In vitro study: Catechins as depigmenting agents inhibit melanogenesis on B16F0 cells

Widyastuti Widyastuti Deddi Prima Putra Satya Wydya Yenny Aisyah Elliyanti   

Open Access   

Published:  Feb 08, 2023

DOI: 10.7324/JAPS.2023.107125
Abstract

Catechins are flavonoid compounds that are the main components in gambir plants and are reported to have antioxidant activity. Research on the depigmenting agent effect of gambir catechins has not been done much. Melanogenesis inhibition effect of a compound can be done by looking at the decrease in tyrosinase (TYR) enzyme activity and melanin levels. This study aimed to test in vitro the melanogenesis inhibitory activity of catechins isolated from gambir in cell culture, including testing of cell viability, TYR activity, and decreased levels of melanin in B16F0 cells. The results showed that gambir catechins affect the viability of B16F0 cells without causing toxicity to cells. Increasing the concentration and duration of the test significantly decreased TYR activity and melanin levels in B16F0 cells (p < 0.05). Based on the research conducted, it can be concluded that in vitro gambir catechins have an effect as a depigmenting agent.


Keyword:     Flavonoid mouse melanoma depigmenting agent catechin


Citation:

Widyastuti W, Putra DP, Yenny SW, Elliyanti A. In vitro study: Catechins as depigmenting agents inhibit melanogenesis on B16F0 cells. J Appl Pharm Sci, 2023. https://doi.org/10.7324/JAPS.2023.107125

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Ando H. Melanogenesis. In: Sakamoto K, Lochhead H, Maibach H, Yamashita Y (Eds.). Cosmetic science and technology: theoretical principles and applications, Elsevier, Amsterdam, Netherlands, pp 729-36, 2017.

Bae J, Kim N, Shin Y, Kim SY, Kim YJ. Activity of catechins and their applications. Biomed Dermatol, 2020; 4(8):1-10. https://doi.org/10.1186/s41702-020-0057-8

Beaumont KA, Mohana-Kumaran N, Haass NK. Modeling melanoma in vitro and in vivo. Healthcare, 2014; 2:27-46. https://doi.org/10.3390/healthcare2010027

Berman B, Cockerell CJ. Pathobiology of actinic keratosis: ultraviolet-dependent keratinocyte proliferation. J Am Dermatol, 2013; 68(1):S10-9. https://doi.org/10.1016/j.jaad.2012.09.053

Burger P, Landreau A, Azoulay S, Michel T, Fernandez X. Skin whitening cosmetics: feedback and challenges in the development of natural skin lighteners. Cosmetics, 2016; 3(36):1-24. https://doi.org/10.3390/cosmetics3040036

Cha J, Kim S. Anti-melanogenesis in B16F0 melanoma cells by extract of fermented Cordyceps militaris containing high cordycepin. J Life Sci, 2013; 23(12):1516-24. https://doi.org/10.5352/JLS.2013.23.12.1516

Chung S, Lim GJ, Lee JY. Quantitative analysis of melanin content in a three-dimensional melanoma cell culture. Sci Rep, 2019; 9(780):1-9. https://doi.org/10.1038/s41598-018-37055-y

Coiffard L, Couteau C. Overview of skin whitening agents: drugs and cosmetic products. Cosmetics, 2016; 3(27):1-16. https://doi.org/10.3390/cosmetics3030027

Fujimaki T, Mori S, Horikawa M, Fukui Y. Isolation of proanthocyanidins from red wine, and their inhibitory effects on melanin synthesis in vitro. Food Chem, 2018; 248:61-9. https://doi.org/10.1016/j.foodchem.2017.12.024

Han M, Li J, Tan Q, Sun Y, Wang Y. Limitations of the use of MTT assay for screening in drug discovery. J Chin Pharm Sci, 2010; 9:195-200. https://doi.org/10.5246/jcps.2010.03.027

Hartman ML, Czyz M. MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci, 2015; 72:1249-60. https://doi.org/10.1007/s00018-014-1791-0

Herrling T, Jung K, Fuchs J. The important role of melanin as protector against free radicals in skin. SOFW-J, 2007; 133(9):26-33.

Hsiao JJ, Fisher DE. The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Arch Biochem Biophys, 2014; 563:28-34. https://doi.org/10.1016/j.abb.2014.07.019

Hu D. Methodology for evaluation of melanin content and production of pigment cells in vitro. Photochem Photobiol, 2008; 84:645-9. https://doi.org/10.1111/j.1751-1097.2007.00228.x

Kamiloglu S, Sari G, Ozdal T, Capanoglu E. Guidelines for cell viability assays. Food Front, 2020; 1:332-49. https://doi.org/10.1002/fft2.44

Kim YC, Choi SY, Park EY. Anti-melanogenic effects of black, green, and white tea extracts on immortalized melanocytes. J Vet Sci, 2015; 16(2):135-43. https://doi.org/10.4142/jvs.2015.16.2.135

Kim Y, Kim M, Kweon D, Lim S, Lee S. Quantification of hypopigmentation activity in vitro. J Vis Exp, 2019; 145:1-6. https://doi.org/10.3791/58185

Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harbor Protoc, 2018; 6:469-72. https://doi.org/10.1101/pdb.prot095505

Kurniatri AA, Sulistyaningrum N, Rustanti L. Purifikasi katekin dari ekstrak gambir (Uncaria gambir Roxb.). Media Litbangkes, 2019; 29(2):153-60. https://doi.org/10.22435/mpk.v29i2.1108

Lajis AFB, Hamid M, Ariff AB. Depigmenting effect of kojic acid esters in hyperpigmented B16F1 melanoma cells. J Biomed Biotechnol, 2012; 952452:1-9. https://doi.org/10.1155/2012/952452

Liang YR, Kang S, Deng L, Xiang L, Zheng XQ. Inhibitory effects of (-)-epigallocatechin-3-gallate on melanogenesis in ultraviolet A-induced B16 murine melanoma cell. Trop J Pharm Res, 2014; 13(11):1825-31. https://doi.org/10.4314/tjpr.v13i11.8

Masaki H. Bioactive ingredients: benefits of cosmetics stimulated through biological aspects. In: Sakamoto K, Lochhead H, Maibach H, Yamashita Y (Eds.). Cosmetic science and technology: theoretical principles and applications, Elsevier, Amsterdam, Netherlands, pp 255-65, 2017. https://doi.org/10.1016/B978-0-12-802005-0.00017-3

Mujahid N, Liang Y, Murakami R, Roider EM, Gray NS, Fisher DE, Wang J. A UV-independent topical small-molecule approach for melanin production in human skin. CellReports, 2017; 19(11):2177-84. https://doi.org/10.1016/j.celrep.2017.05.042

Nakamura K, Yoshikawa N, Yamaguchi Y. Characterization of mouse melanoma cell lines by their mortal malignancy using an experimental metastatic model. Life Sci, 2002; 70:791-98. https://doi.org/10.1016/S0024-3205(01)01454-0

Overwijk WW, Restifo NP. B16 as a mouse model for human melanoma. Curr Protoc Immunol, 2001; 39:20-1. https://doi.org/10.1002/0471142735.im2001s39

Palumbo A, D'Ischia M, Misuraca G, Prota G. Mechanism of inhibition of melanogenesis by hydroquinone. Biochim Biophys Acta, 1991; 1073(1):85-90. https://doi.org/10.1016/0304-4165(91)90186-K

Panzella L, Napolitano A. Natural and bioinspired phenolic compounds as tyrosinase inhibitors for the treatment of skin hyperpigmentation: recent advances. Cosmetics, 2019; 6(57):1-33. https://doi.org/10.3390/cosmetics6040057

Park Y, Lee J, Park D, Park J. Effects of kojic acid, arbutin and vitamin C on cell viability and melanin synthesis in B16BL6 cells. J Soc Cosmet Sci Korea, 2003; 29(1):151-67.

Rahmawati N, Bakhtiar A, Putra DP. Isolasi katekin dari gambir (Uncaria gambir (Hunter). Roxb) untuk sediaan farmasi dan kosmetik. J Penelitian Farm Indones, 2012; 1(1):6-10.

Rodriguez-lopez JN, Tudelap J, Varons R, Garcia-carmonap F, Garcia-canovaspll F. Analysis of a kinetic model for melanin biosiynthesis pathway. J Biol Chem, 1992; 267(6):3801-10. https://doi.org/10.1016/S0021-9258(19)50597-X

Saad MFM, Goh H, Rajikan R, Yusof TRT, Baharum SN, Bunawan H. Uncaria gambir (W. Hunter) Roxb: from phytochemical composition to pharmacological importance. Trop J Pharm Res, 2020; 19(8):1767-73. https://doi.org/10.4314/tjpr.v19i8.28

Sarkar R, Chugh S, Garg VK. Newer and upcoming therapies for melasma. Indian J Dermatol Venereol Leprol, 2012; 78(4):417-28. https://doi.org/10.4103/0378-6323.98071

Sato K, Toriyama M. Depigmenting effect of catechins. Molecules, 2009; 14:4425-32. https://doi.org/10.3390/molecules14114425

Solano F, Briganti S, Picardo M, Ghanem G. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res, 2006; 19:550-71. https://doi.org/10.1111/j.1600-0749.2006.00334.x

Tang H, Cui F, Li H, Huang Q, Li Y. Understanding the inhibitory mechanism of tea polyphenols against tyrosinase using fluorescence spectroscopy, cyclic voltammetry, oximetry, and molecular simulations. R Soc Chem, 2018; 8:8310-8. https://doi.org/10.1039/C7RA12749A

Wu W, Chiang H, Fang J, Chen S, Huang CC, Hung CF. (+)-Catechin prevents ultraviolet B-induced human keratinocyte death via inhibition of JNK phosphorylation. Life Sci, 2006; 79:801-7. https://doi.org/10.1016/j.lfs.2006.02.028

Zolghadri S, Bahrami A, Tareq M, Khan H, Saboury AA. A comçprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem, 2019; 34(1):279-309. https://doi.org/10.1080/14756366.2018.1545767

Article Metrics

1 Absract views 2 PDF Downloads 3 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required