Editorial | Volume: 13, Issue: 6, June, 2023

Current Trends in Pharmaceutical Microbial Biotechnology for Sustainable Developments

Ajar Nath Yadav Divjot Kour Manish Kumar Neha Sharma Murat Dikilitas   

Open Access   

Published:  Jun 04, 2023

DOI: 10.7324/JAPS.2023.1306ed
Abstract

The biotechnological and microbiological aided pharmaceutical advances illustrate their application for the development and discovery of drugs. This is a fast growing field of science, facilitates the rapid discovery of novel therapeutic drugs. The development of drugs based on bioformulations in the form of DNA vaccines, antibodies and nucleic acid products can be achieved through DNA manipulations and microbiological interventions. Pharmaceutical industries are making collaborations with scientists working on molecular biology and genetic engineering for the production of marketed bioformulations by utilization of biotechnological principles. The designing of more effective protein based drugs using RDT (Recombinant DNA technology) and Bioinformatics pave the novel ways for the drug discovery and development.The modern era of pharmaceuticals is based on the more effective and stable therapeutic proteins. Recent bioinformatics techniques like homology modeling and protein ligand docking facilitates the computer aided drug designing for the development of more effective protein based drugs. The production of therapeutic proteins at large scale the recombinant DNA technology is more favorable that can include the extensive microbiological expertise. The extraction of DNA of interest, application of cloning vector and transformation into suitable host bacterial cell to obtain proteins at large scale and in the pure form are very important aspects of pharmaceutical biotechnology.


Keyword:     Antimicrobial activity Bioactive Metabolites DNA fingerprinting Nanobiotechnology Natural


Citation:

Yadav AN, Kour D, Kumar M, Sharma N, Dikilitas M. Current Trends in Pharmaceutical Microbial Biotechnology for Sustainable Developments. J App Pharm Sci, 2023; 13(06): i-v. doi: https://doi.org/10.7324/JAPS.2023.1306ed

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Adrio J-L, Demain AL. Recombinant organisms for production of industrial products. Bioeng Bugs, 2010; 1(2):116-131. https://doi.org/10.4161/bbug.1.2.10484

Akpotu MO, Eze PM, Abba CC, Nwachukwu CU, Okoye FB, Esimone CO. Antimicrobial activities of secondary metabolites of endophytic fungi isolated from Catharanthus roseus. Journal of Health Sciences, 2017; 7 (1):15-22. https://doi.org/10.17532/jhsci.2017.421

Berg A, Ritzau M, Ihn W, Schlegel B, Fleck WF, Heinze S, Gräfe U. Isolation and structure of bergofungin, a new antifungal peptaibol from Emericellopsis donezkii HKI 0059. J Antibiot (Tokyo). 1996; 49(8):817-20. https://doi.org/10.7164/antibiotics.49.817

Berg A, Schlegel B, Ihn W, Demuth U, Graefe U. Isolation and structural elucidation of new peptaibols, bergofungins B, C and D, from Emericellopsis donezkii HKI 0059. The Journal of Antibiotics, 1999; 52(7):666-669. https://doi.org/10.7164/antibiotics.52.666

Bhuyar P, Rahim MHA, Maniam GP, Ramaraj R, Govindan N. Exploration of bioactive compounds and antibacterial activity of marine blue-green microalgae (Oscillatoria sp.) isolated from coastal region of west Malaysia. SN Applied Sciences, 2020; 2 (11):1-10. https://doi.org/10.1007/s42452-020-03698-8

Braga RM, Dourado MN, Araújo WL. Microbial interactions: ecology in a molecular perspective. Brazilian Journal of Microbiology, 2016; 47:86-98. https://doi.org/10.1016/j.bjm.2016.10.005

Davies J. Specialized microbial metabolites: functions and origins. The Journal of antibiotics, 2013; 66 (7):361- 364. https://doi.org/10.1038/ja.2013.61

Debbab A, Aly AH, Lin WH, Proksch P. Bioactive compoun,ds from marine bacteria and fungi. Microbial biotechnology, 2010; 3 (5):544-563. https://doi.org/10.1111/j.1751-7915.2010.00179.x

Demain AL. Pharmaceutically active secondary metabolites of microorganisms. Applied microbiology and biotechnology 1999; 52 (4):455-463. https://doi.org/10.1007/s002530051546

Arkadios Dimitroglou, Daniel L. Merrifield, Oliana Carnevali, Simona Picchietti, Matteo Avella, Carly Daniels, Derya Güroy, Simon J. Davies, Microbial manipulations to improve fish health and production - A Mediterranean perspective, Fish & Shellfish Immunology, 2011; 30(1), 1-16. https://doi.org/10.1016/j.fsi.2010.08.009

Gessmann R, Axford D, Brückner H, Berg A, Petratos K. A natural, single-residue substitution yields a less active peptaibiotic: The structure of bergofungin A at atomic resolution. Acta Crystallographica Section F: Structural Biology Communications, 2017; 73 (2):95-100. https://doi.org/10.1107/S2053230X17001236

Gupta C, Prakash D, Gupta S. Natural useful therapeutic products from microbes. J Microbiol Exp, 2014; 1 (1):00006. https://doi.org/10.15406/jmen.2014.01.00006

Ishiyama D, Satou T, Senda H, Fujimaki T, Honda R, Kanazawa S. Heptaibin, a novel antifungal peptaibol antibiotic from Emericellopsis sp. BAUA8289. The Journal of antibiotics, 2000; 53 (7):728-732. https://doi.org/10.7164/antibiotics.53.728

Kohli I, Joshi NC, Mohapatra S, Varma A. Extremophile-an adaptive strategy for extreme conditions and applications. Current Genomics, 2020; 21 (2):96-110. https://doi.org/10.2174/1389202921666200401105908

Kusaka T, Yamamoto H, Shibata M, Muroi M, Kishi T, Mizuno K. Streptomyces citricolor nov. sp. and a new antibiotic, aristeromycin. The Journal of antibiotics, 1968; 21 (4):255- 263. https://doi.org/10.7164/antibiotics.21.255

MacDonald IC, Deans TL. Tools and applications in synthetic biology. Advanced drug delivery reviews, 2016; 105:20- 34. https://doi.org/10.1016/j.addr.2016.08.008

Nakatsuji T, Hata TR, Tong Y, Cheng JY, Shafiq F, Butcher AM, Salem SS, Brinton SL, Rudman Spergel AK, Johnson K, Jepson B, Calatroni A, David G, Ramirez-Gama M, Taylor P, Leung DYM, Gallo RL. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat Med. 2021; 27 (4):700-709. https://doi.org/10.1038/s41591-021-01256-2

Niu S, Xie CL, Xia JM, Liu QM, Peng G, Liu GM, Yang XW. Botryotins A-H, Tetracyclic Diterpenoids Representing Three Carbon Skeletons from a Deep-Sea-Derived Botryotinia fuckeliana. Org Lett. 2020 17;22(2):580-583. https://doi.org/10.1021/acs.orglett.9b04332

Niu S, Xie C-L, Xia J-M, Luo Z-H, Shao Z, Yang X-W. New anti-inflammatory guaianes from the Atlantic hydrotherm-derived fungus Graphostroma sp. MCCC 3A00421. Scientific reports, 2018; 8 (1):1-9. https://doi.org/10.1038/s41598-017-18841-6

Nuankeaw K, Chaiyosang B, Suebrasri T, Kanokmedhakul S, Lumyong S, Boonlue S. First report of secondary metabolites, Violaceol I and Violaceol II produced by endophytic fungus, Trichoderma polyalthiae and their antimicrobial activity. Mycoscience, 2020; 61 (1):16-21. https://doi.org/10.1016/j.myc.2019.10.001

Ovchinnikova TV, Levitskaya NG, Voskresenskaya OG, Yakimenko ZA, Tagaev AA, Ovchinnikova AY, Murashev AN, Kamenskii AA. Neuroleptic properties of the ion-channel-forming peptaibol zervamicin: locomotor activity and behavioral effects. Chem Biodivers. 2007; 4(6):1374-87. https://doi.org/10.1002/cbdv.200790117

Pandhal J, Noirel J. Synthetic microbial ecosystems for biotechnology. Biotechnology letters, 2014; 36 (6):1141-1151. Peterson R, Nevalainen H. Trichoderma reesei RUT-C30- thirty years of strain improvement. Microbiology, 2012; 158 (1):58- 68. https://doi.org/10.1099/mic.0.054031-0

Rogozhin EA, Sadykova VS, Baranova AA, Vasilchenko AS, Lushpa VA, Mineev KS, Georgieva ML, Kul'ko AB, Krasheninnikov ME, Lyundup AV, Vasilchenko AV, Andreev YA. A Novel Lipopeptaibol Emericellipsin A with Antimicrobial and Antitumor Activity Produced by the Extremophilic Fungus Emericellopsis alkalina. Molecules. 2018; 27; 23(11):2785. https://doi.org/10.3390/molecules23112785

Romero F, Espliego F, Pérez Baz J, García de Quesada T, Grávalos D, de la Calle F, Fernández-Puentes JL. Thiocoraline, a new depsipeptide with antitumor activity produced by a marine Micromonospora. I. Taxonomy, fermentation, isolation, and biological activities. J Antibiot (Tokyo). 1997; 50(9):734-7. https://doi.org/10.7164/antibiotics.50.734

Serour E, Antranikian G. Novel thermoactive glucoamylases from the thermoacidophilic Archaea Thermoplasma acidophilum, Picrophilus torridus and Picrophilus oshimae. Antonie Van Leeuwenhoek, 2002; 81 (1):73-83. https://doi.org/10.1023/A:1020525525490

Sharma D, Pramanik A, Agrawal PK. Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D. Don. 3 Biotech, 2016; 6 (2):1-14. https://doi.org/10.1007/s13205-016-0518-3

Sindelar RD. 2016. Genomics, other "omics" technologies, personalized medicine, and additional biotechnology-related techniques. In: Pharmaceutical Biotechnology, edited by Sindelar Robert D and Meibohm BE, 149-190. https://doi.org/10.3109/9781420044386-11

Song Y, Li Q, Liu X, Chen Y, Zhang Y, Sun A, Zhang W, Zhang J, Ju J. Cyclic Hexapeptides from the Deep South China Sea- Derived Streptomyces scopuliridis SCSIO ZJ46 Active Against Pathogenic Gram-Positive Bacteria. J Nat Prod. 2014; 22;77(8):1937- 41. https://doi.org/10.1021/np500399v

Stryjewska A, Kiepura K, Librowski T, Lochy?ski S. Biotechnology and genetic engineering in the new drug development. Part I. DNA technology and recombinant proteins. Pharma Rep, 2013; 65(5):1075-1085. https://doi.org/10.1016/S1734-1140(13)71466-X

Sudharshana T, Venkatesh H, Nayana B, Manjunath K, Mohana D. Anti-microbial and anti-mycotoxigenic activities of endophytic Alternaria alternata isolated from Catharanthus roseus (L.) G. Don.: molecular characterisation and bioactive compound isolation. Mycology, 2019; 10(1):40-48. https://doi.org/10.1080/21501203.2018.1541933

Takahashi K, Sakai K, Fukasawa W, Nagano Y, Sakaguchi SO, Lima AO, Pellizari VH, Iwatsuki M, Takishita K, Yoshida T, Nonaka K, Fujikura K, ?mura S. Quellenin, a new anti-Saprolegnia compound isolated from the deep-sea fungus, Aspergillus sp. YK-76. J Antibiot (Tokyo). 2018 ; 71(8):741-744. https://doi.org/10.1038/s41429-018-0053-z

Webster NS. Cooperation, communication, and co-evolution: grand challenges in microbial symbiosis research. Frontiers in microbiology, 2014; 5:164. https://doi.org/10.3389/fmicb.2014.00164

Wiese J, Aldemir H, Schmaljohann R, Gulder TA, Imhoff JF. Asperentin B, a new inhibitor of the protein tyrosine phosphatase 1B. Marine drugs, 2017; 15 (6):191. https://doi.org/10.3390/md15060191

Xie Y, Peng Q, Ji Y, Xie A, Yang L, Mu S, Li Z, He T, Xiao Y, Zhao J, Zhang Q. Isolation and Identification of Antibacterial Bioactive Compounds From Bacillus megaterium L2. Front Microbiol. 2021; 24; 12:645484. https://doi.org/10.3389/fmicb.2021.645484

Yadav AN, Kour D, Rana KL, Yadav N, Singh B, Singh VC, Rastegari AA, Hesham AEL, Gupta VK. 2019. Metabolic Engineering to Synthetic Biology of Secondary Metabolites Production. New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, pp 279-320. https://doi.org/10.1016/B978-0-444-63504-4.00020-7

Elsevier. Yang Y, Adelstein SJ, Kassis AI. Target discovery from data mining approaches. Drug Discov Today, 2012; 17:S16-S23. https://doi.org/10.1016/j.drudis.2011.12.006

Zhang J, Li B, Qin Y, Loganathan K. A new abyssomicin polyketide with anti-influenza A virus activity from a marine-derived Verrucosispora sp. MS100137. Applied Microbiol and Biotechnol, 2020; 104(4):1533-1543. https://doi.org/10.1007/s00253-019-10217-2

Article Metrics
140 Views 246 Downloads 386 Total

Year

Month

Related Search

By author names