GC-MS metabolomic approach to study antimicrobial activity of the marine sponge-derived fungi Trichoderma reesei TV221

Putu Oka Samirana Yosi Bayu Murti Riris Istighfari Jenie Erna Prawita Setyowati   

Open Access   

Published:  Mar 04, 2023

DOI: 10.7324/JAPS.2023.124424
Abstract

One of the fungi associated with the sponge Stylissa flabelliformis, namely Trichoderma reesei TV221, has been known to have antibacterial activity against Gram-positive and Gram-negative bacteria, but the active compound that plays a role is unknown. The aim of the study is to identify antimicrobial compounds from the fungus T. reesei TV221 through the gas chromatography-mass spectroscopy (GC-MS) metabolomic approach. Fungi T. reesei TV221 were cultured on a fermentation medium with various levels of Dextrose and salinity. After 12 days of fermentation, the supernatant and biomass were extracted from each variation of the fermentation medium by employing ethyl acetate as solvent. A total of 18 extracts were examined for antimicrobials against Staphylococcus aureus American type culture collection (ATCC) 25923 and Escherichia coli ATCC 25922 by disc diffusion method. Furthermore, the 18 extracts were regulated by GC-MS chemical profile. The antimicrobial activity test results and GC-MS chemical profile data were then statistically evaluated by employing hierarchical cluster analysis (HCA) and principal component analysis (PCA) methods. The supernatant extracts from various medium numbers as 6 (F), 7 (G), 8 (H), and 9 (I) possessed the highest antimicrobial activity. The chemical profile of the GC-MS extract with variations in Dextrose levels was discovered to possess a more varied GC-MS chemical profile pattern than the GC-MS chemical profile pattern on extracts with variations in salinity levels. Based on the metabolomic approach by utilizing HCA and PCA methods, it is estimated that there are three compounds which possess the most potential antimicrobial activity derived from the fungus T. reesei TV221, that is, 1,4-diaza-2,5-dioxobicyclo[4.3.0]nonane; 1,4-diaza-2,5-dioxo-3- isobutyl bicyclo[4.3.0]nonane; 3-benzyl-1,4-diaza-2,5-dioxobicyclo[4.3.0]nonane. A metabolomic approach which combines activity test data and GC-MS chemical profile data is able to predict compounds that play a pivotal role in the antimicrobial activity of the fungus T. reesei TV221.


Keyword:      Trichoderma reesei antimicrobial GC-MS profile metabolomics fermentation


Citation:

Samirana PO, Murti YB, Jenie RI, Setyowati EP. GC-MS metabolomic approach to study antimicrobial activity of the marine sponge-derived fungi Trichoderma reesei TV221. J Appl Pharm Sci, 2023. https://doi.org/10.7324/JAPS.2023.124424

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Azman AS, Othman I, Fang CM, Chan KG, Goh BH, Lee LH. Antibacterial, anticancer and neuroprotective activities of rare Actinobacteria from mangrove forest soils. Indian J Microbiol, 2017; 57:177-87; doi:10.1007/s12088-016-0627-z https://doi.org/10.1007/s12088-016-0627-z

Beebe KR, Pell RJ, Seasholtz MB. Chemometrics: a practical guide. Wiley, New York, NY, 1998.

Berrueta LA, Alonso-Salces RM, Héberger K. Supervised pattern recognition in food analysis. J Chromatogr A, 2007; 1158:196-214; doi:10.1016/j.chroma.2007.05.024 https://doi.org/10.1016/j.chroma.2007.05.024

Bheemaraya PMB, Ramesh YST, Amaresh YS, Naik MK. Salinity stress tolerance in native Trichoderma isolates. Environ Ecol, 2013; 31:727-9.

Brereton RG. Chemometrics: data analysis for laboratory and chemical plant. John Wiley and Sons Ltd, Chichester, UK, 2003. https://doi.org/10.1002/0470863242

Brinkmann CM, Marker A, Kurtböke DI. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity, 2017; 9:1-31; doi:10.3390/d9040040. https://doi.org/10.3390/d9040040

Che Man YB, Rohman A, Mansor TST. Differentiation of lard from other edible fats and oils by means of Fourier transform infrared spectroscopy and chemometrics. J Am Oil Chem Soc, 2011; 88:187-92; doi:10.1007/s11746-010-1659-x. https://doi.org/10.1007/s11746-010-1659-x

Cometto-Muñiz JE, Cain WS, Abraham MH. Determinants for nasal trigeminal detection of volatile organic compounds. Chem Senses, 2005; 30:627-42; doi:10.1093/chemse/bji056. https://doi.org/10.1093/chemse/bji056

Davis WW, Stout TR. Disc plate method of microbiological antibiotic assay. II. Novel procedure offering improved accuracy. Appl Microbiol, 1971; 22:666-70; doi:10.1128/aem.22.4.666-670.1971. https://doi.org/10.1128/AEM.22.4.666-670.1971

Debbab A, Aly AH, Proksch P. Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Divers, 2011; 49:1-12; doi:10.1007/s13225-011-0114-0. https://doi.org/10.1007/s13225-011-0114-0

Fuentes ME, Quiñones RA, Gutiérrez MH, Pantoja S. Effects of temperature and glucose concentration on the growth and respiration of fungal species isolated from a highly productive coastal upwelling ecosystem. Fungal Ecol, 2015; 13:135-49; doi:10.1016/j.funeco.2014.09.006. https://doi.org/10.1016/j.funeco.2014.09.006

Gautam SP, Bundela PS, Pandey AK, Jamaluddin, Awasthi MK, Sarsaiya S. Optimization of the medium for the production of cellulase by the Trichoderma viride using submerged fermentation. Int J Environ Sci, 2010; 1:656-65.

Gemperline P. Practical guide to chemometrics. Second. Taylor & Francis, Boca Raton, FL, 2006. https://doi.org/10.1201/9781420018301

Gohar YM, El-Naggar MMA, Soliman MK, Barakat KM. Characterization of marine Burkholderia cepacia antibacterial agents. J Nat Prod, 2010; 74:86-94.

Graz M, Hunt A, Jamie H, Grant G, Milne P. Antimicrobial activity of selected cyclic dipeptides. Pharmazie, 1999; 54:772-5.

Han J, Datla R, Chan S, Borchers CH. Mass spectrometry-based technologies for high-throughput metabolomics. Bioanalysis, 2009; 1:1665-84; doi:10.4155/bio.09.158. https://doi.org/10.4155/bio.09.158

Hanrahan G, Gomez FA. Chemometric methods in capillary electrophoresis. J. Wiley & Sons, Hoboken, NJ, 2010. https://doi.org/10.1002/9780470530191

Huang J, Lu C, Qian X, Huang Y, Zheng Z, Shen Y. Effect of salinity on the growth, biological activity and secondary metabolites of some marine fungi. Acta Oceanol Sin, 2011; 30:118-23; doi:10.1007/ s13131-011-0126-3. https://doi.org/10.1007/s13131-011-0126-3

Humphris SN, Bruce A, Buultjens E, Wheatley RE. The effects of volatile microbial secondary metabolites on protein synthesis in Serpula lacrymans. FEMS Microbiol Lett, 2002; 210:215-9; doi:10.1016/S0378- 1097(02)00604-3. https://doi.org/10.1111/j.1574-6968.2002.tb11183.x

Kjer J, Debbab A, Aly AH, Proksch P. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc, 2010; 5:479-90; doi:10.1038/nprot.2009.233. https://doi.org/10.1038/nprot.2009.233

Kusumawati DE, Purwanto UMS, Bintang M, Pasaribu FH. Analysis of metabolite compound profiles of miana leaves endophytic bacteria (Coleus scutellariodes) using GC-MS. Curr Biochem, 2021; 8:63-7. https://doi.org/10.29244/cb.8.2.2

Mishra N, Khan SS, Sundari SK. Native isolate of Trichoderma: a biocontrol agent with unique stress tolerance properties. World J Microbiol Biotechnol, 2016; 32:1-23; doi:10.1007/s11274-016-2086-4. https://doi.org/10.1007/s11274-016-2086-4

Moore-Landecker E. Fundamentals of the fungi. Fourth. Prentice Hall, Hoboken, NJ, 1996.

Muthukumar A, Venkatesh A. Physiological studies of Sclerotium rolfsii Sacc. causing collar rot of peppermint. African J Biotechnol, 2013; 12:6837-42; doi:10.5897/AJB2013.13201.

Pelczar MJ, Chan ECS. Dasar-Dasar Mikrobiologi I. Jilid 1. UI-Press, Jakarta, Indonesia, 2008a.

Pelczar MJ, Chan ECS. Dasar-Dasar Mikrobiologi II. Jilid 2. UI-Press, Jakarta, Indonesia, 2008b.

Pratiwi DE, Harjoko A. Implementasi pengenalan wajah menggunakan PCA (principal component analysis). IJEIS, 2013; 3:175-84; doi:10.1002/jlac.19335020105. https://doi.org/10.1002/jlac.19335020105

Raharja NI, Widanarni, Wahyudi AT. Marine sponge-associated bacteria as biocontrol agents of vibriosis on whiteleg shrimp caused by Vibrio parahaemolyticus. Biodiversitas, 2019; 20:3164-9; doi:10.13057/ biodiv/d201108. https://doi.org/10.13057/biodiv/d201108

Rohman A. Statistika dan Kemometrika dasar dalam analisis farmasi. Pustaka Pelajar, Yogyakarta, Indonesia, 2014.

Samirana PO, Jenie RI, Murti YB, Setyowati EP. Application of metabolomics on marine sponges and sponge-associated microorganisms: a review. J Appl Pharm Sci, 2022; 12:18-33; doi:10.7324/JAPS.2022.120702. https://doi.org/10.7324/JAPS.2022.120702

Samirana PO, Murti YB, Jenie RI, Setyowati EP. Marine sponge-derived fungi: fermentation and cytotoxic activity. J Appl Pharm Sci, 2021a; 11:21-39; doi:10.7324/japs.2021.110103. https://doi.org/10.7324/JAPS.2021.110103

Samirana PO, Murti YB, Istighfari Jenie R, Prawita Setyowati E. Antibacterial and cytotoxic activities of supernatant and mycelium extracts from fermentation of fungal symbiont Trichoderma reesei TV221. J Appl Pharm Sci, 2021b; 11:90-9; doi:10.7324/japs.2021.1101207. https://doi.org/10.7324/JAPS.2021.1101207

Samirana PO, Susidarti RA, Rohman A. Isolation and 2,2'-diphenyl-1-picrylhydrazyl radical scavenging activity of active compound from Jujube tree (Zizyphus mauritiana Auct. non Lamk.). Int J Food Prop, 2017; 20:1523-9; doi:10.1080/10942912.2016.1233427. https://doi.org/10.1080/10942912.2016.1233427

Sánchez-Montesinos B, Diánez F, Moreno-Gavira A, Gea FJ, Santos M. Plant growth promotion and biocontrol of Pythium ultimum by saline tolerant Trichoderma isolates under salinity stress. Int J Environ Res Public Health, 2019; 16:1-11; doi:10.3390/ijerph16112053. https://doi.org/10.3390/ijerph16112053

Sartono B, Affendi FM, Syafitri UD, Sumertajaya I, Angraeni Y. Analisis Peubah Ganda. IPB Press, Bogor, Indonesia, 2003.

Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Tunali UR, Forbes MG, Willmitzer L, Fernie AR, Kopka J. GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett, 2005; 579:1332-7; doi:10.1016/j. febslet.2005.01.029. https://doi.org/10.1016/j.febslet.2005.01.029

Seto M, Tazaki T. Growth and respiratory activity of mold fungus (Trichoderma lignorum). Bot Mag Tokyo, 1975; 88:255-66; doi:10.1007/ BF02488368. https://doi.org/10.1007/BF02488368

Setyowati EP, Pratiwi SUT, Hertiani T, Samirana O. Bioactivity of fungi Trichoderma reesei, Associated with sponges (Stylissa flabelliformis) collected from National ark West Bali, Indonesia. J Biol Sci, 2017; 17:362- 8; doi:10.3923/jbs.2017.362.368. https://doi.org/10.3923/jbs.2017.362.368

Setyowati EP, Pratiwi SUT, Purwantiningsih, Samirana PO. Antimicrobial activity and identification of fungus associated (Stylissa flabelliformis) sponge collected from Menjangan Island West Bali National Park, Indonesia. Indones J Pharm, 2018; 29:66-73; doi:10.14499/ indonesianjpharm29iss2pp66. https://doi.org/10.14499/indonesianjpharm29iss2pp66

Sguros P, Simms J. Role of marine fungi in the biochemistry of the oceans. II. Effect of glucose, inorganic nitrogen, and tris (Hydroxymethyl) aminomethane on growth and pH changes in synthetic media. Mycologia, 1963; 55:728-41; doi:10.1080/00275514.1963.12018064. https://doi.org/10.1080/00275514.1963.12018064

Sharma S. Applied multivariate techniques. John Wiley and Sons, New York, NY, 1996.

Sibero MT, Radjasa OK, Sabdono A, Trianto A, Triningsih DW, Hutagaol ID. Antibacterial activity of Indonesian sponge associated fungi against clinical pathogenic multidrug resistant bacteria. J Appl Pharm Sci, 2018; 8:088-94; doi:10.7324/JAPS.2018.8214. https://doi.org/10.7324/JAPS.2018.8214

Stanbury PF, Whitaker A, Hall SJ. Principles of fermentation technology. 2nd edition, Elsevier, London, UK, 1995; doi:10.1016/0167- 7799(85)90016-2.

Syukri Y, Fitria A, Hanifah S, Idrati M. Development of new indonesian propolis extract-loaded self-emulsifying: characterization, stability and antibacterial activity. Adv Pharm Bull, 2021; 11:120-9; doi:10.34172/apb.2021.013. https://doi.org/10.34172/apb.2021.013

Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev, 2007; 71:295-347; doi:10.1128/mmbr.00040-06. https://doi.org/10.1128/MMBR.00040-06

Tjay TH, Rahardja K. Obat-Obat Penting : Khasiat, Penggunaan, dan Efek-Efek Sampingnya. Edisi VIII. PT. Elex Media Komputindo, Jakarta, Indonesia, 2015.

Ukhty N, Tarman K, Setyaningsih I. Isolation of endophytic fungi from the coastal plant terong pungo (Solanum sp.) and its antibacterial activity against oral pathogenic bacteria. Biotropia (Bogor), 2017; 24:9-15; doi:10.11598/btb.2017.24.1.453. https://doi.org/10.11598/btb.2017.24.1.453

Xu CJ, Liang YZ, Chau FT, Heyden Y Vander. Pretreatments of chromatographic fingerprints for quality control of herbal medicines. J Chromatogr A, 2006; 1134:253-9; doi:10.1016/j.chroma.2006.08.060. https://doi.org/10.1016/j.chroma.2006.08.060

Yuliana ND, Khatib A, Choi YH, Verpoorte R. Metabolomics for bioactivity assessment of natural products. Phyther Res, 2011; 25:157-69; doi:10.1002/ptr.3258. https://doi.org/10.1002/ptr.3258

Yulianto W, Andarwulan N, Giriwono PE, Pamungkas J. HPLC-based metabolomics to identify cytotoxic compounds from Plectranthus amboinicus (Lour.) Spreng against human breast cancer MCF-7Cells. J Chromatogr B Anal Technol Biomed Life Sci, 2016; 1039:28-34; doi:10.1016/j.jchromb.2016.10.024. https://doi.org/10.1016/j.jchromb.2016.10.024

Zhang L, Parente J, Harris SM, Woods DE, Hancock REW, Falla TJ. Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob Agents Chemother, 2005; 49:2921-7; doi:10.1128/AAC.49.7.2921-2927.2005. https://doi.org/10.1128/AAC.49.7.2921-2927.2005

Article Metrics

0 Absract views 1 PDF Downloads 1 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required