Azman AS, Othman I, Fang CM, Chan KG, Goh BH, Lee LH. Antibacterial, anticancer and neuroprotective activities of rare Actinobacteria from mangrove forest soils. Indian J Microbiol, 2017; 57:177-87; doi:10.1007/s12088-016-0627-z https://doi.org/10.1007/s12088-016-0627-z |
|
Beebe KR, Pell RJ, Seasholtz MB. Chemometrics: a practical guide. Wiley, New York, NY, 1998. | |
|
Berrueta LA, Alonso-Salces RM, Héberger K. Supervised pattern recognition in food analysis. J Chromatogr A, 2007; 1158:196-214; doi:10.1016/j.chroma.2007.05.024 https://doi.org/10.1016/j.chroma.2007.05.024 | |
|
Bheemaraya PMB, Ramesh YST, Amaresh YS, Naik MK. Salinity stress tolerance in native Trichoderma isolates. Environ Ecol, 2013; 31:727-9. | |
|
Brereton RG. Chemometrics: data analysis for laboratory and chemical plant. John Wiley and Sons Ltd, Chichester, UK, 2003. https://doi.org/10.1002/0470863242 | |
|
Brinkmann CM, Marker A, Kurtböke DI. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity, 2017; 9:1-31; doi:10.3390/d9040040. https://doi.org/10.3390/d9040040 | |
|
Che Man YB, Rohman A, Mansor TST. Differentiation of lard from other edible fats and oils by means of Fourier transform infrared spectroscopy and chemometrics. J Am Oil Chem Soc, 2011; 88:187-92; doi:10.1007/s11746-010-1659-x. https://doi.org/10.1007/s11746-010-1659-x | |
|
Cometto-Muñiz JE, Cain WS, Abraham MH. Determinants for nasal trigeminal detection of volatile organic compounds. Chem Senses, 2005; 30:627-42; doi:10.1093/chemse/bji056. https://doi.org/10.1093/chemse/bji056 | |
|
Davis WW, Stout TR. Disc plate method of microbiological antibiotic assay. II. Novel procedure offering improved accuracy. Appl Microbiol, 1971; 22:666-70; doi:10.1128/aem.22.4.666-670.1971. https://doi.org/10.1128/AEM.22.4.666-670.1971 | |
|
Debbab A, Aly AH, Proksch P. Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Divers, 2011; 49:1-12; doi:10.1007/s13225-011-0114-0. https://doi.org/10.1007/s13225-011-0114-0 | |
|
Fuentes ME, Quiñones RA, Gutiérrez MH, Pantoja S. Effects of temperature and glucose concentration on the growth and respiration of fungal species isolated from a highly productive coastal upwelling ecosystem. Fungal Ecol, 2015; 13:135-49; doi:10.1016/j.funeco.2014.09.006. https://doi.org/10.1016/j.funeco.2014.09.006 | |
|
Gautam SP, Bundela PS, Pandey AK, Jamaluddin, Awasthi MK, Sarsaiya S. Optimization of the medium for the production of cellulase by the Trichoderma viride using submerged fermentation. Int J Environ Sci, 2010; 1:656-65. | |
|
Gemperline P. Practical guide to chemometrics. Second. Taylor & Francis, Boca Raton, FL, 2006. https://doi.org/10.1201/9781420018301 | |
|
Gohar YM, El-Naggar MMA, Soliman MK, Barakat KM. Characterization of marine Burkholderia cepacia antibacterial agents. J Nat Prod, 2010; 74:86-94. | |
|
Graz M, Hunt A, Jamie H, Grant G, Milne P. Antimicrobial activity of selected cyclic dipeptides. Pharmazie, 1999; 54:772-5. | |
|
Han J, Datla R, Chan S, Borchers CH. Mass spectrometry-based technologies for high-throughput metabolomics. Bioanalysis, 2009; 1:1665-84; doi:10.4155/bio.09.158. https://doi.org/10.4155/bio.09.158 | |
|
Hanrahan G, Gomez FA. Chemometric methods in capillary electrophoresis. J. Wiley & Sons, Hoboken, NJ, 2010. https://doi.org/10.1002/9780470530191 | |
|
Huang J, Lu C, Qian X, Huang Y, Zheng Z, Shen Y. Effect of salinity on the growth, biological activity and secondary metabolites of some marine fungi. Acta Oceanol Sin, 2011; 30:118-23; doi:10.1007/ s13131-011-0126-3. https://doi.org/10.1007/s13131-011-0126-3 | |
|
Humphris SN, Bruce A, Buultjens E, Wheatley RE. The effects of volatile microbial secondary metabolites on protein synthesis in Serpula lacrymans. FEMS Microbiol Lett, 2002; 210:215-9; doi:10.1016/S0378- 1097(02)00604-3. https://doi.org/10.1111/j.1574-6968.2002.tb11183.x | |
|
Kjer J, Debbab A, Aly AH, Proksch P. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc, 2010; 5:479-90; doi:10.1038/nprot.2009.233. https://doi.org/10.1038/nprot.2009.233 | |
|
Kusumawati DE, Purwanto UMS, Bintang M, Pasaribu FH. Analysis of metabolite compound profiles of miana leaves endophytic bacteria (Coleus scutellariodes) using GC-MS. Curr Biochem, 2021; 8:63-7. https://doi.org/10.29244/cb.8.2.2 | |
|
Mishra N, Khan SS, Sundari SK. Native isolate of Trichoderma: a biocontrol agent with unique stress tolerance properties. World J Microbiol Biotechnol, 2016; 32:1-23; doi:10.1007/s11274-016-2086-4. https://doi.org/10.1007/s11274-016-2086-4 | |
|
Moore-Landecker E. Fundamentals of the fungi. Fourth. Prentice Hall, Hoboken, NJ, 1996. | |
|
Muthukumar A, Venkatesh A. Physiological studies of Sclerotium rolfsii Sacc. causing collar rot of peppermint. African J Biotechnol, 2013; 12:6837-42; doi:10.5897/AJB2013.13201. | |
|
Pelczar MJ, Chan ECS. Dasar-Dasar Mikrobiologi I. Jilid 1. UI-Press, Jakarta, Indonesia, 2008a. | |
|
Pelczar MJ, Chan ECS. Dasar-Dasar Mikrobiologi II. Jilid 2. UI-Press, Jakarta, Indonesia, 2008b. | |
|
Pratiwi DE, Harjoko A. Implementasi pengenalan wajah menggunakan PCA (principal component analysis). IJEIS, 2013; 3:175-84; doi:10.1002/jlac.19335020105. https://doi.org/10.1002/jlac.19335020105 | |
|
Raharja NI, Widanarni, Wahyudi AT. Marine sponge-associated bacteria as biocontrol agents of vibriosis on whiteleg shrimp caused by Vibrio parahaemolyticus. Biodiversitas, 2019; 20:3164-9; doi:10.13057/ biodiv/d201108. https://doi.org/10.13057/biodiv/d201108 | |
|
Rohman A. Statistika dan Kemometrika dasar dalam analisis farmasi. Pustaka Pelajar, Yogyakarta, Indonesia, 2014. | |
|
Samirana PO, Jenie RI, Murti YB, Setyowati EP. Application of metabolomics on marine sponges and sponge-associated microorganisms: a review. J Appl Pharm Sci, 2022; 12:18-33; doi:10.7324/JAPS.2022.120702. https://doi.org/10.7324/JAPS.2022.120702 | |
|
Samirana PO, Murti YB, Jenie RI, Setyowati EP. Marine sponge-derived fungi: fermentation and cytotoxic activity. J Appl Pharm Sci, 2021a; 11:21-39; doi:10.7324/japs.2021.110103. https://doi.org/10.7324/JAPS.2021.110103 | |
|
Samirana PO, Murti YB, Istighfari Jenie R, Prawita Setyowati E. Antibacterial and cytotoxic activities of supernatant and mycelium extracts from fermentation of fungal symbiont Trichoderma reesei TV221. J Appl Pharm Sci, 2021b; 11:90-9; doi:10.7324/japs.2021.1101207. https://doi.org/10.7324/JAPS.2021.1101207 | |
|
Samirana PO, Susidarti RA, Rohman A. Isolation and 2,2'-diphenyl-1-picrylhydrazyl radical scavenging activity of active compound from Jujube tree (Zizyphus mauritiana Auct. non Lamk.). Int J Food Prop, 2017; 20:1523-9; doi:10.1080/10942912.2016.1233427. https://doi.org/10.1080/10942912.2016.1233427 | |
|
Sánchez-Montesinos B, Diánez F, Moreno-Gavira A, Gea FJ, Santos M. Plant growth promotion and biocontrol of Pythium ultimum by saline tolerant Trichoderma isolates under salinity stress. Int J Environ Res Public Health, 2019; 16:1-11; doi:10.3390/ijerph16112053. https://doi.org/10.3390/ijerph16112053 | |
|
Sartono B, Affendi FM, Syafitri UD, Sumertajaya I, Angraeni Y. Analisis Peubah Ganda. IPB Press, Bogor, Indonesia, 2003. | |
|
Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Tunali UR, Forbes MG, Willmitzer L, Fernie AR, Kopka J. GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett, 2005; 579:1332-7; doi:10.1016/j. febslet.2005.01.029. https://doi.org/10.1016/j.febslet.2005.01.029 | |
|
Seto M, Tazaki T. Growth and respiratory activity of mold fungus (Trichoderma lignorum). Bot Mag Tokyo, 1975; 88:255-66; doi:10.1007/ BF02488368. https://doi.org/10.1007/BF02488368 | |
|
Setyowati EP, Pratiwi SUT, Hertiani T, Samirana O. Bioactivity of fungi Trichoderma reesei, Associated with sponges (Stylissa flabelliformis) collected from National ark West Bali, Indonesia. J Biol Sci, 2017; 17:362- 8; doi:10.3923/jbs.2017.362.368. https://doi.org/10.3923/jbs.2017.362.368 | |
|
Setyowati EP, Pratiwi SUT, Purwantiningsih, Samirana PO. Antimicrobial activity and identification of fungus associated (Stylissa flabelliformis) sponge collected from Menjangan Island West Bali National Park, Indonesia. Indones J Pharm, 2018; 29:66-73; doi:10.14499/ indonesianjpharm29iss2pp66. https://doi.org/10.14499/indonesianjpharm29iss2pp66 | |
|
Sguros P, Simms J. Role of marine fungi in the biochemistry of the oceans. II. Effect of glucose, inorganic nitrogen, and tris (Hydroxymethyl) aminomethane on growth and pH changes in synthetic media. Mycologia, 1963; 55:728-41; doi:10.1080/00275514.1963.12018064. https://doi.org/10.1080/00275514.1963.12018064 | |
|
Sharma S. Applied multivariate techniques. John Wiley and Sons, New York, NY, 1996. | |
|
Sibero MT, Radjasa OK, Sabdono A, Trianto A, Triningsih DW, Hutagaol ID. Antibacterial activity of Indonesian sponge associated fungi against clinical pathogenic multidrug resistant bacteria. J Appl Pharm Sci, 2018; 8:088-94; doi:10.7324/JAPS.2018.8214. https://doi.org/10.7324/JAPS.2018.8214 | |
|
Stanbury PF, Whitaker A, Hall SJ. Principles of fermentation technology. 2nd edition, Elsevier, London, UK, 1995; doi:10.1016/0167- 7799(85)90016-2. | |
|
Syukri Y, Fitria A, Hanifah S, Idrati M. Development of new indonesian propolis extract-loaded self-emulsifying: characterization, stability and antibacterial activity. Adv Pharm Bull, 2021; 11:120-9; doi:10.34172/apb.2021.013. https://doi.org/10.34172/apb.2021.013 | |
|
Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev, 2007; 71:295-347; doi:10.1128/mmbr.00040-06. https://doi.org/10.1128/MMBR.00040-06 | |
|
Tjay TH, Rahardja K. Obat-Obat Penting : Khasiat, Penggunaan, dan Efek-Efek Sampingnya. Edisi VIII. PT. Elex Media Komputindo, Jakarta, Indonesia, 2015. | |
|
Ukhty N, Tarman K, Setyaningsih I. Isolation of endophytic fungi from the coastal plant terong pungo (Solanum sp.) and its antibacterial activity against oral pathogenic bacteria. Biotropia (Bogor), 2017; 24:9-15; doi:10.11598/btb.2017.24.1.453. https://doi.org/10.11598/btb.2017.24.1.453 | |
|
Xu CJ, Liang YZ, Chau FT, Heyden Y Vander. Pretreatments of chromatographic fingerprints for quality control of herbal medicines. J Chromatogr A, 2006; 1134:253-9; doi:10.1016/j.chroma.2006.08.060. https://doi.org/10.1016/j.chroma.2006.08.060 | |
|
Yuliana ND, Khatib A, Choi YH, Verpoorte R. Metabolomics for bioactivity assessment of natural products. Phyther Res, 2011; 25:157-69; doi:10.1002/ptr.3258. https://doi.org/10.1002/ptr.3258 | |
|
Yulianto W, Andarwulan N, Giriwono PE, Pamungkas J. HPLC-based metabolomics to identify cytotoxic compounds from Plectranthus amboinicus (Lour.) Spreng against human breast cancer MCF-7Cells. J Chromatogr B Anal Technol Biomed Life Sci, 2016; 1039:28-34; doi:10.1016/j.jchromb.2016.10.024. https://doi.org/10.1016/j.jchromb.2016.10.024 | |
|
Zhang L, Parente J, Harris SM, Woods DE, Hancock REW, Falla TJ. Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob Agents Chemother, 2005; 49:2921-7; doi:10.1128/AAC.49.7.2921-2927.2005. https://doi.org/10.1128/AAC.49.7.2921-2927.2005 | |