Reference
1. Ayeni EA, Aldossary AM, Ayejoto DA, Gbadegesin LA, Alshehri AA, Alfassam HA, et al. Neurodegenerative diseases: implications of environmental and climatic influences on neurotransmitters and neuronal hormones activities. Int J Environ Res Public Health. 2022;19(19):12495. doi: https://doi.org/10.3390/ijerph191912495
2. Bains M, Hall ED. Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta. 2012;1822(5):675–84. doi: https://doi.org/10.1016/j.bbadis.2011.10.017
3. Bhatt S, Nagappa AN, Patil CR. Role of oxidative stress in depression. Drug Discov Today. 2020;25(7):1270–6. doi: https://doi.org/10.1016/j.drudis.2020.05.001
4. Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, De Oliveira ACP. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci. 2019;20(9):2293. doi: https://doi.org/10.3390/ijms20092293
5. Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer’s disease. J Alzheimers Dis. 2017;58(1):1–15. doi: https://doi.org/10.3233/JAD-161141 6. Cuesta CM, Guerri C, Ureña J, Pascual M. Role of microbiota-derived extracellular vesicles in gut-brain communication. Int J Mol Sci. 2021;22(8):4235. doi: https://doi.org/10.3390/ijms22084235
7. Scott KP, Grimaldi R, Cunningham M, Sarbini SR, Wijeyesekera A, Tang MLK, et al. Developments in understanding and applying prebiotics in research and practice—an ISAPP conference paper. J Appl Microbiol. 2020;128(4):934–49. doi: https://doi.org/10.1111/jam.14424
8. Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods. 2019;8(3):92. doi: https://doi.org/10.3390/foods8030092
9. Martins GN, Ureta MM, Tymczyszyn EE, Castilho PC, Gomez-Zavaglia A. Technological aspects of the production of fructo and galacto-oligosaccharides. Enzymatic synthesis and hydrolysis. Front Nutr. 2019;6:78. doi: https://doi.org/10.3389/fnut.2019.00078
10. Ashaolu TJ. Immune boosting functional foods and their mechanisms: a critical evaluation of probiotics and prebiotics. Biomed Pharmacother. 2020;130:110625. doi: https://doi.org/10.1016/j.biopha.2020.110625
11. Kang S, Johnston TV, Ku S, Ji GE. Acute and sub-chronic (28-day) oral toxicity profiles of newly synthesized prebiotic butyl-fructooligosaccharide in ICR mouse and Wistar rat models. Toxicol Res. 2020;9(4):484–92. doi: https://doi.org/10.1093/toxres/tfaa055
12. Phipps KR, Baldwin N, Lynch B, Stannard DR, Šoltesová A, Gilby B, et al. Preclinical safety evaluation of the human-identical milk oligosaccharide lacto-N-tetraose. Regul Toxicol Pharmacol. 2018;99:260–73. doi: https://doi.org/10.1016/j.yrtph.2018.09.018
13. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54. doi: https://doi.org/10.1016/0003-2697(76)90527-3
14. Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276–87. doi: https://doi.org/10.1016/0003-2697(71)90370-8
15. Cohen G, Dembiec D, Marcus J. Measurement of catalase activity in tissue extracts. Anal Biochem. 1970;34(1):30–8. doi: https://doi.org/10.1016/0003-2697(70)90083-7
16. Aebi H. Catalase. Methods of enzymatic analysis. New York, NY: Academic Press; 1974. pp 673–84.
17. Massey V, Williams Jr CH. On the reaction mechanism of yeast glutathione reductase. J Biol Chem. 1965;240(11):4470–80. doi: https://doi.org/10.1016/S0021-9258(18)97085-7
18. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969;27(3):502–22. doi: https://doi.org/10.1016/0003-2697(69)90064-5
19. Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980;106(1):207–12. doi: https://doi.org/10.1016/0003-2697(80)90139-6
20. Olsvik PA, Kristensen T, Waagbø R, Rosseland BO, Tollefsen KE, Baeverfjord G, et al. mRNA expression of antioxidant enzymes (SOD, CAT and GSH-Px) and lipid peroxidative stress in liver of Atlantic salmon (Salmosalar) exposed to hyperoxic water during smoltification. Comp Biochem Physiol C-Toxicol Pharmacol. 2005;141(3):314–23. doi: https://doi.org/10.1016/j.cbpc.2005.07.009
21. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8. doi: https://doi.org/10.1016/0003-2697(79)90738-3
22. Brown GC. The endotoxin hypothesis of neurodegeneration. J Neuroinflammation. 2019;16:180. doi: https://doi.org/10.1186/s12974-019-1564-7
23. Yeh CH, Hsieh LP, Lin MC, Wei TS, Lin HC, Chang CC, et al. Dexmedetomidine reduces lipopolysaccharide induce neuroinflammation, sickness behavior, and anhedonia. PLoS One. 2018;13(1):e0191070. doi: https://doi.org/10.1371/journal.pone.0191070
24. Sharma N, Nehru B. Characterization of the lipopolysaccharide induced model of Parkinson’s disease: role of oxidative stress and neuroinflammation. Neurochem Int. 2015;87:92–105. doi: https://doi.org/10.1016/j.neuint.2015.06.004
25. Wang H, Meng GL, Zhang CT, Wang H, Hu M, Long Y, et al. Mogrol attenuates lipopolysaccharide (LPS)-induced memory impairment and neuroinflammatory responses in mice. J Asian Nat Prod Res. 2020;22(9):864–78. doi: https://doi.org/10.1080/10286020.2019.1642878
26. Wolf SA, Boddeke HWGM, Kettenmann H. Microglia in physiology and disease. Annu Rev Physiol. 2017;79:619–43. doi: https://doi.org/10.1146/annurev-physiol-022516-034406
27. Prakash R, Sandhya E, Ramya N, Dhivya R, Priyadarshini M, SakthiPriya B. Neuroprotective activity of ethanolic extract of Tinospora cordifolia on LPS induced neuroinflammation. Transl Biomed. 2017;8(4):135. doi: https://doi.org/10.21767/2172-0479.100135
28. Mahalak KK, Firrman J, Narrowe AB, Hu W, Jones SM, Bittinger K, et al. Fructooligosaccharides (FOS) differentially modifies the in vitro gut microbiota in an age-dependent manner. Front Nutr. 2023;9:1058910. doi: https://doi.org/10.3389/fnut.2022.1058910
29. Huuskonen J, Suuronen T, Nuutinen T, Kyrylenko S, Salminen A. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol. 2004;141(5):874–80. doi: https://doi.org/10.1038/sj.bjp.0705682
30. Galland L. The gut microbiome and the brain. J Med Food. 2014;17(12):1261–72. doi: https://doi.org/10.1089/jmf.2014.7000
31. Paiva IHR, Duarte-Silva E, Peixoto CA. The role of prebiotics in cognition, anxiety, and depression. Eur Neuropsychopharmacol. 2020;34:1–18. doi: https://doi.org/10.1016/j.euroneuro.2020.03.006
32. Sarkar SR, Mazumder PM, Banerjee S. Oligosaccharide and flavanoid mediated prebiotic interventions to treat gut dysbiosis associated cognitive decline. J Neuroimmune Pharmacol. 2022;17(1–2):94–110. doi: https://doi.org/10.1007/s11481-021-10041-4
33. González-Bosch C, Boorman E, Zunszain PA, Mann GE. Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol. 2021;47:102165. doi: https://doi.org/10.1016/j.redox.2021.102165
34. Huang W, Guo HL, Deng X, Zhu TT, Xiong JF, Xu YH, et al. Short-chain fatty acids inhibit oxidative stress and inflammation in mesangial cells induced by high glucose and lipopolysaccharide. Exp Clin Endocrinol Diabetes. 2017;125(2):98–105. doi: https://doi.org/10.1055/s-0042-121493
35. Costa GT, Vasconcelos QDJS, Aragão GF. Fructooligosaccharides on inflammation, immunomodulation, oxidative stress, and gut immune response: a systematic review. Nutr Rev. 2022;80(4):709–22. doi: https://doi.org/10.1093/nutrit/nuab115
36. Divyashri G, Sadanandan B, Chidambara Murthy KN, Shetty K, Mamta K. Neuroprotective potential of non-digestible oligosaccharides: an overview of experimental evidence. Front Pharmacol. 2021;12:712531. doi: https://doi.org/10.3389/fphar.2021.712531