Review Article | Volume: 13, Issue: 8, August, 2023

Combretum species around Africa as alternative medicine: Ethnopharmacological and ethnobotanical importance

Ikechukwu P. Ejidike Fanyana M. Mtunzi Imelda Ledwaba Mokete J. Phele Obiamaka M. Ejidike Oluwaferanmi Ogunleye Athar Ata Michael O. Eze   

Open Access   

Published:  Aug 04, 2023

DOI: 10.7324/JAPS.2023.20644
Abstract

Herbal medicine is a form of medicine that has been extensively exploited in traditional medicine, and its therapeutic potential is accepted. Combretum is one of the most frequently happening genera in the African and Asia tropical and subtropical areas; some are widely used in African herbal medicine due to their ethnopharmacological properties. Numerous species of this plant have been used and expended owing to high pharmaco-constituents following their phytochemical screening and evaluations. The recent incidence of multidrug-resistant strains and reduced receptiveness to antibiotics has raised serious anxiety in health delivery and the need for an urgent search for new antibiotics mediators from nature. A countless number of natural substances have resulted from the Combretum species as medicine and are utilized traditionally for the management of bacteriological infection. The plants have received comprehensive documentation as a good cradle of natural constituents that can be categorized into four groups following their biosynthetic source: alkaloids, terpenoids, polyketides, and phenylpropanoids. The study deals with the ethnobotanical and pharmacological significance of the Combretum species for treating numerous ailments and diseases.


Keyword:     Ethnopharmacological Combretum species ethnobotanical triterpenoids therapeutic potentials pharmaco-constituent


Citation:

Ejidike IP, Mtunzi FM, Ledwaba I, Phele MJ, Ejidike OM, Ogunleye O, Ata A, Eze MO. Combretum species around Africa as alternative medicine: Ethnopharmacological and ethnobotanical importance. J Appl Pharm Sci, 2023; 13(08):012–029. https://doi.org/10.7324/JAPS.2023.20644

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

INTRODUCTION

Communicable ailments are significant sources of morbidity and death universally, notably in developing countries, accounting for about 50% of diseases in countries with low healthcare facilities and as much as 20% of mortality rates in industrialized countries (Khalil et al., 2020; Motsumi et al., 2020; Mtunzi et al., 2017a; Ntshanka et al., 2020). Despite the high level of innovation and antibiotic application in microbiology, the intermittent occurrences of epidemics caused by drug-resistant microbes and the emergence of unknown disease-causing microorganisms pose a significant threat to healthcare (Abubakar, 2010; Nguedia and Shey, 2014; Silber et al., 2016).

The development of resistant strains to some antibiotics has complicated the management of infectious diseases, given that drugs are only effective against one-third of existing ailments (Fankam et al., 2015; Sahu et al., 2014). Microbial drug resistance became persistent because of drug abuse and misuse of antibiotics. Most drugs are ineffective against diseases for which they had previously been misused. This results in resistant pathogens becoming virulent, increasing the risk of complications and death (Fankam et al., 2015; Nguedia and Shey, 2014; Sampedro et al., 2009). Most drugs are discovered from biological natural resources, and natural yields from microbes have been the major cradle of antibiotic delivery. With the cumulative approval of herbal medicine as a substitute form of healthcare, the selection of herbal plants for bioactive constituents has become a very imperative aspect of the health system because they serve as a favorable cradle of innovative antibiotic exemplars (Khan et al., 2022; Sabo and Knezevic, 2019; Serralheiro et al., 2020). Antibiotics derived from fungi or living organisms are produced industrially using a fermentative process (Alfadil et al., 2014; Silber et al., 2016; Wright et al., 2014).

The predominance of other diseases like hematological and autoimmune disorders, human immunodeficiency virus (HIV) infection, cancer, and important immune system dysfunction may cause symbiotic microbes to change to pathogens under definite circumstances, typically called opportunistic contamination. Opportunistic pathogens consist of fungi, viruses, protozoa, and bacteria, taking advantage of immunocompromised patients and displaying new health challenges worldwide. Opportunistic diseases involve diminishing host defenses, occurring because of genetic deficiencies, introduction to antibiotics, and immunosuppressive substances or due to communicable diseases possessing immunosuppressive properties (Nagata et al., 2011; Ntshanka et al., 2020; Ryan and Ray, 2004; Yang et al., 2013).

Some chemotherapeutic mediators presently used are noxious with accompanying antagonistic side effects. Hence, there is a general necessity for novel chemotherapeutic mediators against several disease pathoaetiologies that are exceedingly resourceful, have low toxicity, and exhibit minor ecofriendly impacts. Herbal medications have various traditional claims, such as managing infectious sources. Several extracts of plant species were established against hundreds of microbial strains via various in vitro models and some had good action pharmacological consequences (Bhat, 2014; Fankam et al., 2015; Khumalo et al., 2018; Luís et al., 2016; Motsumi et al., 2020; Nguedia and Shey, 2014). However, a limited number of these herbal plant extracts have been screened in animal or human studies to regulate safety and efficiency. Natural products and their byproducts characterize about 50% of all drugs in clinical use (Cragg and Newman, 2013; Fankam et al., 2015; Khumalo et al., 2018; Lahlou, 2013).

Natural products from natural cradles like plants, animals, and microorganisms, dated before human antiquity, perhaps thousands of years (Ji et al., 2016; Khan, 2018). These products can be categorized into four diverse groups according to their biosynthetic derivation, polyketides, alkaloids, terpenoids, and phenylpropanoids (Bisht et al., 2021; Guo, 2017), and continue to offer novel chemical structures with high levels of biological activity (Guo, 2017; Khan, 2018; Moloney, 2016). The mechanisms underlying many biological properties have been ascribed to numerous types of propolis, including antitumor, anti-inflammatory, wound healing, antioxidant, antimicrobial, and immunomodulatory activities (Shaikh et al., 2016). Plants do produce potentially toxic substances aside production of beneficial phytochemicals; therefore, toxicity assays incorporation in the bioactivity evaluation of medicinal plants is very important in understanding their therapeutic effects (Alam et al., 2018; Araújo et al., 2013; Cundell, 2014; Luís et al., 2016; Ntshanka et al., 2020; Shah et al., 2010; Verma, 2016). The Chinese traditional medicine community is the world’s largest medicinal plant user is, with more than 5,000 plants and plant products registered in their pharmacopeia (Ji et al., 2016).

Traditional medicine in South Africa supports using abundant plant species for the treatment or management as prophylaxis against several kinds of ailment (infectious and noninfectious) (Masoko et al., 2010, 2012; Mtunzi et al., 2017a, 2017b; Street and Prinsloo, 2013). In South Africa, medicinal species are being traded for usage in local medicines since most are from ethnopharmacological guides (De Wet et al., 2013; Mabona and Van Vuuren, 2013; Street and Prinsloo, 2013). The sustainable use and control of medicinal plants are of a significant contest to all shareholders. Parts of many medicinal plants, like the stem, bark, and roots, are being harvested and merchandized in an unmanageable routine that may lead to the augmented death of the tree that is the source of medication. Assessment and authentication of leaf extract bioactivity as a promising substitute for stem, roots, and bark use to afford a viable opportunity for safeguarding medicinal plants (De Wet et al., 2013; Street and Prinsloo, 2013). Herbal medicine is the most significant medicine for most people on planet earth, specifically those who do not have access to modern and expensive drugs. Interestingly, it has formed the foundation of every medicine, the mother of all remedies in modern days. The exploitation of medicinal plants as herbal medicine alongside their curative perspective is well documented (Alam et al., 2018; Bhat, 2014; Cundell, 2014; Motsumi et al., 2020; Mtunzi et al., 2017a, 2017b; Sabo and Knezevic, 2019; Street and Prinsloo, 2013). The World Health Organization estimates that populace about 80% residing in developing nations exclusively practice traditional medicine (Eloff, 1998; Motsumi et al., 2020; Mtunzi et al., 2017a).

Medicinal plant therapies have also been featured conspicuously in the ailments treatment of production and domestic animals, and ethnoveterinary therapeutic practices remain an imperative aspect of animal healthcare in unindustrialized countries (Ji et al., 2016; Khan, 2018). Combretum species is featured conspicuously among the utilized medicinal plants in South African traditional medicine as agents for handling communicable diseases like diarrhea (Combretum imberbe Wawra, Combretum vendee A.E.van Wyk), malaria (Combretum ghasalense), stomach disorders (Combretum molle R. Br. ex G. Don.), and coughs [C. molle R. Br. ex G. Don., C. imberbe Wawra, Combretum erythrophyllum (Burch.) Sond.] (Eloff et al., 2008; Mtunzi et al., 2017b; Ntshanka et al., 2020). Combretum erythrophyllum is a member of the Combretaceae family, generally used for venereal disease management (Van Wyk and Gericke, 2000). Root parts are used as a laxative, while dried and pulverized gum is applied to blisters (Venter and Venter, 1996).

The roots and bark decoctions of C. erythrophyllum are utilized to treat cough and unproductiveness and as an aphrodisiac (Ahmed et al., 2014; Mtunzi et al., 2017b). The leaves are used to treat cough and stomach pains, while the seeds, which have been reported to be poisonous, are used to remove intestinal worms in dogs (Van Wyk et al., 2009). Combretum erythrophyllum is commonly scattered in the Southern Africa region, most commonly found in South Africa along the coast in the Eastern Province, namely Zimbabwe, KwaZulu-Natal, Northern South Africa (Mpumalanga, Gauteng, Limpopo, and the eastern parts of Northwest regions), Swaziland, and Mozambique, and marginally into the eastern parts of Botswana (Silén et al., 2023).

Martini et al. (2004a) isolated seven different flavonoids from leave extract C. erythrophyllum (Burch.) collected from a tree within the Pretoria National botanic gardens, South Africa, known to be antibacterial phenolic compounds which include four flavonols: rhamnocitrin (1), rhamnazin (2), 5,7,4′-trihydroxyflavonol (kaempferol) (3), and 7,4′-dihydroxy-5,3′-dimethoxyflavonol (quercetin-5,3′-dimethylether) (4); three flavones: 5,7,4′-trihydroxyfavone (5), 5,4′-dihydroxy-7-methoxyflavone (6), and 5-hydroxy-7,4′-dimethoxyflavone (7) (Fig. 1). All compounds possessed good activity against Enterococcus faecalis and Vibrio cholera, with the minimal inhibitory concentration (MIC) value <100 µg/ml. Rhamnocitrin and quercetin-5,3′-dimethyl ether inhibited Shigella sonnei and Micrococcus luteus with a MIC value of 25 µg/ml (Martini et al., 2004a, 2004b; Mawoza and Ndove, 2015).

In literature, medicinal plants have presented interesting ethnopharmacological potentials as chemotherapeutic agents. The Combretum species has great prospects for the management of various infectious diseases (Eloff et al., 2008) and will have a vital relevance with economic benefit to the perfumery industry (Alam et al., 2018; Barrales-Cureno et al., 2021; Crovadore et al., 2012; Mohaddese, 2016; Sabo and Knezevic, 2019). Nevertheless, the tangible potential of Combretum has not been exploited to the fullest. Hence, this review has made an effort to present a comprehensive overview of the summary of earlier research data regarding ethnopharmacological properties, antimicrobial, antifungal, antioxidant, cytotoxicity activities, and other noteworthy effects of Combretum species as alternative medicine.


METHODS AND LITERATURE QUEST

An epistemological paradigm grounded in a qualitative research approach was utilized for this study. The study seeks to explain, clarify, define, elucidate, and expand more on the understanding of the ethnopharmacological potentials of medicinal plants concerning Combretum species as chemotherapeutic agents for drug discovery.

Available reports and references on the medicinal plant species were accessed from published scientific peer-reviewed journals, books, short communications, reports from national, regional, and international organizations and institutions, theses, conference papers, and other materials. International online databases, including ISI Web of Science, SCOPUS, EBSCO, MEDLINE (National Library of Medicine), chemical abstracts service, Science Direct, SCIMAGO, ProQuest, EMBASE, and Google Scholar, were utilized for literature search using precise search terms. Selected keywords were used but not limited to Combretum species, ethnopharmacological promises, properties of the Combretum genus, phytochemicals, pharmacological, antibiotics, medicinal plants, biological assays, chemical constituents, chemotherapeutic agents, traditional medicine, and traditional uses of medicinal plants of about 600 studies and research articles consulted, articles from 1970 to 2022.

Snowball sampling technique was used in this study, followed by content and semantic analysis of data collected from the literature for systematic documentation of the biological, pharmacological, and traditional uses of medicinal plants: Combretum species around Southern Africa region as alternative medicine.

Figure 1. Chemical structures of flavonoids found in Combretum erythrophyllum (Martini et al., 2004a).

[Click here to view]


RESULTS AND DISCUSSION

Combretaceae family

Combretaceae hosts more than 600 species (Komape et al., 2014; Zhang et al., 2020). Combretum is among the most frequently occurring genera of Combretaceae in tropical and subtropical areas of Africa and Asia. Due to their ethnopharmacological properties, some of these genera are widely used in African traditional medicine (Chukwujekwu and van Staden, 2016; Gumisiriza et al., 2021). The different fragments of the Combretum species are broadly used to treat numerous diseases (Ares et al., 2006; Eloff et al., 2008; Mtunzi et al., 2017b). The species of Combretum, generally known as the forest bushwillow tree (C. kraussii Hochst.), is medium to large in size and is found in the eastern part of South Africa, Swaziland, and Southern Mozambique (Chukwujekwu and van Staden, 2016; Zhang et al., 2020). Combretum kraussii Hochst. is often used as herbal medicine to treat eye infections and wounds and serves as a blood tonic and an appetite stimulant. It can also act as antiseptic and antidiuretic agent, (Chukwujekwu and van Staden, 2016; Quattrocchi, 2012).

Therapeutic potentials of Combretum species

Combretum species as an antioxidant agent

An important development that produces free radicals in living systems, substances, and even in food is referred to as oxidation (Barku et al., 2013). Oxidation is also the chemical reaction involving electron transfer from the electron-rich to the electron-deficient entity (Poljsak et al., 2021). The electron-scarce molecule is labeled an oxidizer or oxidizing agent. Enzymes such as hydroperoxidase and catalase translate hydroperoxides and hydrogen peroxide (H2O2) to nonradical forms and perform natural antioxidants’ role in the human body (Ofoedu et al., 2021). The prescribed oxidation state refers to the postulated charge an atom has if all bonds to other atoms of different elements are completely ionic. It is generally epitomized by integers that can either be zero, positive, or negative (Norman and Pringle, 2022). Free radicals are reactive species containing unpaired electron that attacks macromolecules, including protein, lipid, and DNA. Free radicals are the products of natural human metabolism. Varieties of endogenous free radicals destroying antioxidants exist in the body, while others are obtained from dietary sources like vegetables, fruits, and teas. At present, accessible synthetic antioxidants like gallic esters, butylated hydroxyl toluene, butylated hydroxyl anisole, and tertiary butylated hydroquinone are assumed to bring about or hasty negative health consequences (Mongalo et al., 2012).

Antioxidants preclude oxidative impairment of cells, biomolecules, and reactive oxidative species oxidative species (ROS)-induced illnesses by reacting with free radicals, destroying free radicals, and chelating free catalytic metals (Pizzino et al., 2017). Antioxidant consumption possesses numerous health benefits, including oxidative damage associated with free radical damage and its role in diseases (Ejidike et al., 2019). Antioxidant nutrients, either endogenous or exogenous, natural or synthetic, can search for free radicals in the system and neutralize them before they further damage the body cells (Mandal et al., 2022; Medrano-Macías et al., 2022; Poljsak et al., 2021). Antioxidants are important constituents in the human body that safeguards it from impairment caused by oxidative stress induced by free radicals (Ejidike and Ajibade, 2015; Poljsak et al., 2021). There is emerging interest in the exploration of the antioxidant activities of secondary metabolites from medicinal species to compounds with greater potency and lower toxicities than the presently accessible synthetic ones (Medrano-Macías et al., 2022; Motsumi et al., 2020; Mtunzi et al., 2017a; Ntshanka et al., 2020; Poljsak et al., 2021).

Recent epidemiological evaluations have revealed that many antioxidant compounds possess antibacterial, anticarcinogenic, anti-inflammatory, antiviral, antitumor, antiatherosclerotic, or antimutagenic activities to a bigger or smaller extent (Owen et al., 2000; Verma, 2016). The antioxidant perspective of natural plant products is attributable to several compounds such as phenols and flavonoids, which have a distinct mechanism of action. Consequently, one antioxidant compound was sequestered from C. erythrophyllum and is 5-hydroxy-7,4′-dimethoxyflavone but exhibited the weakest activity (Martini et al. 2004a, 2004b). Oxidative stress is the inequality between the generation and eradication of ROS or reactive nitrogen species (RNS) in support of ROS (Ejidike and Ajibade, 2015; Poljsak et al., 2021; Zhang et al., 2009). Oxidative stress is proficient in triggering cells to lose their function and structure and ultimately cause cell dysfunction. ROS/RNS can be produced within the airway epithelial cells in answer to proinflammatory cytokines like tumor necrosis factor-alpha (TNF-α) (Ejidike and Ajibade, 2015; et al., 2010; Mandal et al., 2022; Medrano-Macías et al., 2022; Poljsak et al., 2021).

ROS and RNS perform various functions, including regulation of gene expression (Mandal et al., 2022) and stimulation of apoptosis (Huang and Zhou, 2021). The manufacture of ROS/RNS might have very detrimental effects and is neutralized by the antioxidant fortifications under standard circumstances in healthy people (Mandal et al., 2022; Medrano-Macías et al., 2022). Oxidative stress arises when there is a variation of balance in support of ROS/RNS and may happen in several situations, like in infection or malnutrition with deficient micronutrients to achieve the requirement for antioxidant defenses (Ejidike and Ajibade, 2015; Mandal et al., 2022; Medrano-Macías et al., 2022). It has been recognized that oxidative stress is among the chief contributory elements of various chronic and deteriorating ailments initiators comprising cancer, ischemic heart disease, atherosclerosis, diabetes mellitus, ageing, immunosuppressant, and neurodegenerative illnesses (Ejidike and Ajibade, 2015; Malekmohammad et al., 2019; Poljsak et al., 2021).

Combretum species as an antimicrobial and antiviral agent

Antimicrobial-resistant strains are the major causes of copious clinical problems (Fennel et al., 2004; Gangoué-Piéboji et al., 2009) and have increased the world’s mortality rate (Ejidike and Ajibade, 2015; Motsumi et al., 2020; Mtunzi et al., 2017a, 2017b; Ntshanka et al., 2020). The resistance built by pathogenic against antibiotics has brought about great interest and the quest for novel antimicrobial drugs/agents from nature (Bouzidi et al., 2016; Dorman and Deans, 2000; Ejidike and Ajibade, 2015; Liouane et al., 2010). The unethical usage of antibiotics has brought about their resistance to bacterial strains (Martini and Eloff, 1998). Plants are an imperative basis for the growth of new chemotherapeutic agents, given that they are made up of potentially useful constituents (Barku et al., 2013). Since time immemorial, traditional plants have been used to prepare drugs, thus acting as a good source of medicine. Moreover, Combretum species have been shown to exhibit potential activities as antibacterial and antiviral agents (Adamu et al., 2005; Filho et al., 2015; Fyhrquist et al., 2006; Katerere et al., 2003; Maregesi et al., 2007; Martini et al., 2004a, 2004b; Martini and Eloff, 1998; Masika and Afolayan, 2002; Masoko et al., 2007, 2010; Mawoza and Ndove, 2015; McGaw et al., 2000; Ntshanka et al., 2020; Olukoya et al., 1993).

Different components of the Combretum plants have been utilized in the native system of medicine for the management of several human ailments ranging from ulcers, wounds, cholera, and snakebite to abdominal disorders (Begum et al., 2002; Maregesi et al., 2007; Masoko et al., 2010; Mawoza and Ndove, 2015). The leaves, stems, roots, and flower parts of Combretum species have been used traditionally for the treatment of neuralgia, throat contagions, wounds, eruptions, and a varied range of skin diseases like rashes, ringworm, and ulcers (Eloff et al., 2008; Masoko et al., 2007, 2010); treatment of related bacterial infections and diseases including pneumonia, chest infections, syphilis, diarrhea, coughs, and colds (Ahmed, 2012; Ahmed et al., 2014; Dawe et al., 2013; Fyhrquist et al., 2006; Gathirwa et al., 2011; Komape et al., 2014; McGaw et al., 2001; Ntshanka et al., 2020); treatment of digestive infections, bleeding, and throat contagions (Dimitrova et al., 2015; Hsouna and Hamdi, 2012); and also menopausal and menstrual complications, breast congestion, cellulite, and fluid retention (Pietrovski et al., 2006; Saraswathi et al., 2011). The leaf extracts have also been reported to treat childhood diseases like measles, chickenpox, and mumps (Brendler and Van Wyk, 2008). The following species have prominently featured as agents for treating contagious diseases: C. imberbe, C. vendee against diarrhea; C. ghasalense Engl. & Diels against malaria; C. molle against stomach disorders; C. molle, C. imberbe, and C. erythrophyllum against coughs (Eloff et al., 2008).

Table 1. Antimicrobial activities and uses of constitutes sequestered from the Combretum species in traditional medicine.

[Click here to view]

The medicinal benefits of Combretum species lie in some vital chemical constituents responsible for certain physiological exploit on the human body (Edeoga et al., 2005; Filho et al., 2015; Masoko et al., 2007; Masoko and Eloff, 2007; Nagata et al., 2011; Uzor and Osadebe, 2016) and are significant in pharmacological research and drug development (Ademola and Eloff, 2010; Moraes et al., 2016; Roy et al., 2014a, 2014b). Combretum species possess extractable organic substances in quantities sufficient to exhibit antimicrobial activities (Adamu et al., 2005; Katerere et al., 2003; Masika and Afolayan, 2002; Olukoya et al., 1993). Chemicals constituents from Combretum species hold complex arrangements that are not obtainable in synthetic compound collections; hundreds of chemical constituents have been consequential for use as antibacterial agents and other drugs (Aderogba et al., 2012; Facundo et al., 1993; Katerere et al., 2012; Kgatle, 2007; Longhi-Balbinot et al., 2009, 2011; Sabo and Knezevic, 2019; Welch, 2010). The species of Combretum has featured conspicuously as an agent for handling infectious diseases as exemplified in Table 1.

Evidence for medical efficacy of Combretum species

Phytochemical investigations to determine the medical efficacy of Combretum, the most widespread genus of Combretaceae, has paved the way several constituents comprising flavonoids, triterpenoids, phenanthrenes and their derivatives, diarylpropanes, and stilbenoids and their derivatives. Isolates or extracts from this class of species have shown several bioactivities, including antibacterial, antiradical, antifungal, antidiabetic, antihyperglycemic, cytotoxicity, and inhibitory activities, against different human tumor cell lines, anti-inflammatory, antimalarial, anti-snake venom, and anti-HIV/AIDS properties. Also, they have been used for the management of diverse infirmities and diseases (Aderogba et al., 2012; Ares et al., 2006; Belkaid and Hand, 2014; Chika and Bello, 2010; Dawe et al., 2013; De Morais Lima et al., 2012; Kemvoufo et al., 2008; Khumalo et al., 2018; Masoko et al., 2007; Motsumi et al., 2020; Nagata et al., 2011; Uzor and Osadebe, 2016). Antidiabetic activity through adenosine monophosphate-activated protein kinase activation by quercetin from flower extracts of C. lanceolatum has been reported (Dechandt et al., 2013). Anti-candidiasis agents from African Tanzanian plant: C. zeyheri (Runyoro et al., 2013), while lignin derivative from C. alfredii (Bai et al., 2016). Combretum species have also shown great potential as a source of various secondary metabolites. Metabolites and their related endophytic fungus Nigrospora oryzae as proof of a metabolic conglomerate from C. dolichopetalum have been reported by Uzor et al. (2015).

Studies on the antioxidant, antibacterial, cytotoxicity, and antifungal potentials of solvent-to-solvent fractionations of C. erythrophyllum (Burch.) leave elixirs revealed that Combretum species are nontoxic for usage in traditional medicine for the management of infectious and stress-related diseases (Mtunzi et al., 2017b). Methanolic extract of the C. adenogonium Steud. ex A. Rich stem barks inhibited C. chauvoei (Jakari strain) neuraminidase activity as reported by Useh et al. (2004) at 100–1,000 μg/ml with an estimated LC50 value of 150 μg/ml. Extracts from the stem bark, root, and leaf have the potential as antibacterial, antifungal, and antiproliferative agents (Fyhrquist et al., 2006; Maregesi et al., 2007). Ethanolic stem bark, root, and leaf elixirs have displayed antibacterial by microdilution methods, an anti-HIV-1 protease with LC50 value of 24.7 and 26.5 μg/ml for root and stem bark extracts, respectively, and cytotoxic activities using brine shrimp’s lethality assay (Mushi et al., 2012).

Acetone elixir of Combretum mole stem bark had inhibited the evolution of Mycobacterium Tuberculosis typus humanus (ATCC 27294) (Asres et al., 2001), inhibits HIV-1 reverse transcriptase (Bessong et al., 2005). Aqueous-methanol stem bark elixir of C. mole has exhibited anthelmintic activity in infected lambs with H. contortus via faecal egg count reduction test (Simon et al., 2012; Suleiman et al., 2013). Interestingly, powdered and decoctions of C. mole root part have been used as a wound dresser for treatments of leprosy, fever, snake bite, stomach pains, all-purpose body swelling, hookworm, and abortion, While the activities of this C. mole associated with bioactive compounds such as hydrolysable tannin and punicalagin demonstrated antimycobacterial properties (Asres et al., 2001). Compounds such as maslinic acid, ursolic acid; combretastatin B5-O-2′-beta glucopyranoside, corosolic acid, arjunolic acid, combretastatin B1-O-2′-beta glucopyranoside (Ahmed, 2012) isolated from C. vendee A.E. van Wyk have exhibited antimicrobial and antifungal activities (Ahmed et al., 2009; Suleiman et al., 2010); antiradical activity with the EC50 lesser or analogous to the control (Ahmed, 2012).


CONCLUSION

The reports detailed in this review advocate using medicinal plants as alternative medicine. Combretaceae species has displayed a broad spectrum of ethnopharmacological potentials for treating infectious diseases, exhibits significant antimicrobial and antifungal potentials against varieties of bacterial and fungal species, respectively, and also exhibit good antioxidant, anti-inflammatory, antimalarial, antituberculosis, antidiarrhoea, cytotoxicity, anthelmintic, antischistosomal, COX-1 inhibition, and HIV-1 integrase inhibition. Phytochemical constituents of the species are great prospective agents for averting and treating many related oxidative stress diseases. Even though the oils from some of these species have not been harnessed as a fragrance in the perfumery, food, and beverage industry; the oils and active compounds may also possess great potential for protecting food and cosmetics from microbial spoilage. Hence, medicinal plants can be seen as an alternative to medicine if properly used as prescribed or as a precursor for synthesizing chemotherapeutic agents for disease control. Concerning the above investigation, it is evident that Combretaceae species contain bioactive compounds such as triterpenoids, glycosylated triterpenes, and phytochemical constituents of biological importance. Given these outstanding values, few pharmacological and phytochemical analyses have been conducted. Hence, it will greatly benefit the health sector and medicinal chemistry if further research is encouraged and carried out toward identifying bioactive compounds and corroborating their medicinal and pharmacological properties. Areas of research in the economy, domestication, and proliferation, as well as quality control and procedures for sustainable utilization of these plant species as future potential antibiotic and chemotherapeutic agents, should be prioritized. This should be a priority for researchers and stakeholders as these plants can increase the well-being of the populace who finds solace in them.


ACKNOWLEDGMENTS

The authors gratefully acknowledge the Directorate of Research, Vaal University of Technology, South Africa, The University of Winnipeg, Winnipeg, Canada, and Anchor University, Lagos, Nigeria, for the support provided.


AUTHOR CONTRIBUTIONS

Involved authors contributed substantially from the conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting and revising the article. Authors are eligible to be an author as per the International Committee of Medical Journal Editors requirements/guidelines.


FINANCIAL SUPPORT

This project was supported by the National Research Foundation (Grant No. 120790) and the Directorate of Research, Vaal University of Technology, South Africa, South Africa.


CONFLICTS OF INTEREST

The authors proclaim that they have no conflicts of interest.


ETHICAL APPROVALS

This study does not involve experiments on animals or human subjects.


DATA AVAILABILITY

All data generated and analyzed are included in this research article.


PUBLISHER’S NOTE

This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.


REFERENCES

 Abubakar EMM. Antibacterial potential of crude leaf extracts of Eucalyptus camaldulensis against some pathogenic bacteria. Afr J Plant Sci, 2010; 4:202–9.

 Adamu HM, Abayeh OJ, Agho MO, Abdullahi AL, Uba A, Dukku HU, Wufem BM. An ethnobotanical survey of Bauchi State herbal plants and their antimicrobial activity. J Ethnopharmacol, 2005; 99(1):1–4. CrossRef

 Ademola IO, Eloff JN. In vitro anthelmintic activity of Combretum molle (R. Br. ex G. Don) (Combretaceae) against Haemonchus contortus ova and larvae. Vet Parasitol, 2010; 169:198–203. CrossRef

 Aderogba MA, Kgatle DT, McGaw LJ, Eloff JN. Isolation of antioxidant constituents from Combretum apiculatum subsp. apiculatum. S Afr J Bot, 2012; 79:125–31. CrossRef

 Adnyana IK, Tezuka Y, Awale S, Banskota AH, Tran KQ, Kadota S. Quadranosides VI—XI, six new triterpene glucosides from the seeds of Combretum quadrangulare. Chem Pharm Bull, 2000b; 48(8):1114–20. CrossRef

 Adnyana IK, Tezuka Y, Awale S, Banskota AH, Tran KQ, Kadota S. 1-O-galloyl-6-O-(4-hydroxy-3,5-dimethoxy) benzoyl- betα-D-glucose, a new hepatoprotective constituent from Combretum quadrangulare. Planta Med, 2001b; 67(4):370–1. CrossRef

 Adnyana IK, Tezuka Y, Banskota AH, Tran KQ, Kadota S. Three new triterpenes from the seeds of Combretum quadrangulare and their hepatoprotective activity. J Nat Prod, 2001a; 64(3):360–3. CrossRef

 Adnyana IK, Tezuka Y, Banskota AH, Xiong Q, Tran QX, Kadota S. Quadronosides I-IV, new triterpene glucosides from Combretum quadrangulare. J Nat Prod, 2000a; 63(4):496–500. CrossRef

 Ahmed AS, 2012. Biological activities of extracts and isolated compounds from Bauhinia galpinii (Fabaceae) and Combretum vendae (Combretaceae) as potential antidiarrhoeal agents. PhD Thesis, Department of paraclinical sciences, Faculty of veterinary, University of Pretotia, Pretotia, South Africa, pp 129–31.

 Ahmed AS, Igwe CC, Eloff JN. Preliminary studies of the antibacterial activities of Combretum vendae leave extract. Afr J Tradit Complement Altern Med, 2009; 5:366–7.

 Ahmed AS, McGaw LJ, Elgorashi EE, Naidoo V, Eloff JN. Polarity of extracts and fractions of four Combretum (Combretaceae) species used to treat infections and gastrointestinal disorders in southern African traditional medicine has a major effect on different relevant in vitro activities. J Ethnopharmacol, 2014; 154(2):339–50. CrossRef

 Alam RTM, Fawzi EM, Alkhalf MI, Alansari WS, Aleya L, Abdel-Daim MM. Anti-inflammatory, immunomodulatory, and antioxidant activities of allicin, norfloxacin, or their combination against Pasteurella multocida infection in male New Zealand rabbits. Oxid Med Cell Longev, 2018; 2018:10. CrossRef

 Alfadil MA, Abdallah M, Ibrahim HM. Isolation and screening of streptomyces from local area in Sudan in the presence of amphotericin A and B. AJST, 2014; 1(5):288–92.

 Angeh JE, Huang X, Sattler I, Swan GE, Dahse H, Härtl A, Eloff JN. Antimicrobial and anti-inflammatory activity of four known and one new triterpenoids from Combretum imberbe (Combretaceae). J Ethnopharmacol, 2007a; 110(1):56–60. CrossRef

 Angeh JE, Huang X, Swan GE, Möllman U, Sattler I, Eloff JN. Novel antibacterial triterpenoids from Combretum padoides (Combretaceae). Arkivoc (IX), 2007b; 2007(9):113–20. CrossRef

 Araújo LCJ, Silva VC, Dall’oglio EL, Sousa Jr PT. Flavonoids from Combretum lanceolatum Pohl. Biochem Syst Ecol, 2013; 49:37–8. CrossRef

 Ares K, Mazumder A, Bucar F. Antibacterial and antifungal activities of extracts of Combretum molle. Ethiop Med J, 2006; 44(3):269–77.

 Arnold HJ, Gulimian M. Pharmacopeia of traditional medicine in Venda. J Ethnopharmacol, 1984; 121:35–74. CrossRef

 Asami Y, Ogura T, Otake N, Nishimura T, Xinsheng Y, Sakurai T, Nagasawa H, Sakuda S, Tatsuta K. Isolation and synthesis of a new bioactive ellagic acid derivative from Combretum yunnanensis. J Nat Prod, 2003; 66(5):729–31. CrossRef

 Asres K, Bucar F, Edelsbrunner S, Kartnig T, Höger G, Thiel W. Investigations on antimycobacterial activity of some Ethiopian medicinal plants. Phytother Res, 2001; 15:613–7. CrossRef

 Baba-Moussa F, Akpagana K, Bouchet P. Antifungal activities of seven West African Combretaceae used in traditional medicine. J Ethnopharmacol, 1999; 66(3):335–8. CrossRef

 Bahar A, Tawfeq AAH, Passreiter CM, Jaber SM. Combretene A and B, two new triterpenes from Combretum molle. Pharm Biol, 2004; 42(2):109–13. CrossRef

 Bai M, WU LJ, Cai Y, Wu SY, Song XP, Chen GY, Zheng CJ, Han CR. One new lignin derivative from the Combretum alfredii. Nat Prod Res, 2016; 31(9):1–6. CrossRef

 Banskota AH, Tezuka Y, Kim QT, Tanaka K, Saiki I, Kadota S. Thirteen novel cycloartanes-type triterpenes from Combretum quadrangulare. J Nat Prod, 2000; 63:57–64. CrossRef

 Barku VYA, Opoku-Boahen Y, Owusu-Ansah E, Mensah EF. Antioxidant activity and the estimation of total phenolic and flavonoid contents of the root extract of Amaranthus spinosus. Asian J Plant Sci Res, 2013; 3(1):69–74.

 Barrales-Cureno HJ, Salgado-Garciglia R, Lopez-Valdez LG, Reynoso-Lopez R, Herrera-Cabrera BE, Lucho-Constantino GG, Zaragoza- Martinez F, Reyes-Reyes C, Aftab T, 2021. Use of secondary metabolites from medicinal and aromatic plants in the fragrance industry. In: Aftab T, Hakeem KR (eds.). Medicinal and aromatic plants, Springer, Cham, Switzerland, pp 669–90. CrossRef

 Batawila K, Kokou K, Koumaglo K, Gbe’assor M, Foucault D, Bouchet P, Akpagana K. Antifungal activities of five Combretaceae used in togolese traditional medicine. Fitoterapia, 2005; 76:264–8. CrossRef

 Begum S, Hassan SI, Siddiqui BS. Two new triperpenoids from the fresh leaves of Psidium guajava. Planta Med, 2002; 68:1149–52. CrossRef

 Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell, 2014; 157(1):121–41. CrossRef

 Bessong PO, Obi CL, Andreola ML, Rojas LB, Pouysegu L, Igumbor E, Meyer JJ, Quideau S, Litvak S. Evaluation of selected South African medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase. J Ethnopharmacol, 2005; 99(1):83–91. CrossRef

 Bhat RB. Medicinal plants and traditional practices of Xhosa people in the Transkei region of Eastern Cape, South Africa. Indian J Tradit Knowl, 2014; 13(2):292–8.

 Bisht R, Bhattacharyya A, Shrivastava A, Saxena P. An overview of the medicinally important plant type III PKS derived polyketides. Front Plant Sci, 2021; 12:746908. CrossRef

 Bouzidi A, Benzarti A, El Arem A, Mahfoudhi A, Hammami S, Gorcii M, Mastouri M, Hellal AN, Zine Mighri Z. Chemical composition, antioxidant, and antimicrobial effects of Tunisian Limoniastrum guyonianum Durieu ex Boiss extracts. Pak J Pharm Sci, 2016; 29(4):1299–305.

 Brendler J, Van Wyk BE. A historical, scientific and commercial perspective on the medicinal use of Pelargonium sidoides (Geraniaceae). J Ethnopharmacol, 2008; 119:420–33. CrossRef

 Brookes KB, Doudoukina OV, Katsoulis LC, Veale DJH. Uteroactive constituents from Combretum kraussii. S Afr J Chem, 1999; 52:127–32.

 Chhabra SC, Uiso FC, Mshiu EN. Phytochemical screening of Tanzanian medicinal plants. J Ethnopharmacol, 1984; 11(2):157–9. CrossRef

 Chika A, Bello SO. Antihyperglycaemic activity of aqueous leaf extract of Combretum micranthum (Combretaceae) in normal and alloxan-induced diabetic rats. J Ethnopharmacol, 2010; 129:34–7. CrossRef

 Chukwujekwu JC, van Staden J. In vitro antibacterial activity of Combretum edwardsii, Combretum krausii, and Maytenus nemorosa and their synergistic effects in combination with antibiotics. Front Pharmacol, 2016; 7:208. CrossRef

 Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta, 2013; 1830(6):3670–95. CrossRef

 Crovadore J, Schalk M, Lefort F. Selection and mass production of Santalum Album L. Calli for induction of sesquiterpenes. Biotechnol Biotechnol Equip, 2012; 26(2):2870–4. CrossRef

 Cundell CR. Herbal phytochemicals as immunomodulators. Curr Immunol Rev, 2014; 10:010–8. CrossRef

 Dawe A, Kapche GDWF, Bankeu JJK, Fawai Y, Ali MS, Ngadjui BT. Combrestatins A and B, new cycloartane-type from Combretum fragrans. Helv Quim Acta, 2016; 99(8):617–20. CrossRef

 Dawe A, Pierre S, Tsala DE, Habtemariam S. Phytochemical constituents of Combretum loefl. (Combretaceae). Pharm Crop, 2013; 4:38–59. CrossRef

 Dechandt CRP, Siqueira JT, Souza DLP, Araujo LCJ, Silva VC, Sousa Jr PT, Andrade CMB, Kawashita NH, Baviera AM. Combretum lanceolatum flowers extract shows antidiabetic activity through activation of AMPK by quercetin. Braz J Pharmacogn, 2013; 23(2):291–300. CrossRef

 De Morais Lima GR, De Sales IRP, Caldas Filho MRD, De Jesus NZT, De Sousa Falcão H, Barbosa-Filho JM, Cabral AGS, Souto AL, Tavares JF, Batista LM. Bioactivities of the genus Combretum (Combretaceae): a review. Molecules, 2012; 17:9142–206. CrossRef

 De Wet H, Nciki S, Van Vuuren SF. Medicinal plants used for the treatment of various skin disorders by a rural community in northern Maputaland, South Africa. J Ethnobiol Ethnomed, 2013; 9:51. CrossRef

 Dimitrova M, Mihaylova D, Popova A, Alexieva J, Sapundzhieva T, Fidan H. Phenolic profile, antibacterial and antioxidant activity of Pelargonium graveolens leaves’ extracts. Sci Bull Series F Biotechnol, 2015; XIX:130–5.

 Dorman HJD, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. ‎J Appl Microbiol, 2000; 88:308–16. CrossRef

 Edeoga HO, Okwu DE, Mbaebie BO. Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol, 2005; 4:685–8. CrossRef

 Ejidike IP, Ajibade PA. Transition metal complexes of symmetrical and asymmetrical Schiff bases as antibacterial, antifungal, antioxidant, and anticancer agents: progress and prospects. Rev Inorg Chem, 2015; 35(4):191–224. CrossRef

 Ejidike IP, Mtunzi FM, Klink MJ, 2019. Spectroscopic, XRD, in vitro anti-oxidant, antifungal and antibacterial studies of heterocyclic Schiff base nickel(II) complexes bearing anions. In: Ramasami P, Gupta BM, Jhaumeer LS, Li KWH (eds.). Chemistry for a clean and healthy plane, ICPAC-2018, Springer, Cham, Switzerland, pp 283–305. CrossRef

 Eloff JN. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med, 1998; 64:711–3. CrossRef

 Eloff JN. The antibacterial activity of 27 Southern African members of the Combretaceae. ‎S Afr J Sci, 1999; 95:148–52.

 Eloff JN, Famakin JO, Katerere DR. Isolation of an antibacterial stilbene from Combretum woodii (Combretaceae) leaves. Afr J Biotechnol, 2005; 4(10):1166–71.

 Eloff JN, Katerere DR, McGaw LJ. The biological activity and chemistry of the Southern African Combretaceae. J Ethnopharmacol, 2008; 119:686–99. CrossRef

 Facundo VA, Andrade CHS, Silveira ER, Braz-Fihlo R, Hufford CD. Triterpenes and flavonoids from Combretum leprosum. Phytochemistry, 1993; 32:411–5. CrossRef

 Facundo VA, Rios KA, Medeiros CM, Militao JSLT, Miranda ALP, Epifanio RD, Carvalho MP, Andrade AT, Pinto AC, Rezende CM. Arjunolic acid in the ethanolic extract of Combretum leprosum root and its use as a potential multi-functional phytomedicine and drug for neurodegenerative disorders: anti-inflammatory and anticholinesterasic activities. J Braz Chem Soc, 2005; 16:1309–12. CrossRef

 Facundo VA, Rios KA, Moreira LS, Militão JSLT, Stabelli RG, Braz-Filho R, Silveira ER. Two new cycloartanes from Combretum leprosum MART. (Combretaceae). Rev Latinoam Quím, 2008; 36(3):76–82.

 Fankam AG, Kuiate JR, Kuete V. Antibacterial and antibiotic resistance modifying activity of the extracts from Allanblackia gabonensis, Combretum molle and Gladiolus quartinianus against gram-negative bacteria including multi-drug resistant phenotypes. BMC Complement Altern Med, 2015; 15(1):206. CrossRef

 Fennel CW, Lindsey KL, McGaw LJ, Sprag LG, Stfford GI, Elgorash EE, Grace OM, Van Staden J. Assessing African medicinal plants for efficiency and safety, pharmacological screening and toxicology. J Ethnopharmacol, 2004; 94:205–17. CrossRef

 Filho FCA, Cavalcanti PMS, Passaglia RCAT, Ballejo G. Long-lasting endothelium-dependent relaxation of isolated arteries caused by an extract from the bark of Combretum leprosum. Einstein, 2015; 13(3):395–403. CrossRef

 Fyhrquist P, Mwasumbi L, Vuorela P, Vuorela H, Hiltunen R, Murphy C, Adlercreutz H. Preliminary antiproliferative effects of some species of Terminalia, Combretum and Pteleopsis collected in Tanzania on some human cancer cell lines. Fitoterapia, 2006; 77:358–66. CrossRef

 Fyhrquist P, Salih EYA, Helenius S, Laakso I, Julkunen-Tiitto R. HPLC-DAD and UHPLC/QTOF-MS analysis of polyphenols in extracts of the African species Combretum padoides, C. zeyheri and C. psidioides related to their antimycobacterial activity. Antibiotics, 2020; 9:459. CrossRef

 Gaidamashvili M, Van Staden J. Interaction of lectin-like proteins of South African medicinal plants with staphylococcus aureus and Bacillus subtilis. J Ethnopharmacol, 2002; 80:131–5. CrossRef

 Gaidamashvili M, Van Staden J. Prostaglandin inhibitory activity by lectin-like proteins from South African medicinal plants. S Afr J Bot, 2006; 72(4):661–3. CrossRef

 Gangoué-Piéboji J, Eze N, Djintchui AN, Ngameni B, Tsabang N, Pegnyemb DE, Biyiti L, Ngassam P, Koulla-Shiro S, Galleni M. The in-vitro antimicrobial activity of some traditionally used medicinal plants against beta-lactam-resistant bacteria. J Infect Dev Ctries, 2009; 3(9):671–80.

 Ganzera M, Ellmerer-Müller EP, Stuppner H. Cycloartane triterpenes from Combretum quadrangulare. Phytochemistry, 1998; 49(3):835–8. CrossRef

 Gathirwa JW, Rukunga GM, Mwitari PG, Mwikwabe NM, Kimani CW, Muthaura CN, Kiboi DM, Nyangachaa RM, Omar SA. Traditional herbal antimalarial therapy in Kilifi district, Kenya. J Ethnopharmacol, 2011; 134(2):434–42. CrossRef

 Gessler MC, Nkunyak MHH, Mwasumbi LB, Heinrich M, Tanner M. Screening Tanzanian medicinal plants for antimalarial activity. Acta Trop, 1994; 56:65–77. CrossRef

 Gumisiriza H, Sesaazi CD, Olet EA, Kembabazi O, Birungi G. Medicinal plants used to treat “African” diseases by the local communities of Bwambara sub-county in Rukungiri district, Western Uganda. J Ethnopharmacol, 2021; 268:113578. CrossRef

 Guo Z. The modification of natural products for medical use. Acta Pharm Sin B, 2017; 7(2):119–36. CrossRef

 Hsouna AB, Hamdi N. Phytochemical composition and antimicrobial activities of the essential oils and organic extracts from pelargonium graveolens growing in Tunisia. Lipids Health Dis, 2012; 11:167. CrossRef

 Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Sig Transduct Target Ther, 2021; 6:254. CrossRef

 Ji LI, Larregieu CA, Benet LZ. Classification of natural products as sources of drugs according to the biopharmaceutics drug disposition classification system (BDDCS). Chin J Nat Med, 2016; 14(12):0888–97. CrossRef

 Jossang A, Seuleiman M, Maidou E, Bodo B. Pentacyclic triterpenes from Combretum nigricans. Phytochemistry, 1996; 41(2):591–4. CrossRef

 Karatoprak G?, Küpeli Akkol E, Genç Y, Bardakci H, Yücel Ç, Sobarzo-Sánchez E. Combretastatins: an overview of structure, probable mechanisms of action and potential applications. Molecules, 2020; 25(11):2560. CrossRef

 Karou D, Dicko MH, Sanon S, Simpore J, Traore AS. Antioxidants and antibacterial activities of polyphenols from ethnomedicinal plants in Burkina Faso. Afr J Biotechnol, 2005; 4(8):823–8.

 Katerere DR, Gray AI, Kennedy AR, Nash RJ, Waigh RD. Cyclobutanes from Combretum albopunctatum. Phytochemistry, 2004; 65(4):433–8. CrossRef

 Katerere DR, Gray AI, Kennedy AR, Nash RJ, Waigh RD. Phytochemical, and antimicrobial investigations of stilbenoids and flavonoids isolated from three species of Combretaceae. Fitoterapia, 2012; 83(5):932–40. CrossRef

 Katerere DR, Gray AI, Nash RJ, Waigh RD. Antimicrobial activity of pentacyclic triterpenes isolated from African Combretaceae. Phytochemistry, 2003; 63:81–8. CrossRef

 Kemvoufo PB, Barboni L, Teponno RB, Mbiantcha M, Nguelefack TB, Hee-Juhn P, Kyung-Tae L, Tapondjou LA. Polyhydroxyoleanane-type triterpenoids from Combretum molle and their anti-inflammatory activity. Phytochem Lett, 2008; 1(4):183–7. CrossRef

 Kgatle DT. Isolation and characterization of antioxidant compounds from Combretum apiculatum (Sond.) subsp apiculatum leaf extracts. MSc Thesis, University of Pretoria, Pretoria, South Africa, 2007.

 Khalil N, Bishr M, Desouky S, Salama O. Ammi Visnaga L., a potential medicinal plant: a review. Molecules, 2020; 25(2):301. CrossRef

 Khan RA. Natural products chemistry: the emerging trends and prospective goals. Saudi Pharm J, 2018; 26(5):739–53. CrossRef

 Khan Z, Nath N, Rauf A, Emran TB, Mitra S, Islam F, Chandran D, Barua J, Khandaker MU, Idris AM, Wilairatana P, Thiruvengadam M. Multifunctional roles and pharmacological potential of β-sitosterol: emerging evidence toward clinical applications. Chem Biol Interact, 2022; 365:110117. CrossRef

 Khumalo BM, Qwebani-Ogunleye T, Ejidike IP, Mtunzi FM, Pinkoane M. Evaluation of immune booster formulation by traditional health practitioners: phytochemical, antioxidant, and mineral elements studies. Int J Pharma Bio Sci, 2018; 9(2):29–37. CrossRef

 Komape NPM, Aderogba M, Bagla VP, Masoko P, Eloff JN. Anti-bacterial and anti-oxidant activities of leaf extracts of Combretum vendae (Combretecacea) and the isolation of an anti-bacterial compound. Afr J Tradit Complement Altern Med, 2014; 11(5):73–7. CrossRef

 Kovács A, Vasas A, Hohmann J. Natural phenanthrenes and their biological activity. Phytochemistry, 2008; 69(5):1084–110. CrossRef

 Lahlou M. The success of natural products in drug discovery. Pharmacol Pharm, 2013; 4:17–31. CrossRef

 Lawal B, Shittu OK, Oibiokpa FI, Berinyuy EB, Mohammed H. African natural products with potential antioxidants and hepatoprotectives properties: a review. Clin Phytosci, 2016; 2:23. CrossRef

 Letcher RM, Nhamo LRM. Chemical constituents of the combretaceae. Part I. substituted phenanthrenes and 9,10-dihydrophenanthrenes from the heartwood of Combretum apiculatum. J Chem Soc C Org, 1971; 3070–6. CrossRef

 Letcher RM, Nhamo LRM. Chemical constituents of the combretaceae. Part III. substituted phenanthrenes, 9,10-dihydrophenanthrenes, and bibenzyls from the heartwood of Combretum psidioides. J Chem Soc Perkin Trans, 1972; 1:2941–6. CrossRef

 Liouane K, Saïdana D, Edziri H, Ammar S, Chriaa J, Mahjoub MA, Said K, Mighri Z. Chemical composition and antimicrobial activity of extracts from Gliocladium sp. growing wild in Tunisia. Med Chem Res, 2010; 19:743–56. CrossRef

 Longhi-Balbinot DT, Martins DF, Lanznaster D, Silva MD, Facundo VA, Santos ARS. Further analyses of mechanisms underlying the antinociceptive effect of the triterpene 3β, 6β, 16β-trihydroxylup-20(29)-ene in mice. Eur J Pharmacol, 2011; 653:32–40. CrossRef

 Longhi-Balbinot DT, Pietrovski E, Gadotti VM, Martins DF, Facundo VA, Santos ARS. Spinal antinociception evoked by the triterpene 3β, 6β, 16β-trihydroxylup-20(29)-ene in mice: evidence for the involvement of the glutamatergic system via NMDA and metabotropic glutamate receptors. Eur J Pharmacol, 2009; 623:30–6. CrossRef

 Lü JM, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med, 2010; 14(4):840–60. CrossRef

 Luís Â, Duarte A, Gominho J, Domingues F, Duarte AP. Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Ind Crop Prod, 2016; 79:274–82. CrossRef

 Mabona U, Van Vuuren SF. Southern African medicinal plants used to treat skin diseases. South Afr J Botany, 2013; 87:175–93. CrossRef

 Maima AO, Thoithi GN, Ndwigah SN, Kamau FN, Kibwage IO. Phytosterols from the stem bark of Combretum fragrans F. Hoffm. East Central Afr J Pharm Sci, 2008; 11:52–5. CrossRef

 Malekmohammad K, Sewell RDE, Rafieian-Kopaei M. Antioxidants and atherosclerosis: mechanistic aspects. Biomolecules, 2019; 9(8):301. CrossRef

 Mandal M, Sarkar M, Khan A, Biswas M, Masi A, Rakwal R, Agrawal GK, Srivastava A, Sarkar A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plants– maintenance of structural individuality and functional blend. Adv Redox Res, 2022; 5:100039. CrossRef

 Maregesi SM, Ngassapa OD, Pieters L, Vlietinck AJ. Ethnopharmacological survey of the bunda district, Tanzania: plants used to treat infectious diseases. J Ethnopharmacol, 2007; 113:457–70. CrossRef

 Marquardt P, Seide R, Vissiennon C, Schubert A, Birkemeyer C, Ahyi V, Fester K. Phytochemical characterization and in vitro anti-inflammatory, antioxidant and antimicrobial activity of Combretum collinum Fresen leaves extracts from Benin. Molecules, 2020; 25(2):288. CrossRef

 Martini ND, Eloff JN. The preliminary isolation of several antibacterial compounds from Combretum erythrophyllum (Combretaceae). J Ethnopharmacol, 1998; 62:255–63. CrossRef

 Martini ND, Katerere DRP, Eloff JN. Seven flavonoids with antibacterial activity isolated from Combretum erythrophyllum. S Afr J Botany, 2004a; 70(2):310–2. CrossRef

 Martini N, Katerere DRP, Eloff JN. Biological activity of five antibacterial flavonoids isolated from Combretum erythrophyllum (Combretaceae). J Ethnopharmacol, 2004b; 93:207–12. CrossRef

 Masengu C, Zimba F, Mangoyi R, Mukanganyama S. Inhibitory activity of Combretum zeyheri and its S9 metabolites against Escherichia coli, Bacillus subtilis and Candida albicans. J Microb Biochem Technol, 2014; 6(4):228–35. CrossRef

 Masika PJ, Afolayan AJ. Antimicrobial activity of some plants used for the treatment of livestock disease in the Eastern Cape, South Africa. J Ethnopharmacol, 2002; 83:129–34. CrossRef

 Masoko P, Eloff JN. Screening of twenty-four South African Combretum and six Terminalia species (Combretaceae) for antioxidant activities. Afr J Trad CAM, 2007; 4(2):231–9. CrossRef

 Masoko MA, Kgatle DT, McGaw LJ, Eloff JN. Isolation of antioxidant constituents from Combretum apiculatum subsp. apiculatum. S Afr J Bot, 2012; 79:125–31. CrossRef

 Masoko P, Picard J, Eloff JN. The antifungal activity of twenty-four Southern African Combretum species (Combretaceae). S Afr J Bot, 2007; 73:173–83. CrossRef

 Masoko P, Picard J, Howard RL, Mampuru LJ, Eloff JN. In vivo antifungal effect of Combretum and Terminalia species extracts on cutaneous wound healing in immunosuppressed rats. Pharm Biol, 2010; 48(6):621–32. CrossRef

 Mawoza T, Ndove T. Combretum erythrophyllum (Burch.) Sond. (Combretaceae): a review of its ethnomedicinal uses, phytochemistry and pharmacology. Global J Biol Agric Health Sci, 2015; 4(1):105–9.

 McGaw LJ, Jager AK, Staden JV. Antibacterial, anthelmintic, and anti-amoebic activity in South African medicinal plants. J Ethnopharmacol, 2000; 72:247–63. CrossRef

 McGaw LJ, Rabe T, Sparg SG, Jager AK, Eloff JN, Van Staden J. An investigation on the biological activity of Combretum species. J Ethnopharmacol, 2001; 75:45–50. CrossRef

 Medrano-Macías J, Flores-Gallegos AC, Nava-Reyna E, Morales I, Tortella G, Solís-Gaona S, Benavides-Mendoza A. Reactive oxygen, nitrogen, and sulfur species (RONSS) as a metabolic cluster for signaling and biostimulation of plants: an overview. Plants, 2022; 11:3203. CrossRef

 Mohaddese M. Rosa damascene as holy ancient herb with novel applications. J Tradit Complement Med, 2016; 6:10–6. CrossRef

 Moloney MG. Natural products as a source for novel antibiotics. Trends Pharmacol Sci, 2016; 37(8):689–701. CrossRef

 Mongalo NI, Opoku AR, Zobolo AM. Antibacterial and antioxidant activity of the extracts of Waltheria indica Linn. collected from Capricorn district, Limpopo Province, South Africa. J Med Plants Res, 2012; 6(43):5593–8.

 Moosophon P, Kanokmedhakul S, Kanokmedhakul K. Diarylpropanes and an arylpropyl quinone from Combretum griffithii. J Nat Prod, 2011; 74(10):2216–8. CrossRef

 Moraes LS, Rohor BZ, Areal LB, Pereira EV, Santos AMC, Facundo VA, Santos ARS, Pires RGW, Martins-Silva C. Medicinal plant Combretum leprosum mart ameliorates motor, biochemical and molecular alterations in a Parkinson’s disease model induced by MPTP. J Ethnopharmacol, 2016; 185:68–76. CrossRef

 Motsumi PT, Qwebani-Ogunleye T, Ejidike IP, Mtunzi FM, Nate Z. Teedia lucida root extracts by ultrasonication and maceration techniques: phytochemical screening, antimicrobial and antioxidant activity. Rasayan J Chem, 2020; 13(1):423–33. CrossRef

 Mtunzi FM, Ejidike IP, Ledwaba I, Ahmed A, Pakade VE, Klink MJ, Modise SJ. Solvent–solvent fractionations of Combretum erythrophyllum (Burch.) leave extract: studies of their antibacterial, antifungal, antioxidant, and cytotoxicity potentials. Asian Pac J Trop Biomed, 2017b; 10(7):670–9. CrossRef

 Mtunzi FM, Ejidike IP, Matamela T, Dikio ED, Klink MJ. Phytochemical profiling, antioxidant and antibacterial activities of leaf extracts from Rhus leptodictya. Int J Pharmacogn Phytochem Res, 2017a; 9(8):1090–9. CrossRef

 Mtunzi F, Ledwaba I, Klink M, Dikio E, Ejidike P, Pakade V. Antibacterial activity of a triterpene isolated from Combretum erythrophyllum ethyl acetate fraction. Org Med Chem Int J, 2017c; 4(3):555640. CrossRef

 Mushi NF, Innocent E, Kidukul AW. Cytotoxic and antimicrobial activities of substituted phenanthrenes from the roots of Combretum adenogonium Steud Ex A. Rich (Combretaceae). J Intercult Ethnopharmacol, 2015; 4(1):52–6. CrossRef

 Mushi NF, Mbwambo ZH, Innocent E, Tewtrakul S. Antibacterial, anti-HIV-1 protease and cytotoxic activities of aqueous ethanolic extracts from Combretum adenogonium Steud. Ex A. Rich (Combretaceae). BMC Complement Altern Med, 2012; 12:163. CrossRef

 Nagata JM, Jew AR, Kimeu JM, Salmen CR, Bukusi EA, Cohen CR. Medical pluralism on Mfangano Island: use of medicinal plants among persons living with HIV/AIDS in Suba district, Kenya. J Ethnopharmacol, 2011; 135(2):501–9. CrossRef

 Nguedia AJC, Shey ND. African medicinal plant derived products as therapeutic arsenals against multidrug resistant microorganisms. J Pharmacogn Phytother, 2014; 6(5):59–69.

 Nopsiri W, Chansakaow S, Putiyanan S, Natakankitkul, S, Santiarworn D. Antioxidant and anticancer activities from leaf extracts of four Combretum species from Northern Thailand. CMU J Nat Sci, 2014; 13(2):195–205. CrossRef

 Norman NC, Pringle PG. In defence of oxidation states. Dalton Trans, 2022; 51(2):400–10. CrossRef

 Ntchatcho G, Verotta L, Finzi PV, Zanoni G, Vidari G. A new beta-D-glucopyranosyl 2-oxo-urs-12-en-28-oate from the Cameroonian plant Combretum bracteatum. Nat Prod Commun, 2009; 4(12):1631–6. CrossRef

 Ntshanka NM, Ejidike IP, Mtunzi FM, Moloto MJ, Mubiayi KP. Investigation into the phytochemical profile, antioxidant and antibacterial potentials of Combretum molle and Acacia mearnsii leaf parts. Biomed Pharmacol J, 2020; 13(4):1683–94. CrossRef

 Nunes PHM, Cavalcanti PMS, Galvão SMP, Martins MCC. Antiulcerogenic activity of Combretum leprosum. Pharmazie, 2009; 64:58–62.

 Nyenje ME, Ndip RN. Bioactivity of the acetone extract of the stem bark of Combretum molle on selected bacterial pathogens: preliminary phytochemical screening. J Med Plants Res, 2012; 6(8):1476–81. CrossRef

 Ofoedu CE, You L, Osuji CM, Iwouno JO, Kabuo NO, Ojukwu M, Agunwah IM, Chacha JS, Muobike OP, Agunbiade AO, Sardo G, Bono G, Okpala COR, Korzeniowska M. Hydrogen peroxide effects on natural-sourced polysacchrides: free radical formation/production, degradation process, and reaction mechanism-A critical synopsis. Foods, 2021; 10(4):699. CrossRef

 Ogan AU. The alkaloids in the leaves of Combretum micranthum. Studies on West African medicinal plants. VII. Planta Med, 1972; 21(2):210–7. CrossRef

 Olukoya DK, Idika N, Odugbemi T. Antibacterial activity of some medicinal plants from Nigeria. J Ethnopharmacol, 1993; 39(1):69–72. CrossRef

 Owen RW, Giacosa A, Hull WE, Haubner R, Spigelhalder B, Bartsch, H. The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur J Cancer, 2000; 36(10):1235–47. CrossRef

 Pegel KA, Rogers CB. The characterization of mollic acid-3β-D-xyloside and its genuine aglycon mollic acid, two novel 1α-hydroxycycloartenoids from Combretum molle. J Chem Soc Perkin Trans, 1985; 1:1711–5. CrossRef

 Pettit GR, Singh SB, Boyd MR, Hamel E, Pettit RK, Schmidt JM, Hogan F. Antineoplastic agents. 291. Isolation and synthesis of combretastatin A-4, A-5 and A-6. J Med Chem, 1995; 38(10):1666–72. CrossRef

 Pettit GR, Singh SB, Hamel E, Lin CM, Alberts DS, Garcia-Kendall D. Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia, 1989; 45(2):209–11. CrossRef

 Pettit GR, Toki BE, Herald DL, Boyd MR, Hamel E, Pettit RK, Chapuis JC. Antineoplastic agents. 410. Asymmetric hydroxylation of trans-combretastatin A-4. J Med Chem, 1999; 42(8):1459–65. CrossRef

 Pietrovski EF, Rosa KA, Facundo VA, Rios K, Marques MC, Santos ARS. Antinociceptive properties of the ethanolic extract and of the triterpene 3β, 6β, 16β-trihydroxylup-20(29)-ene obtained from flowers of Combretum leprosum in mice. Pharmacol Biochem Behav, 2006; 83:90–9. CrossRef

 Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev, 2017; 2017:8416763. CrossRef

 Poljsak B, Kova? V, Milisav I. Antioxidants, food processing and health. Antioxidants (Basel), 2021; 10(3):433. CrossRef

 Quattrocchi U, 2012. CRC World dictionary of medicinal and poisonous plants: common names, scientific names, eponyms, synonyms, and etymology (5 Volume Set). Taylor & Francis Group; CRC Press, Boca Raton, FL, pp 1070–81.

 Rogers CB. Pentacyclic triterpenoids from rhamnosides Combretum imberbe leaves. Phytochemistry, 1988; 27(10):3217–20. CrossRef

 Rogers CB. Acidic dammarane arabinofuranosides from Combretum rotundifolium. Phytochemistry, 1995; 40(3):833–6. CrossRef

 Rogers CB. Cycloartenoid dienone acids and lactones from Combretum erythrophyllum. Phytochemistry, 1998; 49(7):2069–76. CrossRef

 Rogers CB, Coombes PH. Acidic triterpenes glycosides in trichome secretions differentiate subspecies of Combretum collinum in South Africa. Biochem Syst Ecol, 1999; 27:321–3. CrossRef

 Rogers CB, Verotta L. Chemistry and biological properties of the African Combretaceae. In: Hostettman K, Chinyanganga F, Maillard M, Wolfender JL (eds.). Chemistry, biological and pharmacological properties of African medicinal plants, University of Zimbabwe Publications, Harare, Zimbabwe, 1996.

 Roy S, Gorai D, Acharya R, Roy R. Combretum (Combretaceae): biological activity and phytochemistry. Indo Am J Pharm Res, 2014a; 4(11):5266–99.

 Roy R, Singh RK, Jash SK, Sarkar A, Gorai D. Combretum quadrangulare (Combretaceae): phytochemical constituents and biological activity. Indo Am J Pharm Res, 2014b; 4(8):3416–30.

 Runyoro DKB, Srivastava SK, Darokar MP, Olipa ND, Cosam CJ, Mecky INM. Anticandidiasis agents from a Tanzanian plant, Combretum zeyheri. Med Chem Res, 2013; 22(3):1258–62. CrossRef

 Ryan KJ, Ray CG. Sherris medical microbiology: an introduction to infectious diseases. 4th edition, McGraw Hill, New York, NY, pp 484–8, 2004.

 Sabo VA, Knezevic P. Antimicrobial activity of Eucalyptus camaldulensis Dehn. Plant extracts and essential oils: a review. Ind Crop Prod, 2019; 132:413–29. CrossRef

 Sahu MC, Patnaik R, Padhy RN. In vitro combinational efficacy of ceftriaxone and leaf extract of Combretum albidum G. Don against multidrug-resistant Pseudomonas aeruginosa and host-toxicity testing with lymphocytes from human cord blood. J Acute Med, 2014; 4(1):26–37. CrossRef

 Sampedro MF, Piper KE, McDowell A, Patrick S, Mandrekar JN, Rouse MS, Steckelberg JM, Patel, R. Species of Propionibacterium and Propionibacterium acnes phylotypes associated with orthopedic implants. Diagn Microbiol Infect Dis, 2009; 64(2):138–45. CrossRef

 Saraswathi J, Venkatesh K, Baburao N, Hilal MH, Roja Rani A. Phytopharmacological importance of pelargonium species. J Med Plants Res, 2011; 5(13):2587–98.

 Schwikkard S, Zhou BN, Glass TE, Sharp JL, Mattern MR, Johnson RK, Kingston DGI. Bioactive compounds from Combretum erythrophyllum. J Nat Prod, 2000; 63:457–60. CrossRef

 Serralheiro ML, Guedes R, Fadel SR, Bendif H. Data on identification of primary and secondary metabolites in aqueous extract of Verbascum betonicifolium. Data Brief, 2020; 32:106146. CrossRef

 Shah KA, Patel MB, Patel RJ, Parmar PK. Mangifera Indica (Mango). Pharmacogn Rev, 2010; 4(7):42–8. CrossRef

 Shaikh RU, Pund MM, Gacche RN. Evaluation of anti-inflammatory activity of selected medicinal plants used in Indian traditional medication system in vitro as well as in vivo. J Tradit Complement Med, 2016; 6(4):355–61. CrossRef

 Silber J, Kramer A, Labes A, Tasdemir D. From discovery to production: biotechnology of marine fungi for the production of new antibiotics. Mar Drugs, 2016; 14(7):137. CrossRef

 Silén H, Salih EYA, Mgbeahuruike EE, Fyhrqvist P. Ethnopharmacology, antimicrobial potency, and phytochemistry of African Combretum and Pteleopsis species (Combretaceae): a review. Antibiotics, 2023; 12(2):264. CrossRef

 Simon MK, Ajanusi OJ, Abubakar MS, Idris AL, Suleiman MM. The anthelmintic effect of aqueous methanol extract of Combretum molle (R. Br. x. G. Don) (Combretaceae) in lambs experimentally infected with Haemonchus contortus. Vet Parasitol, 2012; 187(1–2):280–4. CrossRef

 Simon MK, Ajanusi, OJ, George BD, Abubakar MS, Meduna JA. In vivo evaluation of the stem bark of Combretum molle (R. Br. x. G. Don) for anthelmintic properties. Cont J Vet Sci, 2008; 2:1–11.

 Simon G, Dewelle J, Nacoulma O, Guissou P, Kiss R, Daloze D, Braekman JC. Cytotoxic pentacyclic triterpenes from Combretum nigricans. Fitoterapia, 2003; 74(4):339–44. CrossRef

 Street RA, Prinsloo G. Commercially important medicinal plants of South Africa: a review. J Chem, 2013; 2013:16. CrossRef

 Suleiman MM, McGaw LJ, Naidoo V, Eloff JN. Evaluation of several tree species for activity against the animal fungal pathogen Aspergillus fumigatus. S Afr J Bot, 2010; 76:64–71. CrossRef

 Suleiman MM, Simon MK, Ajanusi OJ, Idris AL, Abubakar MS. In vitro anthelmintic activity of the stem-bark of Combretum molle R. Br. x. G. Don (Combretaceae) against Haemonchus contortus. J Med Plants Res, 2013; 7(15):952–6.

 Teles CBG, Moreira-Dill LS, Silva AA, Facundo VA, Azevedo Jr WFA, Silva LHP, Motta MCM, Stábeli RG, Silva Jardim I. A lupane-triterpene isolated from Combretum leprosum Mart. Fruit extracts that interferes with the intracellular development of Leishmania (L.) amazonensis in vitro. BMC Complement Altern Med, 2015; 15:165. CrossRef

 Tewtrakul S, Miyashiro H, Nakamura N, Hattori M, Kawahata T, Otake T, Yoshinaga T, Fujiwara, T, Supavita T, Yuenyongsawad S, Rattanasuwon P, Dej-Adisai S. HIV-1 integrase inhibitory substances from Coleus parvifolius. Phytother Res, 2003; 17:232–9. CrossRef

 Toume K, Nakazawa T, Ohtsuki T, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M. Cycloartane triterpenes isolated from Combretum quadrangulare in a screening program for death-receptor expression enhancing activity. J Nat Prod, 2011; 74(2):249–55. CrossRef

 Useh NM, Nok AJ, Ambali SF, Esievo KAN. The inhibition of Clostridium chauvoei (Jakari strain) neuraminidase activity by methanolic extracts of the stem barks of Tamarindus indicus and Combretum fragrans. J Enzyme Inhib Med Chem, 2004; 19(4):339–42. CrossRef

 Uzor PF, Ebrahim W, Osadebe OP, Nwodo JN, Okoye BF, Muller WEG, Lin W, Proksch P. Metabolites from Combretum dolichopetalum and its associated endophytic fungus Nigrospora pryzae. Evidence for a metabolic partnership. Fitoterapia, 2015; 105:147–50. CrossRef

 Uzor PF, Osadebe PO. Antidiabetic activity of the chemical constituents of Combretum dolichopetalum root in mice. EXCLI J, 2016; 15:290–6.

 Van Wyk, BE, Gericke N. Peoples plants: a guide to useful plants of Southern Africa. Briza Publications, Pretoria, Southern Africa, p 351, 2000.

 Van Wyk BE, Van Ouddshoorn B, Gericke N. Medicinal plants of South Africa. Briza Publications, Pretoria, South Africa, 2009.

 Van Wyk B, Van Wyk P. Field guide to trees of Southern Africa. Struik Publishers (Pty) Ltd., Cape Town, Southern Africa, p 536, 1997.

 Venter F, Venter JA. Making the most of indigenous trees. 1st edition, Briza Publications, Pretoria, Southern Africa, p 304, 1996.

 Verma S. Medicinal plants with anti-inflammatory activity. J Phytopharmacol, 2016; 5(4):157–9. CrossRef

 Wang LQ, Wu MM, Liu JP, Li Y, Hua Y, Wang YY, Li XY, Chen YG, Wang JH. Five new diarylpropa-1-ols from Combretum yunnanense. Planta Med, 2011; 77:1841–4. CrossRef

 Welch CR. Chemistry and pharmacology of kinkéliba (Combretum micranthum), a West African medicinal plant. PhD Thesis, The State University of New Jersey, New Brunswick, NJ, pp 10–62, 2010.

 Wright PM, Seiple IB, Myers AG. The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed Engl, 2014; 53(34):8840–69. CrossRef

 Wu MM, Wang LQ, Hua Y, Chen YG, Wang YY, Li XY, Li Y, Li T, Yang XY, Tang ZR. New chalcone and dimeric chalcones with 1,4-p-benzoquinone residue from Combretum yunnanense. Planta Med, 2011; 77(5):481–4.

 Yang Q, Wu D, Mao W, Liu X, Bao K, Lin Q, Lu F, Zou C, Li C. Chinese medicinal herbs for childhood pneumonia: a systematic review of effectiveness and safety. Evid Based Complement Alternat Med, 2013; 2013:25. CrossRef

 Zhang Y, Li HL, Zhong JD, Wang Y, Yuan CC. Chloroplast genome sequences and comparative analyses of Combretaceae mangroves with related species. Biomed Res Int, 2020; 2020:5867673. CrossRef

 Zhang WH, Lin-Han BL, Zhang HD. Antioxidant activities of extracts from Areca (Areca catectu L.) flower, husk and seed. Electron J Environ Agric Food Chem, 2009; 8:740–8.

Reference

Abubakar EMM. Antibacterial potential of crude leaf extracts of Eucalyptus camaldulensis against some pathogenic bacteria. Afr J Plant Sci, 2010; 4:202-9.

Adamu HM, Abayeh OJ, Agho MO, Abdullahi AL, Uba A, Dukku HU, Wufem BM. An ethnobotanical survey of Bauchi State herbal plants and their antimicrobial activity. J Ethnopharmacol, 2005; 99(1):1-4. https://doi.org/10.1016/j.jep.2004.12.025

Ademola IO, Eloff JN. In vitro anthelmintic activity of Combretum molle (R. Br. ex G. Don) (Combretaceae) against Haemonchus contortus ova and larvae. Vet Parasitol, 2010; 169:198-203. https://doi.org/10.1016/j.vetpar.2009.12.036

Aderogba MA, Kgatle DT, McGaw LJ, Eloff JN. Isolation of antioxidant constituents from Combretum apiculatum subsp. apiculatum. S Afr J Bot, 2012; 79:125-31. https://doi.org/10.1016/j.sajb.2011.10.004

Adnyana IK, Tezuka Y, Awale S, Banskota AH, Tran KQ, Kadota S. Quadranosides VI-XI, six new triterpene glucosides from the seeds of Combretum quadrangulare. Chem Pharm Bull, 2000b; 48(8):1114-20. https://doi.org/10.1248/cpb.48.1114

Adnyana IK, Tezuka Y, Awale S, Banskota AH, Tran KQ, Kadota S. 1-O-galloyl-6-O-(4-hydroxy-3,5-dimethoxy) benzoyl- betα-D-glucose, a new hepatoprotective constituent from Combretum quadrangulare. Planta Med, 2001b; 67(4):370-1. https://doi.org/10.1055/s-2001-14318

Adnyana IK, Tezuka Y, Banskota AH, Tran KQ, Kadota S. Three new triterpenes from the seeds of Combretum quadrangulare and their hepatoprotective activity. J Nat Prod, 2001a; 64(3):360-3. https://doi.org/10.1021/np000486x

Adnyana IK, Tezuka Y, Banskota AH, Xiong Q, Tran QX, Kadota S. Quadronosides I-IV, new triterpene glucosides from Combretum quadrangulare. J Nat Prod, 2000a; 63(4):496-500. https://doi.org/10.1021/np990581+

Ahmed AS, 2012. Biological activities of extracts and isolated compounds from Bauhinia galpinii (Fabaceae) and Combretum vendae (Combretaceae) as potential antidiarrhoeal agents. PhD Thesis, Department of paraclinical sciences, Faculty of veterinary, University of Pretotia, Pretotia, South Africa, pp 129-31.

Ahmed AS, Igwe CC, Eloff JN. Preliminary studies of the antibacterial activities of Combretum vendae leave extract. Afr J Tradit Complement Altern Med, 2009; 5:366-7.

Ahmed AS, McGaw LJ, Elgorashi EE, Naidoo V, Eloff JN. Polarity of extracts and fractions of four Combretum (Combretaceae) species used to treat infections and gastrointestinal disorders in southern African traditional medicine has a major effect on different relevant in vitro activities. J Ethnopharmacol, 2014; 154(2):339-50. https://doi.org/10.1016/j.jep.2014.03.030

Alam RTM, Fawzi EM, Alkhalf MI, Alansari WS, Aleya L, Abdel-Daim MM. Anti-inflammatory, immunomodulatory, and antioxidant activities of allicin, norfloxacin, or their combination against Pasteurella multocida infection in male New Zealand rabbits. Oxid Med Cell Longev, 2018; 2018:10. https://doi.org/10.1155/2018/1780956

Alfadil MA, Abdallah M, Ibrahim HM. Isolation and screening of streptomyces from local area in Sudan in the presence of amphotericin A and B. AJST, 2014; 1(5):288-92.

Angeh JE, Huang X, Sattler I, Swan GE, Dahse H, Härtl A, Eloff JN. Antimicrobial and anti-inflammatory activity of four known and one new triterpenoids from Combretum imberbe (Combretaceae). J Ethnopharmacol, 2007a; 110(1):56-60. https://doi.org/10.1016/j.jep.2006.09.002

Angeh JE, Huang X, Swan GE, Möllman U, Sattler I, Eloff JN. Novel antibacterial triterpenoids from Combretum padoides (Combretaceae). Arkivoc (IX), 2007b; 2007(9):113-20. https://doi.org/10.3998/ark.5550190.0008.913

Araújo LCJ, Silva VC, Dall'oglio EL, Sousa Jr PT. Flavonoids from Combretum lanceolatum Pohl. Biochem Syst Ecol, 2013; 49:37-8. https://doi.org/10.1016/j.bse.2013.03.012

Ares K, Mazumder A, Bucar F. Antibacterial and antifungal activities of extracts of Combretum molle. Ethiop Med J, 2006; 44(3):269-77.

Arnold HJ, Gulimian M. Pharmacopeia of traditional medicine in Venda. J Ethnopharmacol, 1984; 121:35-74. https://doi.org/10.1016/0378-8741(84)90086-2

Asami Y, Ogura T, Otake N, Nishimura T, Xinsheng Y, Sakurai T, Nagasawa H, Sakuda S, Tatsuta K. Isolation and synthesis of a new bioactive ellagic acid derivative from Combretum yunnanensis. J Nat Prod, 2003; 66(5):729-31. https://doi.org/10.1021/np030041j

Asres K, Bucar F, Edelsbrunner S, Kartnig T, Höger G, Thiel W. Investigations on antimycobacterial activity of some Ethiopian medicinal plants. Phytother Res, 2001; 15:613-7. https://doi.org/10.1002/ptr.897

Baba-Moussa F, Akpagana K, Bouchet P. Antifungal activities of seven West African Combretaceae used in traditional medicine. J Ethnopharmacol, 1999; 66(3):335-8. https://doi.org/10.1016/S0378-8741(98)00184-6

Bahar A, Tawfeq AAH, Passreiter CM, Jaber SM. Combretene A and B, two new triterpenes from Combretum molle. Pharm Biol, 2004; 42(2):109-13. https://doi.org/10.1080/13880200490510883

Bai M, WU LJ, Cai Y, Wu SY, Song XP, Chen GY, Zheng CJ, Han CR. One new lignin derivative from the Combretum alfredii. Nat Prod Res, 2016; 31(9):1-6. https://doi.org/10.1080/14786419.2016.1266348

Banskota AH, Tezuka Y, Kim QT, Tanaka K, Saiki I, Kadota S. Thirteen novel cycloartanes-type triterpenes from Combretum quadrangulare. J Nat Prod, 2000; 63:57-64. https://doi.org/10.1021/np990336q

Barku VYA, Opoku-Boahen Y, Owusu-Ansah E, Mensah EF. Antioxidant activity and the estimation of total phenolic and flavonoid contents of the root extract of Amaranthus spinosus. Asian J Plant Sci Res, 2013; 3(1):69-74.

Barrales-Cureno HJ, Salgado-Garciglia R, Lopez-Valdez LG, Reynoso-Lopez R, Herrera-Cabrera BE, Lucho-Constantino GG, Zaragoza- Martinez F, Reyes-Reyes C, Aftab T, 2021. Use of secondary metabolites from medicinal and aromatic plants in the fragrance industry. In: Aftab T, Hakeem KR (eds.). Medicinal and aromatic plants, Springer, Cham, Switzerland, pp 669-90. https://doi.org/10.1007/978-3-030-58975-2_26

Batawila K, Kokou K, Koumaglo K, Gbe'assor M, Foucault D, Bouchet P, Akpagana K. Antifungal activities of five Combretaceae used in togolese traditional medicine. Fitoterapia, 2005; 76:264-8. https://doi.org/10.1016/j.fitote.2004.12.007

Begum S, Hassan SI, Siddiqui BS. Two new triperpenoids from the fresh leaves of Psidium guajava. Planta Med, 2002; 68:1149-52. https://doi.org/10.1055/s-2002-36353

Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell, 2014; 157(1):121-41. https://doi.org/10.1016/j.cell.2014.03.011

Bessong PO, Obi CL, Andreola ML, Rojas LB, Pouysegu L, Igumbor E, Meyer JJ, Quideau S, Litvak S. Evaluation of selected South African medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase. J Ethnopharmacol, 2005; 99(1):83-91. https://doi.org/10.1016/j.jep.2005.01.056

Bhat RB. Medicinal plants and traditional practices of Xhosa people in the Transkei region of Eastern Cape, South Africa. Indian J Tradit Knowl, 2014; 13(2):292-8.

Bisht R, Bhattacharyya A, Shrivastava A, Saxena P. An overview of the medicinally important plant type III PKS derived polyketides. Front Plant Sci, 2021; 12:746908. https://doi.org/10.3389/fpls.2021.746908

Bouzidi A, Benzarti A, El Arem A, Mahfoudhi A, Hammami S, Gorcii M, Mastouri M, Hellal AN, Zine Mighri Z. Chemical composition, antioxidant, and antimicrobial effects of Tunisian Limoniastrum guyonianum Durieu ex Boiss extracts. Pak J Pharm Sci, 2016; 29(4):1299- 305.

Brendler J, Van Wyk BE. A historical, scientific and commercial perspective on the medicinal use of Pelargonium sidoides (Geraniaceae). J Ethnopharmacol, 2008; 119:420-33. https://doi.org/10.1016/j.jep.2008.07.037

Brookes KB, Doudoukina OV, Katsoulis LC, Veale DJH. Uteroactive constituents from Combretum kraussii. S Afr J Chem, 1999; 52:127-32.

Chhabra SC, Uiso FC, Mshiu EN. Phytochemical screening of Tanzanian medicinal plants. J Ethnopharmacol, 1984; 11(2):157-9. https://doi.org/10.1016/0378-8741(84)90037-0

Chika A, Bello SO. Antihyperglycaemic activity of aqueous leaf extract of Combretum micranthum (Combretaceae) in normal and alloxan-induced diabetic rats. J Ethnopharmacol, 2010; 129:34-7. https://doi.org/10.1016/j.jep.2010.02.008

Chukwujekwu JC, van Staden J. In vitro antibacterial activity of Combretum edwardsii, Combretum krausii, and Maytenus nemorosa and their synergistic effects in combination with antibiotics. Front Pharmacol, 2016; 7:208. https://doi.org/10.3389/fphar.2016.00208

Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta, 2013; 1830(6):3670-95. https://doi.org/10.1016/j.bbagen.2013.02.008

Crovadore J, Schalk M, Lefort F. Selection and mass production of Santalum Album L. Calli for induction of sesquiterpenes. Biotechnol Biotechnol Equip, 2012; 26(2):2870-4. https://doi.org/10.5504/BBEQ.2012.0028

Cundell CR. Herbal phytochemicals as immunomodulators. Curr Immunol Rev, 2014; 10:010-8. https://doi.org/10.2174/1573395510666140915213156

Dawe A, Kapche GDWF, Bankeu JJK, Fawai Y, Ali MS, Ngadjui BT. Combrestatins A and B, new cycloartane-type from Combretum fragrans. Helv Quim Acta, 2016; 99(8):617-20. https://doi.org/10.1002/hlca.201600053

Dawe A, Pierre S, Tsala DE, Habtemariam S. Phytochemical constituents of Combretum loefl. (Combretaceae). Pharm Crop, 2013; 4:38-59. https://doi.org/10.2174/2210290601304010038

Dechandt CRP, Siqueira JT, Souza DLP, Araujo LCJ, Silva VC, Sousa Jr PT, Andrade CMB, Kawashita NH, Baviera AM. Combretum lanceolatum flowers extract shows antidiabetic activity through activation of AMPK by quercetin. Braz J Pharmacogn, 2013; 23(2):291-300. https://doi.org/10.1590/S0102-695X2012005000140

De Morais Lima GR, De Sales IRP, Caldas Filho MRD, De Jesus NZT, De Sousa Falcão H, Barbosa-Filho JM, Cabral AGS, Souto AL, Tavares JF, Batista LM. Bioactivities of the genus Combretum (Combretaceae): a review. Molecules, 2012; 17:9142-206. https://doi.org/10.3390/molecules17089142

De Wet H, Nciki S, Van Vuuren SF. Medicinal plants used for the treatment of various skin disorders by a rural community in northern Maputaland, South Africa. J Ethnobiol Ethnomed, 2013; 9:51. https://doi.org/10.1186/1746-4269-9-51

Dimitrova M, Mihaylova D, Popova A, Alexieva J, Sapundzhieva T, Fidan H. Phenolic profile, antibacterial and antioxidant activity of Pelargonium graveolens leaves' extracts. Sci Bull Series F Biotechnol, 2015; XIX:130-5.

Dorman HJD, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol, 2000; 88:308- 16. https://doi.org/10.1046/j.1365-2672.2000.00969.x

Edeoga HO, Okwu DE, Mbaebie BO. Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol, 2005; 4:685-8. https://doi.org/10.5897/AJB2005.000-3127

Ejidike IP, Ajibade PA. Transition metal complexes of symmetrical and asymmetrical Schiff bases as antibacterial, antifungal, antioxidant, and anticancer agents: progress and prospects. Rev Inorg Chem, 2015; 35(4):191-224. https://doi.org/10.1515/revic-2015-0007

Ejidike IP, Mtunzi FM, Klink MJ, 2019. Spectroscopic, XRD, in vitro anti-oxidant, antifungal and antibacterial studies of heterocyclic Schiff base nickel(II) complexes bearing anions. In: Ramasami P, Gupta BM, Jhaumeer LS, Li KWH (eds.). Chemistry for a clean and healthy plane, ICPAC-2018, Springer, Cham, Switzerland, pp 283-305. https://doi.org/10.1007/978-3-030-20283-5_17

Eloff JN. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med, 1998; 64:711-3. https://doi.org/10.1055/s-2006-957563

Eloff JN. The antibacterial activity of 27 Southern African members of the Combretaceae. S Afr J Sci, 1999; 95:148-52.

Eloff JN, Famakin JO, Katerere DR. Isolation of an antibacterial stilbene from Combretum woodii (Combretaceae) leaves. Afr J Biotechnol, 2005; 4(10):1166-71.

Eloff JN, Katerere DR, McGaw LJ. The biological activity and chemistry of the Southern African Combretaceae. J Ethnopharmacol, 2008; 119:686-99. https://doi.org/10.1016/j.jep.2008.07.051

Facundo VA, Andrade CHS, Silveira ER, Braz-Fihlo R, Hufford CD. Triterpenes and flavonoids from Combretum leprosum. Phytochemistry, 1993; 32:411-5. https://doi.org/10.1016/S0031-9422(00)95005-2

Facundo VA, Rios KA, Medeiros CM, Militao JSLT, Miranda ALP, Epifanio RD, Carvalho MP, Andrade AT, Pinto AC, Rezende CM. Arjunolic acid in the ethanolic extract of Combretum leprosum root and its use as a potential multi-functional phytomedicine and drug for neurodegenerative disorders: anti-inflammatory and anticholinesterasic activities. J Braz Chem Soc, 2005; 16:1309-12. https://doi.org/10.1590/S0103-50532005000800002

Facundo VA, Rios KA, Moreira LS, Militão JSLT, Stabelli RG, Braz-Filho R, Silveira ER. Two new cycloartanes from Combretum leprosum MART. (Combretaceae). Rev Latinoam Quím, 2008; 36(3):76-82.

Fankam AG, Kuiate JR, Kuete V. Antibacterial and antibiotic resistance modifying activity of the extracts from Allanblackia gabonensis, Combretum molle and Gladiolus quartinianus against gram-negative bacteria including multi-drug resistant phenotypes. BMC Complement Altern Med, 2015; 15(1):206. https://doi.org/10.1186/s12906-015-0726-0

Fennel CW, Lindsey KL, McGaw LJ, Sprag LG, Stfford GI, Elgorash EE, Grace OM, Van Staden J. Assessing African medicinal plants for efficiency and safety, pharmacological screening and toxicology. J Ethnopharmacol, 2004; 94:205-17. https://doi.org/10.1016/j.jep.2004.05.012

Filho FCA, Cavalcanti PMS, Passaglia RCAT, Ballejo G. Long-lasting endothelium-dependent relaxation of isolated arteries caused by an extract from the bark of Combretum leprosum. Einstein, 2015; 13(3):395- 403. https://doi.org/10.1590/S1679-45082015AO3242

Fyhrquist P, Mwasumbi L, Vuorela P, Vuorela H, Hiltunen R, Murphy C, Adlercreutz H. Preliminary antiproliferative effects of some species of Terminalia, Combretum and Pteleopsis collected in Tanzania on some human cancer cell lines. Fitoterapia, 2006; 77:358-66. https://doi.org/10.1016/j.fitote.2006.05.017

Fyhrquist P, Salih EYA, Helenius S, Laakso I, Julkunen- Tiitto R. HPLC-DAD and UHPLC/QTOF-MS analysis of polyphenols in extracts of the African species Combretum padoides, C. zeyheri and C. psidioides related to their antimycobacterial activity. Antibiotics, 2020; 9:459. https://doi.org/10.3390/antibiotics9080459

Gaidamashvili M, Van Staden J. Interaction of lectin-like proteins of South African medicinal plants with staphylococcus aureus and Bacillus subtilis. J Ethnopharmacol, 2002; 80:131-5. https://doi.org/10.1016/S0378-8741(02)00011-9

Gaidamashvili M, Van Staden J. Prostaglandin inhibitory activity by lectin-like proteins from South African medicinal plants. S Afr J Bot, 2006; 72(4):661-3. https://doi.org/10.1016/j.sajb.2006.02.005

Gangoué-Piéboji J, Eze N, Djintchui AN, Ngameni B, Tsabang N, Pegnyemb DE, Biyiti L, Ngassam P, Koulla-Shiro S, Galleni M. The in-vitro antimicrobial activity of some traditionally used medicinal plants against beta-lactam-resistant bacteria. J Infect Dev Ctries, 2009; 3(9):671-80. Ganzera M, Ellmerer-Müller EP, Stuppner H. Cycloartane triterpenes from Combretum quadrangulare. Phytochemistry, 1998; 49(3):835-8. https://doi.org/10.1016/S0031-9422(97)00980-1

Gathirwa JW, Rukunga GM, Mwitari PG, Mwikwabe NM, Kimani CW, Muthaura CN, Kiboi DM, Nyangachaa RM, Omar SA. Traditional herbal antimalarial therapy in Kilifi district, Kenya. J Ethnopharmacol, 2011; 134(2):434-42. https://doi.org/10.1016/j.jep.2010.12.043

Gessler MC, Nkunyak MHH, Mwasumbi LB, Heinrich M, Tanner M. Screening Tanzanian medicinal plants for antimalarial activity. Acta Trop, 1994; 56:65-77. https://doi.org/10.1016/0001-706X(94)90041-8

Gumisiriza H, Sesaazi CD, Olet EA, Kembabazi O, Birungi G. Medicinal plants used to treat "African" diseases by the local communities of Bwambara sub-county in Rukungiri district, Western Uganda. J Ethnopharmacol, 2021; 268:113578. https://doi.org/10.1016/j.jep.2020.113578

Guo Z. The modification of natural products for medical use. Acta Pharm Sin B, 2017; 7(2):119-36. https://doi.org/10.1016/j.apsb.2016.06.003

Hsouna AB, Hamdi N. Phytochemical composition and antimicrobial activities of the essential oils and organic extracts from pelargonium graveolens growing in Tunisia. Lipids Health Dis, 2012; 11:167. https://doi.org/10.1186/1476-511X-11-167

Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Sig Transduct Target Ther, 2021; 6:254. https://doi.org/10.1038/s41392-021-00648-7

Ji LI, Larregieu CA, Benet LZ. Classification of natural products as sources of drugs according to the biopharmaceutics drug disposition classification system (BDDCS). Chin J Nat Med, 2016; 14(12):0888-97. https://doi.org/10.1016/S1875-5364(17)30013-4

Jossang A, Seuleiman M, Maidou E, Bodo B. Pentacyclic triterpenes from Combretum nigricans. Phytochemistry, 1996; 41(2):591-4. https://doi.org/10.1016/0031-9422(95)00641-9

Karatoprak G?, Küpeli Akkol E, Genç Y, Bardakci H, Yücel Ç, Sobarzo-Sánchez E. Combretastatins: an overview of structure, probable mechanisms of action and potential applications. Molecules, 2020; 25(11):2560. https://doi.org/10.3390/molecules25112560

Karou D, Dicko MH, Sanon S, Simpore J, Traore AS. Antioxidants and antibacterial activities of polyphenols from ethnomedicinal plants in Burkina Faso. Afr J Biotechnol, 2005; 4(8):823-8.

Katerere DR, Gray AI, Kennedy AR, Nash RJ, Waigh RD. Cyclobutanes from Combretum albopunctatum. Phytochemistry, 2004; 65(4):433-8. https://doi.org/10.1016/j.phytochem.2003.09.014

Katerere DR, Gray AI, Kennedy AR, Nash RJ, Waigh RD. Phytochemical, and antimicrobial investigations of stilbenoids and flavonoids isolated from three species of Combretaceae. Fitoterapia, 2012; 83(5):932-40. https://doi.org/10.1016/j.fitote.2012.04.011

Katerere DR, Gray AI, Nash RJ, Waigh RD. Antimicrobial activity of pentacyclic triterpenes isolated from African Combretaceae. Phytochemistry, 2003; 63:81-8. https://doi.org/10.1016/S0031-9422(02)00726-4

Kemvoufo PB, Barboni L, Teponno RB, Mbiantcha M, Nguelefack TB, Hee-Juhn P, Kyung-Tae L, Tapondjou LA. Polyhydroxyoleanane-type triterpenoids from Combretum molle and their anti-inflammatory activity. Phytochem Lett, 2008; 1(4):183-7. https://doi.org/10.1016/j.phytol.2008.09.002

Kgatle DT. Isolation and characterization of antioxidant compounds from Combretum apiculatum (Sond.) subsp apiculatum leaf extracts. MSc Thesis, University of Pretoria, Pretoria, South Africa, 2007.

Khalil N, Bishr M, Desouky S, Salama O. Ammi Visnaga L., a potential medicinal plant: a review. Molecules, 2020; 25(2):301. https://doi.org/10.3390/molecules25020301

Khan RA. Natural products chemistry: the emerging trends and prospective goals. Saudi Pharm J, 2018; 26(5):739-53. https://doi.org/10.1016/j.jsps.2018.02.015

Khan Z, Nath N, Rauf A, Emran TB, Mitra S, Islam F, Chandran D, Barua J, Khandaker MU, Idris AM, Wilairatana P, Thiruvengadam M. Multifunctional roles and pharmacological potential of β-sitosterol: emerging evidence toward clinical applications. Chem Biol Interact, 2022; 365:110117. https://doi.org/10.1016/j.cbi.2022.110117

Khumalo BM, Qwebani-Ogunleye T, Ejidike IP, Mtunzi FM, Pinkoane M. Evaluation of immune booster formulation by traditional health practitioners: phytochemical, antioxidant, and mineral elements studies. Int J Pharma Bio Sci, 2018; 9(2):29-37. https://doi.org/10.22376/ijpbs.2018.9.2.p29-37

Komape NPM, Aderogba M, Bagla VP, Masoko P, Eloff JN. Anti-bacterial and anti-oxidant activities of leaf extracts of Combretum vendae (Combretecacea) and the isolation of an anti-bacterial compound. Afr J Tradit Complement Altern Med, 2014; 11(5):73-7. https://doi.org/10.4314/ajtcam.v11i5.12

Kovács A, Vasas A, Hohmann J. Natural phenanthrenes and their biological activity. Phytochemistry, 2008; 69(5):1084-110. https://doi.org/10.1016/j.phytochem.2007.12.005

Lahlou M. The success of natural products in drug discovery. Pharmacol Pharm, 2013; 4:17-31. https://doi.org/10.4236/pp.2013.43A003

Lawal B, Shittu OK, Oibiokpa FI, Berinyuy EB, Mohammed H. African natural products with potential antioxidants and hepatoprotectives properties: a review. Clin Phytosci, 2016; 2:23. https://doi.org/10.1186/s40816-016-0037-0

Letcher RM, Nhamo LRM. Chemical constituents of the combretaceae. Part I. substituted phenanthrenes and 9,10-dihydrophenanthrenes from the heartwood of Combretum apiculatum. J Chem Soc C Org, 1971; 3070-6. https://doi.org/10.1039/j39710003070

Letcher RM, Nhamo LRM. Chemical constituents of the combretaceae. Part III. substituted phenanthrenes, 9,10-dihydrophenanthrenes, and bibenzyls from the heartwood of Combretum psidioides. J Chem Soc Perkin Trans, 1972; 1:2941-6. https://doi.org/10.1039/p19720002941

Liouane K, Saïdana D, Edziri H, Ammar S, Chriaa J, Mahjoub MA, Said K, Mighri Z. Chemical composition and antimicrobial activity of extracts from Gliocladium sp. growing wild in Tunisia. Med Chem Res, 2010; 19:743-56. https://doi.org/10.1007/s00044-009-9227-3

Longhi-Balbinot DT, Martins DF, Lanznaster D, Silva MD, Facundo VA, Santos ARS. Further analyses of mechanisms underlying the antinociceptive effect of the triterpene 3β, 6β, 16β-trihydroxylup-20(29)- ene in mice. Eur J Pharmacol, 2011; 653:32-40. https://doi.org/10.1016/j.ejphar.2010.11.028

Longhi-Balbinot DT, Pietrovski E, Gadotti VM, Martins DF, Facundo VA, Santos ARS. Spinal antinociception evoked by the triterpene 3β, 6β, 16β-trihydroxylup-20(29)-ene in mice: evidence for the involvement of the glutamatergic system via NMDA and metabotropic glutamate receptors. Eur J Pharmacol, 2009; 623:30-6. https://doi.org/10.1016/j.ejphar.2009.09.004

Lü JM, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med, 2010; 14(4):840-60. https://doi.org/10.1111/j.1582-4934.2009.00897.x

Luís Â, Duarte A, Gominho J, Domingues F, Duarte AP. Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Ind Crop Prod, 2016; 79:274-82. https://doi.org/10.1016/j.indcrop.2015.10.055

Mabona U, Van Vuuren SF. Southern African medicinal plants used to treat skin diseases. South Afr J Botany, 2013; 87:175-93. https://doi.org/10.1016/j.sajb.2013.04.002

Maima AO, Thoithi GN, Ndwigah SN, Kamau FN, Kibwage IO. Phytosterols from the stem bark of Combretum fragrans F. Hoffm. East Central Afr J Pharm Sci, 2008; 11:52-5. https://doi.org/10.4314/ecajps.v11i2.44769

Malekmohammad K, Sewell RDE, Rafieian-Kopaei M. Antioxidants and atherosclerosis: mechanistic aspects. Biomolecules, 2019; 9(8):301. https://doi.org/10.3390/biom9080301

Mandal M, Sarkar M, Khan A, Biswas M, Masi A, Rakwal R, Agrawal GK, Srivastava A, Sarkar A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plants- maintenance of structural individuality and functional blend. Adv Redox Res, 2022; 5:100039. https://doi.org/10.1016/j.arres.2022.100039

Maregesi SM, Ngassapa OD, Pieters L, Vlietinck AJ. Ethnopharmacological survey of the bunda district, Tanzania: plants used to treat infectious diseases. J Ethnopharmacol, 2007; 113:457-70. https://doi.org/10.1016/j.jep.2007.07.006

Marquardt P, Seide R, Vissiennon C, Schubert A, Birkemeyer C, Ahyi V, Fester K. Phytochemical characterization and in vitro anti-inflammatory, antioxidant and antimicrobial activity of Combretum collinum Fresen leaves extracts from Benin. Molecules, 2020; 25(2):288. https://doi.org/10.3390/molecules25020288

Martini ND, Eloff JN. The preliminary isolation of several antibacterial compounds from Combretum erythrophyllum (Combretaceae). J Ethnopharmacol, 1998; 62:255-63. https://doi.org/10.1016/S0378-8741(98)00067-1

Martini ND, Katerere DRP, Eloff JN. Seven flavonoids with antibacterial activity isolated from Combretum erythrophyllum. S Afr J Botany, 2004a; 70(2):310-2. https://doi.org/10.1016/S0254-6299(15)30251-9

Martini N, Katerere DRP, Eloff JN. Biological activity of five antibacterial flavonoids isolated from Combretum erythrophyllum (Combretaceae). J Ethnopharmacol, 2004b; 93:207-12. https://doi.org/10.1016/j.jep.2004.02.030

Masengu C, Zimba F, Mangoyi R, Mukanganyama S. Inhibitory activity of Combretum zeyheri and its S9 metabolites against Escherichia coli, Bacillus subtilis and Candida albicans. J Microb Biochem Technol, 2014; 6(4):228-35. https://doi.org/10.4172/1948-5948.1000149

Masika PJ, Afolayan AJ. Antimicrobial activity of some plants used for the treatment of livestock disease in the Eastern Cape, South Africa. J Ethnopharmacol, 2002; 83:129-34. https://doi.org/10.1016/S0378-8741(02)00242-8

Masoko P, Eloff JN. Screening of twenty-four South African Combretum and six Terminalia species (Combretaceae) for antioxidant activities. Afr J Trad CAM, 2007; 4(2):231-9. https://doi.org/10.4314/ajtcam.v4i2.31213

Masoko MA, Kgatle DT, McGaw LJ, Eloff JN. Isolation of antioxidant constituents from Combretum apiculatum subsp. apiculatum. S Afr J Bot, 2012; 79:125-31. https://doi.org/10.1016/j.sajb.2011.10.004

Masoko P, Picard J, Eloff JN. The antifungal activity of twenty-four Southern African Combretum species (Combretaceae). S Afr J Bot, 2007; 73:173-83. https://doi.org/10.1016/j.sajb.2006.09.010

Masoko P, Picard J, Howard RL, Mampuru LJ, Eloff JN. In vivo antifungal effect of Combretum and Terminalia species extracts on cutaneous wound healing in immunosuppressed rats. Pharm Biol, 2010; 48(6):621-32. https://doi.org/10.3109/13880200903229080

Mawoza T, Ndove T. Combretum erythrophyllum (Burch.) Sond. (Combretaceae): a review of its ethnomedicinal uses, phytochemistry and pharmacology. Global J Biol Agric Health Sci, 2015; 4(1):105-9.

McGaw LJ, Jager AK, Staden JV. Antibacterial, anthelmintic, and anti-amoebic activity in South African medicinal plants. J Ethnopharmacol, 2000; 72:247-63. https://doi.org/10.1016/S0378-8741(00)00269-5

McGaw LJ, Rabe T, Sparg SG, Jager AK, Eloff JN, Van Staden J. An investigation on the biological activity of Combretum species. J Ethnopharmacol, 2001; 75:45-50. https://doi.org/10.1016/S0378-8741(00)00405-0

Medrano-Macías J, Flores-Gallegos AC, Nava-Reyna E, Morales I, Tortella G, Solís-Gaona S, Benavides-Mendoza A. Reactive oxygen, nitrogen, and sulfur species (RONSS) as a metabolic cluster for signaling and biostimulation of plants: an overview. Plants, 2022; 11:3203. https://doi.org/10.3390/plants11233203

Mohaddese M. Rosa damascene as holy ancient herb with novel applications. J Tradit Complement Med, 2016; 6:10-6. https://doi.org/10.1016/j.jtcme.2015.09.005

Moloney MG. Natural products as a source for novel antibiotics. Trends Pharmacol Sci, 2016; 37(8):689-701. https://doi.org/10.1016/j.tips.2016.05.001

Mongalo NI, Opoku AR, Zobolo AM. Antibacterial and antioxidant activity of the extracts of Waltheria indica Linn. collected from Capricorn district, Limpopo Province, South Africa. J Med Plants Res, 2012; 6(43):5593-8.

Moosophon P, Kanokmedhakul S, Kanokmedhakul K. Diarylpropanes and an arylpropyl quinone from Combretum griffithii. J Nat Prod, 2011; 74(10):2216-8. https://doi.org/10.1021/np200593d

Moraes LS, Rohor BZ, Areal LB, Pereira EV, Santos AMC, Facundo VA, Santos ARS, Pires RGW, Martins-Silva C. Medicinal plant Combretum leprosum mart ameliorates motor, biochemical and molecular alterations in a Parkinson's disease model induced by MPTP. J Ethnopharmacol, 2016; 185:68-76. https://doi.org/10.1016/j.jep.2016.03.041

Motsumi PT, Qwebani-Ogunleye T, Ejidike IP, Mtunzi FM, Nate Z. Teedia lucida root extracts by ultrasonication and maceration techniques: phytochemical screening, antimicrobial and antioxidant activity. Rasayan J Chem, 2020; 13(1):423-33. https://doi.org/10.31788/RJC.2020.1315594

Mtunzi FM, Ejidike IP, Ledwaba I, Ahmed A, Pakade VE, Klink MJ, Modise SJ. Solvent-solvent fractionations of Combretum erythrophyllum (Burch.) leave extract: studies of their antibacterial, antifungal, antioxidant, and cytotoxicity potentials. Asian Pac J Trop Biomed, 2017b; 10(7):670-9. https://doi.org/10.1016/j.apjtm.2017.07.007

Mtunzi FM, Ejidike IP, Matamela T, Dikio ED, Klink MJ. Phytochemical profiling, antioxidant and antibacterial activities of leaf extracts from Rhus leptodictya. Int J Pharmacogn Phytochem Res, 2017a; 9(8):1090-9. https://doi.org/10.25258/phyto.v9i08.9616

Mtunzi F, Ledwaba I, Klink M, Dikio E, Ejidike P, Pakade V. Antibacterial activity of a triterpene isolated from Combretum erythrophyllum ethyl acetate fraction. Org Med Chem Int J, 2017c; 4(3):555640. https://doi.org/10.19080/OMCIJ.2017.05.555640

Mushi NF, Innocent E, Kidukul AW. Cytotoxic and antimicrobial activities of substituted phenanthrenes from the roots of Combretum adenogonium Steud Ex A. Rich (Combretaceae). J Intercult Ethnopharmacol, 2015; 4(1):52-6. https://doi.org/10.5455/jice.20141025103405

Mushi NF, Mbwambo ZH, Innocent E, Tewtrakul S. Antibacterial, anti-HIV-1 protease and cytotoxic activities of aqueous ethanolic extracts from Combretum adenogonium Steud. Ex A. Rich (Combretaceae). BMC Complement Altern Med, 2012; 12:163. https://doi.org/10.1186/1472-6882-12-163

Nagata JM, Jew AR, Kimeu JM, Salmen CR, Bukusi EA, Cohen CR. Medical pluralism on Mfangano Island: use of medicinal plants among persons living with HIV/AIDS in Suba district, Kenya. J Ethnopharmacol, 2011; 135(2):501-9. https://doi.org/10.1016/j.jep.2011.03.051

Nguedia AJC, Shey ND. African medicinal plant derived products as therapeutic arsenals against multidrug resistant microorganisms. J Pharmacogn Phytother, 2014; 6(5):59-69.

Nopsiri W, Chansakaow S, Putiyanan S, Natakankitkul, S, Santiarworn D. Antioxidant and anticancer activities from leaf extracts of four Combretum species from Northern Thailand. CMU J Nat Sci, 2014; 13(2):195-205. https://doi.org/10.12982/CMUJNS.2014.0031

Norman NC, Pringle PG. In defence of oxidation states. Dalton Trans, 2022; 51(2):400-10. https://doi.org/10.1039/D0DT03914D

Ntchatcho G, Verotta L, Finzi PV, Zanoni G, Vidari G. A new beta-D-glucopyranosyl 2-oxo-urs-12-en-28-oate from the Cameroonian plant Combretum bracteatum. Nat Prod Commun, 2009; 4(12):1631-6. https://doi.org/10.1177/1934578X0900401203

Ntshanka NM, Ejidike IP, Mtunzi FM, Moloto MJ, Mubiayi KP. Investigation into the phytochemical profile, antioxidant and antibacterial potentials of Combretum molle and Acacia mearnsii leaf parts. Biomed Pharmacol J, 2020; 13(4):1683-94. https://doi.org/10.13005/bpj/2043

Nunes PHM, Cavalcanti PMS, Galvão SMP, Martins MCC. Antiulcerogenic activity of Combretum leprosum. Pharmazie, 2009; 64:58-62.

Nyenje ME, Ndip RN. Bioactivity of the acetone extract of the stem bark of Combretum molle on selected bacterial pathogens: preliminary phytochemical screening. J Med Plants Res, 2012; 6(8):1476-81. https://doi.org/10.5897/JMPR11.1413

Ofoedu CE, You L, Osuji CM, Iwouno JO, Kabuo NO, Ojukwu M, Agunwah IM, Chacha JS, Muobike OP, Agunbiade AO, Sardo G, Bono G, Okpala COR, Korzeniowska M. Hydrogen peroxide effects on natural-sourced polysacchrides: free radical formation/production, degradation process, and reaction mechanism-A critical synopsis. Foods, 2021; 10(4):699. https://doi.org/10.3390/foods10040699

Ogan AU. The alkaloids in the leaves of Combretum micranthum. Studies on West African medicinal plants. VII. Planta Med, 1972; 21(2):210-7. https://doi.org/10.1055/s-0028-1099545

Olukoya DK, Idika N, Odugbemi T. Antibacterial activity of some medicinal plants from Nigeria. J Ethnopharmacol, 1993; 39(1):69-72. https://doi.org/10.1016/0378-8741(93)90051-6

Owen RW, Giacosa A, Hull WE, Haubner R, Spigelhalder B, Bartsch, H. The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur J Cancer, 2000; 36(10):1235-47. https://doi.org/10.1016/S0959-8049(00)00103-9

Pegel KA, Rogers CB. The characterization of mollic acid-3β-D-xyloside and its genuine aglycon mollic acid, two novel 1α-hydroxycycloartenoids from Combretum molle. J Chem Soc Perkin Trans, 1985; 1:1711-5. https://doi.org/10.1039/P19850001711

Pettit GR, Singh SB, Boyd MR, Hamel E, Pettit RK, Schmidt JM, Hogan F. Antineoplastic agents. 291. Isolation and synthesis of combretastatin A-4, A-5 and A-6. J Med Chem, 1995; 38(10):1666-72. https://doi.org/10.1021/jm00010a011

Pettit GR, Singh SB, Hamel E, Lin CM, Alberts DS, Garcia- Kendall D. Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia, 1989; 45(2):209-11. https://doi.org/10.1007/BF01954881

Pettit GR, Toki BE, Herald DL, Boyd MR, Hamel E, Pettit RK, Chapuis JC. Antineoplastic agents. 410. Asymmetric hydroxylation of trans-combretastatin A-4. J Med Chem, 1999; 42(8):1459-65. https://doi.org/10.1021/jm9807149

Pietrovski EF, Rosa KA, Facundo VA, Rios K, Marques MC, Santos ARS. Antinociceptive properties of the ethanolic extract and of the triterpene 3β, 6β, 16β-trihydroxylup-20(29)-ene obtained from flowers of Combretum leprosum in mice. Pharmacol Biochem Behav, 2006; 83:90-9. https://doi.org/10.1016/j.pbb.2005.12.010

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev, 2017; 2017:8416763. https://doi.org/10.1155/2017/8416763

Poljsak B, Kova? V, Milisav I. Antioxidants, food processing and health. Antioxidants (Basel), 2021; 10(3):433. https://doi.org/10.3390/antiox10030433

Quattrocchi U, 2012. CRC World dictionary of medicinal and poisonous plants: common names, scientific names, eponyms, synonyms, and etymology (5 Volume Set). Taylor & Francis Group; CRC Press, Boca Raton, FL, pp 1070-81.

Rogers CB. Pentacyclic triterpenoids from rhamnosides Combretum imberbe leaves. Phytochemistry, 1988; 27(10):3217-20. https://doi.org/10.1016/0031-9422(88)80029-3

Rogers CB. Acidic dammarane arabinofuranosides from Combretum rotundifolium. Phytochemistry, 1995; 40(3):833-6. https://doi.org/10.1016/0031-9422(95)00345-8

Rogers CB. Cycloartenoid dienone acids and lactones from Combretum erythrophyllum. Phytochemistry, 1998; 49(7):2069-76. https://doi.org/10.1016/S0031-9422(98)00414-2

Rogers CB, Coombes PH. Acidic triterpenes glycosides in trichome secretions differentiate subspecies of Combretum collinum in South Africa. Biochem Syst Ecol, 1999; 27:321-3. https://doi.org/10.1016/S0305-1978(98)00084-2

Rogers CB, Verotta L. Chemistry and biological properties of the African Combretaceae. In: Hostettman K, Chinyanganga F, Maillard M, Wolfender JL (eds.). Chemistry, biological and pharmacological properties of African medicinal plants, University of Zimbabwe Publications, Harare, Zimbabwe, 1996.

Roy S, Gorai D, Acharya R, Roy R. Combretum (Combretaceae): biological activity and phytochemistry. Indo Am J Pharm Res, 2014a; 4(11):5266-99.

Roy R, Singh RK, Jash SK, Sarkar A, Gorai D. Combretum quadrangulare (Combretaceae): phytochemical constituents and biological activity. Indo Am J Pharm Res, 2014b; 4(8):3416-30.

Runyoro DKB, Srivastava SK, Darokar MP, Olipa ND, Cosam CJ, Mecky INM. Anticandidiasis agents from a Tanzanian plant, Combretum zeyheri. Med Chem Res, 2013; 22(3):1258-62. https://doi.org/10.1007/s00044-012-0135-6

Ryan KJ, Ray CG. Sherris medical microbiology: an introduction to infectious diseases. 4th edition, McGraw Hill, New York, NY, pp 484-8, 2004.

Sabo VA, Knezevic P. Antimicrobial activity of Eucalyptus camaldulensis Dehn. Plant extracts and essential oils: a review. Ind Crop Prod, 2019; 132:413-29. https://doi.org/10.1016/j.indcrop.2019.02.051

Sahu MC, Patnaik R, Padhy RN. In vitro combinational efficacy of ceftriaxone and leaf extract of Combretum albidum G. Don against multidrug-resistant Pseudomonas aeruginosa and host-toxicity testing with lymphocytes from human cord blood. J Acute Med, 2014; 4(1):26-37. https://doi.org/10.1016/j.jacme.2014.01.004

Sampedro MF, Piper KE, McDowell A, Patrick S, Mandrekar JN, Rouse MS, Steckelberg JM, Patel, R. Species of Propionibacterium and Propionibacterium acnes phylotypes associated with orthopedic implants. Diagn Microbiol Infect Dis, 2009; 64(2):138-45. https://doi.org/10.1016/j.diagmicrobio.2009.01.024

Saraswathi J, Venkatesh K, Baburao N, Hilal MH, Roja Rani A. Phytopharmacological importance of pelargonium species. J Med Plants Res, 2011; 5(13):2587-98.

Schwikkard S, Zhou BN, Glass TE, Sharp JL, Mattern MR, Johnson RK, Kingston DGI. Bioactive compounds from Combretum erythrophyllum. J Nat Prod, 2000; 63:457-60. https://doi.org/10.1021/np9904410

Serralheiro ML, Guedes R, Fadel SR, Bendif H. Data on identification of primary and secondary metabolites in aqueous extract of Verbascum betonicifolium. Data Brief, 2020; 32:106146. https://doi.org/10.1016/j.dib.2020.106146

Shah KA, Patel MB, Patel RJ, Parmar PK. Mangifera Indica (Mango). Pharmacogn Rev, 2010; 4(7):42-8. https://doi.org/10.4103/0973-7847.65325

Shaikh RU, Pund MM, Gacche RN. Evaluation of anti-inflammatory activity of selected medicinal plants used in Indian traditional medication system in vitro as well as in vivo. J Tradit Complement Med, 2016; 6(4):355-61. https://doi.org/10.1016/j.jtcme.2015.07.001

Silber J, Kramer A, Labes A, Tasdemir D. From discovery to production: biotechnology of marine fungi for the production of new antibiotics. Mar Drugs, 2016; 14(7):137. https://doi.org/10.3390/md14070137

Silén H, Salih EYA, Mgbeahuruike EE, Fyhrqvist P. Ethnopharmacology, antimicrobial potency, and phytochemistry of African Combretum and Pteleopsis species (Combretaceae): a review. Antibiotics, 2023; 12(2):264. https://doi.org/10.3390/antibiotics12020264

Simon MK, Ajanusi OJ, Abubakar MS, Idris AL, Suleiman MM. The anthelmintic effect of aqueous methanol extract of Combretum molle (R. Br. x. G. Don) (Combretaceae) in lambs experimentally infected with Haemonchus contortus. Vet Parasitol, 2012; 187(1-2):280-4. https://doi.org/10.1016/j.vetpar.2011.12.022

Simon MK, Ajanusi, OJ, George BD, Abubakar MS, Meduna JA. In vivo evaluation of the stem bark of Combretum molle (R. Br. x. G. Don) for anthelmintic properties. Cont J Vet Sci, 2008; 2:1-11.

Simon G, Dewelle J, Nacoulma O, Guissou P, Kiss R, Daloze D, Braekman JC. Cytotoxic pentacyclic triterpenes from Combretum nigricans. Fitoterapia, 2003; 74(4):339-44. https://doi.org/10.1016/S0367-326X(03)00046-7

Street RA, Prinsloo G. Commercially important medicinal plants of South Africa: a review. J Chem, 2013; 2013:16. https://doi.org/10.1155/2013/205048

Suleiman MM, McGaw LJ, Naidoo V, Eloff JN. Evaluation of several tree species for activity against the animal fungal pathogen Aspergillus fumigatus. S Afr J Bot, 2010; 76:64-71. https://doi.org/10.1016/j.sajb.2009.07.001

Suleiman MM, Simon MK, Ajanusi OJ, Idris AL, Abubakar MS. In vitro anthelmintic activity of the stem-bark of Combretum molle R. Br. x. G. Don (Combretaceae) against Haemonchus contortus. J Med Plants Res, 2013; 7(15):952-6.

Teles CBG, Moreira-Dill LS, Silva AA, Facundo VA, Azevedo Jr WFA, Silva LHP, Motta MCM, Stábeli RG, Silva Jardim I. A lupane-triterpene isolated from Combretum leprosum Mart. Fruit extracts that interferes with the intracellular development of Leishmania (L.) amazonensis in vitro. BMC Complement Altern Med, 2015; 15:165. https://doi.org/10.1186/s12906-015-0681-9

Tewtrakul S, Miyashiro H, Nakamura N, Hattori M, Kawahata T, Otake T, Yoshinaga T, Fujiwara, T, Supavita T, Yuenyongsawad S, Rattanasuwon P, Dej-Adisai S. HIV-1 integrase inhibitory substances from Coleus parvifolius. Phytother Res, 2003; 17:232-9. https://doi.org/10.1002/ptr.1111

Toume K, Nakazawa T, Ohtsuki T, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M. Cycloartane triterpenes isolated from Combretum quadrangulare in a screening program for death-receptor expression enhancing activity. J Nat Prod, 2011; 74(2):249-55. https://doi.org/10.1021/np100784t

Useh NM, Nok AJ, Ambali SF, Esievo KAN. The inhibition of Clostridium chauvoei (Jakari strain) neuraminidase activity by methanolic extracts of the stem barks of Tamarindus indicus and Combretum fragrans. J Enzyme Inhib Med Chem, 2004; 19(4):339-42. https://doi.org/10.1080/14756360409162447

Uzor PF, Ebrahim W, Osadebe OP, Nwodo JN, Okoye BF, Muller WEG, Lin W, Proksch P. Metabolites from Combretum dolichopetalum and its associated endophytic fungus Nigrospora pryzae. Evidence for a metabolic partnership. Fitoterapia, 2015; 105:147-50. https://doi.org/10.1016/j.fitote.2015.06.018

Uzor PF, Osadebe PO. Antidiabetic activity of the chemical constituents of Combretum dolichopetalum root in mice. EXCLI J, 2016; 15:290-6.

Van Wyk, BE, Gericke N. 2000. Peoples plants: a guide to useful plants of Southern Africa. Briza Publications, Pretoria, Southern Africa, p 351

Van Wyk BE, Van Ouddshoorn B, Gericke N. Medicinal plants of South Africa. Briza Publications, Pretoria, South Africa, 2009.

Van Wyk B, Van Wyk P. 1997. Field guide to trees of Southern Africa. Struik Publishers (Pty) Ltd., Cape Town, Southern Africa, p 536.

Venter F, Venter JA. 1996. Making the most of indigenous trees. 1st edition, Briza Publications, Pretoria, Southern Africa, p 304.

Verma S. Medicinal plants with anti-inflammatory activity. J Phytopharmacol, 2016; 5(4):157-9. https://doi.org/10.31254/phyto.2016.5407

Wang LQ, Wu MM, Liu JP, Li Y, Hua Y, Wang YY, Li XY, Chen YG, Wang JH. Five new diarylpropa-1-ols from Combretum yunnanense. Planta Med, 2011; 77:1841-4. https://doi.org/10.1055/s-0030-1271179

Welch CR. 2010. Chemistry and pharmacology of kinkéliba (Combretum micranthum), a West African medicinal plant. PhD Thesis, The State University of New Jersey, New Brunswick, NJ, pp 10-62.

Wright PM, Seiple IB, Myers AG. The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed Engl, 2014; 53(34):8840-69. https://doi.org/10.1002/anie.201310843

Wu MM, Wang LQ, Hua Y, Chen YG, Wang YY, Li XY, Li Y, Li T, Yang XY, Tang ZR. New chalcone and dimeric chalcones with 1,4-p-benzoquinone residue from Combretum yunnanense. Planta Med, 2011; 77(5):481-4. Yang Q, Wu D, Mao W, Liu X, Bao K, Lin Q, Lu F, Zou C, Li C. Chinese medicinal herbs for childhood pneumonia: a systematic review of effectiveness and safety. Evid Based Complement Alternat Med, 2013; 2013:25. https://doi.org/10.1055/s-0030-1250492

Zhang Y, Li HL, Zhong JD, Wang Y, Yuan CC. Chloroplast genome sequences and comparative analyses of Combretaceae mangroves with related species. Biomed Res Int, 2020; 2020:5867673. https://doi.org/10.1155/2020/5867673

Zhang WH, Lin-Han BL, Zhang HD. Antioxidant activities of extracts from Areca (Areca catectu L.) flower, husk and seed. Electron J Environ Agric Food Chem, 2009; 8:740-8.

Article Metrics
194 Views 181 Downloads 375 Total

Year

Month

Related Search

By author names