org/10.3390/ijms22084235

7. Scott KP, Grimaldi R, Cunningham M, Sarbini SR, Wijeyesekera A, Tang MLK, et al. Developments in understanding and applying prebiotics in research and practice—an ISAPP conference paper. J Appl Microbiol. 2020;128(4):934–49. doi: https://doi.org/10.1111/jam.14424

8. Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods. 2019;8(3):92. doi: https://doi.org/10.3390/foods8030092

9. Martins GN, Ureta MM, Tymczyszyn EE, Castilho PC, Gomez-Zavaglia A. Technological aspects of the production of fructo and galacto-oligosaccharides. Enzymatic synthesis and hydrolysis. Front Nutr. 2019;6:78. doi: https://doi.org/10.3389/fnut.2019.00078

10. Ashaolu TJ. Immune boosting functional foods and their mechanisms: a critical evaluation of probiotics and prebiotics. Biomed Pharmacother. 2020;130:110625. doi: https://doi.org/10.1016/j.biopha.2020.110625

11. Kang S, Johnston TV, Ku S, Ji GE. Acute and sub-chronic (28-day) oral toxicity profiles of newly synthesized prebiotic butyl-fructooligosaccharide in ICR mouse and Wistar rat models. Toxicol Res. 2020;9(4):484–92. doi: https://doi.org/10.1093/toxres/tfaa055

12. Phipps KR, Baldwin N, Lynch B, Stannard DR, Šoltesová A, Gilby B, et al. Preclinical safety evaluation of the human-identical milk oligosaccharide lacto-N-tetraose. Regul Toxicol Pharmacol. 2018;99:260–73. doi: https://doi.org/10.1016/j.yrtph.2018.09.018

13. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54. doi: https://doi.org/10.1016/0003-2697(76)90527-3

14. Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276–87. doi: https://doi.org/10.1016/0003-2697(71)90370-8

15. Cohen G, Dembiec D, Marcus J. Measurement of catalase activity in tissue extracts. Anal Biochem. 1970;34(1):30–8. doi: https://doi.org/10.1016/0003-2697(70)90083-7

16. Aebi H. Catalase. Methods of enzymatic analysis. New York, NY: Academic Press; 1974. pp 673–84.

17. Massey V, Williams Jr CH. On the reaction mechanism of yeast glutathione reductase. J Biol Chem. 1965;240(11):4470–80. doi: https://doi.org/10.1016/S0021-9258(18)97085-7

18. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969;27(3):502–22. doi: https://doi.org/10.1016/0003-2697(69)90064-5

19. Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980;106(1):207–12. doi: https://doi.org/10.1016/0003-2697(80)90139-6

20. Olsvik PA, Kristensen T, Waagbø R, Rosseland BO, Tollefsen KE, Baeverfjord G, et al. mRNA expression of antioxidant enzymes (SOD, CAT and GSH-Px) and lipid peroxidative stress in liver of Atlantic salmon (Salmosalar) exposed to hyperoxic water during smoltification. Comp Biochem Physiol C-Toxicol Pharmacol. 2005;141(3):314–23. doi: https://doi.org/10.1016/j.cbpc.2005.07.009

21. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8. doi: https://doi.org/10.1016/0003-2697(79)90738-3

22. Brown GC. The endotoxin hypothesis of neurodegeneration. J Neuroinflammation. 2019;16:180. doi: https://doi.org/10.1186/s12974-019-1564-7

23. Yeh CH, Hsieh LP, Lin MC, Wei TS, Lin HC, Chang CC, et al. Dexmedetomidine reduces lipopolysaccharide induce neuroinflammation, sickness behavior, and anhedonia. PLoS One. 2018;13(1):e0191070. doi: https://doi.org/10.1371/journal.pone.0191070

24. Sharma N, Nehru B. Characterization of the lipopolysaccharide induced model of Parkinson’s disease: role of oxidative stress and neuroinflammation. Neurochem Int. 2015;87:92–105. doi: https://doi.org/10.1016/j.neuint.2015.06.004

25. Wang H, Meng GL, Zhang CT, Wang H, Hu M, Long Y, et al. Mogrol attenuates lipopolysaccharide (LPS)-induced memory impairment and neuroinflammatory responses in mice. J Asian Nat Prod Res. 2020;22(9):864–78. doi: https://doi.org/10.1080/10286020.2019.1642878

26. Wolf SA, Boddeke HWGM, Kettenmann H. Microglia in physiology and disease. Annu Rev Physiol. 2017;79:619–43. doi: https://doi.org/10.1146/annurev-physiol-022516-034406

27. Prakash R, Sandhya E, Ramya N, Dhivya R, Priyadarshini M, SakthiPriya B. Neuroprotective activity of ethanolic extract of Tinospora cordifolia on LPS induced neuroinflammation. Transl Biomed. 2017;8(4):135. doi: https://doi.org/10.21767/2172-0479.100135

28. Mahalak KK, Firrman J, Narrowe AB, Hu W, Jones SM, Bittinger K, et al. Fructooligosaccharides (FOS) differentially modifies the in vitro gut microbiota in an age-dependent manner. Front Nutr. 2023;9:1058910. doi: https://doi.org/10.3389/fnut.2022.1058910

29. Huuskonen J, Suuronen T, Nuutinen T, Kyrylenko S, Salminen A. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol. 2004;141(5):874–80. doi: https://doi.org/10.1038/sj.bjp.0705682

30. Galland L. The gut microbiome and the brain. J Med Food. 2014;17(12):1261–72. doi: https://doi.org/10.1089/jmf.2014.7000

31. Paiva IHR, Duarte-Silva E, Peixoto CA. The role of prebiotics in cognition, anxiety, and depression. Eur Neuropsychopharmacol. 2020;34:1–18. doi: https://doi.org/10.1016/j.euroneuro.2020.03.006

32. Sarkar SR, Mazumder PM, Banerjee S. Oligosaccharide and flavanoid mediated prebiotic interventions to treat gut dysbiosis associated cognitive decline. J Neuroimmune Pharmacol. 2022;17(1–2):94–110. doi: https://doi.org/10.1007/s11481-021-10041-4

33. González-Bosch C, Boorman E, Zunszain PA, Mann GE. Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol. 2021;47:102165. doi: https://doi.org/10.1016/j.redox.2021.102165

34. Huang W, Guo HL, Deng X, Zhu TT, Xiong JF, Xu YH, et al. Short-chain fatty acids inhibit oxidative stress and inflammation in mesangial cells induced by high glucose and lipopolysaccharide. Exp Clin Endocrinol Diabetes. 2017;125(2):98–105. doi: https://doi.org/10.1055/s-0042-121493

35. Costa GT, Vasconcelos QDJS, Aragão GF. Fructooligosaccharides on inflammation, immunomodulation, oxidative stress, and gut immune response: a systematic review. Nutr Rev. 2022;80(4):709–22. doi: https://doi.org/10.1093/nutrit/nuab115

36. Divyashri G, Sadanandan B, Chidambara Murthy KN, Shetty K, Mamta K. Neuroprotective potential of non-digestible oligosaccharides: an overview of experimental evidence. Front Pharmacol. 2021;12:712531. doi: https://doi.org/10.3389/fphar.2021.712531

Article Metrics

5 Absract views 4 PDF Downloads 9 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required