Alpha-glucosidase inhibitory activity of the combination of Caesalpinia sappan L. and Garcinia mangostana extract

Nina Artanti Indah Dwiatmi Dewijanti Dian Muzdalifah Anjar Windarsih Suratno Suratno Sri Handayani   

Open Access   

Published:  Jan 03, 2023

DOI: 10.7324/JAPS.2023.117478
Abstract

Garcinia mangostana (Gm) and Caesalpinia sappan (Cs) are traditional food used for health supplements. Nevertheless, the synergistic effect of the combinations has never been studied for antidiabetic supplements. This study aimed to evaluate the synergistic α-glucosidase activity of Gm pericarp and Cs heartwood combination extracts. Both plants were extracted with ethanol and water. The total flavonoid content was measured by colourimetric assay. The α-glucosidase inhibitory assay was used to measure the α-glucosidase inhibitory activity of extracts. Synergistic effects were analyzed by calculating the combination index (CI). Targeting compounds inside the extracts were detected using liquid chromatography high-resolution mass spectrometry. Protein-ligand interaction was analyzed using Yet Another Scientific Artificial Reality Application, Protein-Ligand Ant System, and Ligplot+ software. The total flavonoid content of Cs aqueous extract was higher than Gm, while the ethanol extract had similar results. The α-glucosidase inhibitory activity of both extracts was in line with their total flavonoid content. The ethanol extracts showed higher activity compared to the aqueous extracts. The combination of both extracts revealed synergistic inhibitory effects on α-glucosidase activity (CI < 1). Flavonoid compounds of Gm and Cs extracts revealed their affinity with the acarbose active site in the α-glucosidase enzyme. Thus, the combination of Gm and Cs extract can be developed as a potential herbal supplement to prevent and manage diabetes mellitus.


Keyword:     Þ-glucosidase activity Caesalpinia sappan heartwood Garcinia mangostana pericarp natural product synergistic effect


Citation:

Artanti N, Dewijanti ID, Muzdalifah D, Windarsih A, Suratno S, Handayani S. Alpha-glucosidase inhibitory activity of the combination of Caesalpinia sappan L. and Garcinia mangostana extract. J Appl Pharm Sci, 2023. https://doi.org/10.7324/JAPS.2023.117478

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Aizat WM, Ahmad-Hashim FH, Syed Jaafar SN. Valorization of mangosteen, "The Queen of Fruits," and new advances in postharvest and in food and engineering applications: a review. J Adv Res, 2019; 20:61-70; doi:10.1016/j.jare.2019.05.005 https://doi.org/10.1016/j.jare.2019.05.005

Athinarayanana G, Ranjitsingh AJA, Nanthini AUR, Padmalatha C. Toxicological studies of Caesalpinia sappan wood derived dye in Wister albino rats. Food Sci Hum Wellness, 2017; 6:34-8; doi:10.1016/j.fshw.2016.10.004 https://doi.org/10.1016/j.fshw.2016.10.004

Bumrung J, Chanchao C, Intasanta V, Palaga T, Wanichwecharungruang S. Water-dispersible unadulterated α-mangostin particles for biomedical applications. R Soc Open Sci, 2020; 7:200543; doi:10.1098/rsos.200543 https://doi.org/10.1098/rsos.200543

Chandra S, Khan S, Avula B, Lata H, Yang MH, Elsohly MA, Khan IA. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: a comparative study. Evid-Based Complement Altern Med, 2014; 2014:253875; doi:10.1155/2014/253875 https://doi.org/10.1155/2014/253875

de Oliveira LFC, Edwards HGM, Velozo ES, Nesbitt M. Vibrational spectroscopic study of brazilin and brazilein, the main constituents of brazilwood from Brazil. Vib Spectrosc, 2002; 28:243-9; doi:10.1016/S0924-2031(01)00138-2 https://doi.org/10.1016/S0924-2031(01)00138-2

Fu C, Loo AEK, Chia FPP, Huang D. Oligomeric proanthocyanidins from mangosteen pericarps. J Agric Food Chem, 2007; 55:7689-94; doi:10.1021/jf071166n https://doi.org/10.1021/jf071166n

Handayani S, Susidarti RA, Jenie RI, Meiyanto E. Two active compounds from Caesalpinia sappan L. in combination with cisplatin synergistically induce apoptosis and cell cycle arrest on WiDr cells. Adv Pharm Bull, 2017; 7:375-80; doi:10.15171/apb.2017.045 https://doi.org/10.15171/apb.2017.045

Handayani S, Susidarti RA, Lotulung PDN, Darmawan A, Meiyanto E, Jenie RI. Antimigratory activity of Brazilin-containing fraction from Caesalpinia sappan L. on MDAMB-231 cells. HAYATI J Biosci, 2020; 27:266-72; doi:10.4308/hjb.27.4.266 https://doi.org/10.4308/hjb.27.4.266

Handayani S, Susidarti RA, Udin Z, Meiyanto E, Jenie RI. Brazilein in combination with cisplatin inhibit proliferation and migration on highly metastatic cancer cells, 4T1. Indones J Biotechnol, 2016; 21:38- 47; doi:10.22146/ijbiotech.26106 https://doi.org/10.22146/ijbiotech.26106

Handayani S, Susidarti RA, Utomo RY, Meiyanto E, Jenie RII. Synergistic cytotoxic and antimigratory effect of brazilein and doxorubicin on HER2-overexpressing cells. Asian Pac J Cancer Prev, 2022; 23:2623- 32; doi:10.31557/APJCP.2022.23.8.2623 https://doi.org/10.31557/APJCP.2022.23.8.2623

Huang L, Jiang Y, Chen Y. Predicting drug combination index and simulating the network-regulation dynamics by mathematical modeling of drug-targeted EGFR-ERK signaling pathway. Sci Rep, 2017; 7:40752; doi:10.1038/srep40752 https://doi.org/10.1038/srep40752

Jenie RI, Handayani S, Susidarti RA, Udin LZ, Meiyanto E. The cytotoxic and antimigratory activity of brazilin-doxorubicin on MCF-7/ HER2 cells. Adv Pharm Bull, 2018; 8:507-16; doi:10.15171/apb.2018.059 https://doi.org/10.15171/apb.2018.059

Jenie RI, Handayani S, Susidarti RA, Udin Z, Meiyanto E. Cytotoxic and antimetastasis effect of ethyl acetate fraction from Caesalpinia sappan L. on MCF-7/HER2 cells. Indones J Cancer Chemoprevent, 2017; 8:42-50; doi:10.14499/indonesianjcanchemoprev8iss1pp42-50 https://doi.org/10.14499/indonesianjcanchemoprev8iss1pp42-50

Kalra S. Incretin enhancement without hyperinsulinemia: α-glucosidase inhibitors. Expert Rev Endocrinol Metab, 2014; 9:423-5; do i:10.1586/17446651.2014.931807 https://doi.org/10.1586/17446651.2014.931807

Krischer JP, Liu X, Lernmark Å, Hagopian WA, Rewers MJ, She JX, Toppari J, Ziegler AG, Akolkar B; TEDDY Study Group. The influence of type 1 diabetes genetic susceptibility regions, age, sex, and family history on the progression from multiple autoantibodies to type 1 diabetes: a TEDDY study report. Diabetes, 2017; 66:3122-9; doi:10.2337/db17-0261 https://doi.org/10.2337/db17-0261

Lucci P, Saurina J, Núñez O. Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. TrAC Trends Anal Chem, 2017; 88:1-24; doi:10.1016/j.trac.2016.12.006 https://doi.org/10.1016/j.trac.2016.12.006

Meiyanto E, Lestari B, Sugiyanto RN, Jenie RI, Utomo RY, Sasmito E, Murwanti R. Caesalpinia sappan L. heartwood ethanolic extract exerts genotoxic inhibitory and cytotoxic effects. Orient Pharm Exp Med, 2019; 19:27-36; doi:10.1007/s13596-018-0351-9 https://doi.org/10.1007/s13596-018-0351-9

Meiyanto E, Putri DDP, Susidarti RA, Murwanti R, Sardjiman S, Fitriasari A, Husnaa U, Purnomo H, Kawaichi M. Curcumin and its analogues (PGV-0 and PGV-1) enhance sensitivity of resistant MCF-7 cells to doxorubicin through inhibition of HER2 and NF-kB activation. Asian Pac J Cancer Prev, 2014; 15:179-84; doi:10.7314/APJCP.2014.15.1.179 https://doi.org/10.7314/APJCP.2014.15.1.179

Moelands SV, Lucassen PL, Akkermans RP, Grauw WJD, Laar FAV de. Alpha-glucosidase inhibitors for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database Syst Rev, 2018; doi:10.1002/14651858.CD005061.pub3 https://doi.org/10.1002/14651858.CD005061.pub3

Nirmal NP, Panichayupakaranant P. Antioxidant, antibacterial, and anti-inflammatory activities of standardized brazilin-rich Caesalpinia sappan extract. Pharm Biol, 2015; 53:1339-43; doi:10.3109/13880209.20 14.982295 https://doi.org/10.3109/13880209.2014.982295

Nirmal NP, Rajput MS, Prasad RGSV, Ahmad M. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: a review. Asian Pac J Trop Med, 2015; 8:421-30; doi:10.1016/j.apjtm.2015.05.014 https://doi.org/10.1016/j.apjtm.2015.05.014

Pathak R, Pathak A. Study of life style habits on risk of type 2 diabetes. Int J Appl Basic Med Res, 2012; 2:92; doi:10.4103/2229- 516X.106349 https://doi.org/10.4103/2229-516X.106349

Proença C, Freitas M, Ribeiro D, Oliveira EFT, Sousa JLC, Tomé SM, Ramos MJ, Silva AMS, Fernandes PA, Fernandes E. α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure-activity relationship study. J Enzyme Inhib Med Chem, 2017; 32:1216-28; doi:10.1 080/14756366.2017.1368503 https://doi.org/10.1080/14756366.2017.1368503

Rachmady R, Muntafiah L, Rosyadi F, Sholihah I, Handayani S, Jenie RI. Antiproliferative effect of secang heartwood ethanolic extract (Caesalpinia sappan L.) on HER2-positive breast cancer cells. Indones J Cancer Chemoprevent, 2016; 7:1-5; doi:10.14499/ indonesianjcanchemoprev7iss1pp1-5 https://doi.org/10.14499/indonesianjcanchemoprev7iss1pp1-5

Reynolds CP, Maurer BJ. Evaluating response to antineoplastic drug combinations in tissue culture models. Methods Mol Med, 2005; 110:173-83; doi:10.1385/1-59259-869-2:173 https://doi.org/10.1385/1-59259-869-2:173

Rohman A, Arifah FH, Irnawati, Alam G, Muchtaridi, Rafi M. A review on phytochemical constituents, role on metabolic diseases, and toxicological assessments of underutilized part of Garcinia mangostana L. fruit. J Appl Pharm Sci, 2020; 10,:127-46; doi:10.7324/JAPS.2020.10716 https://doi.org/10.7324/JAPS.2020.10716

Sakulkeo O, Wattanapiromsakul C, Pitakbut T, Dej-Adisai S. Alpha-glucosidase inhibition and molecular docking of isolated compounds from traditional Thai medicinal plant, Neuropeltis racemosa wall. Mol Basel Switz, 2022; 27:639; doi:10.3390/molecules27030639 https://doi.org/10.3390/molecules27030639

Sembiring E, Elya B, Sauriasari R, Sauriasari R. Phytochemical screening, total flavonoid and total phenolic content and antioxidant activity of different parts of Caesalpinia bonduc (L.) Roxb. Pharmacogn J, 2018; 10:123-7; doi:10.5530/pj.2018.1.22 https://doi.org/10.5530/pj.2018.1.22

Slámová K, Kapešová J, Valentová K. "Sweet Flavonoids": glycosidase-catalyzed modifications. Int J Mol Sci, 2018; 19:2126; doi:10.3390/ijms19072126 https://doi.org/10.3390/ijms19072126

?öhreto?lu D, Sari S. Flavonoids as alpha-glucosidase inhibitors: mechanistic approaches merged with enzyme kinetics and molecular modelling. Phytochem Rev, 2019; doi:10.1007/s11101-019-09610-6 https://doi.org/10.1007/s11101-019-09610-6

?öhreto?lu D, Sari S, Barut B, Özel A. Discovery of potent α-glucosidase inhibitor flavonols: insights into mechanism of action through inhibition kinetics and docking simulations. Bioorganic Chem, 2018; 79:257-64; doi:10.1016/j.bioorg.2018.05.010 https://doi.org/10.1016/j.bioorg.2018.05.010

Sulastri L, Simanjuntak P, Wahono Sumaryono RD, Ardiaynto D, Abdillah S. Antidiabetic formulation development based on natural materials as α-glucosidase enzyme inhibitor. J Hunan Univ Nat Sci, 2022; 49. https://doi.org/10.55463/issn.1674-2974.49.1.29

Sun H, Li Y, Zhang X, Lei Y, Ding W, Zhao X, Wang H, Song X, Yao Q, Zhang Y, Ma Y, Wang R, Zhu T, Yu P. Synthesis, α-glucosidase inhibitory and molecular docking studies of prenylated and geranylated flavones, isoflavones and chalcones. Bioorg Med Chem Lett, 2015; 25:4567-71; doi:10.1016/j.bmcl.2015.08.059 https://doi.org/10.1016/j.bmcl.2015.08.059

Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ, Magliano DJ. IDF diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract, 2022; 183:109119; doi:10.1016/j. diabres.2021.109119 https://doi.org/10.1016/j.diabres.2021.109119

Taher M, Tg Zakaria TMFS, Susanti D, Zakaria ZA. Hypoglycaemic activity of ethanolic extract of Garcinia mangostana Linn. in normoglycaemic and streptozotocin-induced diabetic rats. BMC Complement Altern Med, 2016; 16; doi:10.1186/s12906-016-1118-9 https://doi.org/10.1186/s12906-016-1118-9

Thao TTP, Q. Bui T, Tu Quy P, Chi Bao N, Loc TV, Chien TV, Chi NL, Tuan NV, Sung TV, Nhung NTA. Isolation, semi-synthesis, docking-based prediction, and bioassay-based activity of Dolichandrone spathacea iridoids: new catalpol derivatives as glucosidase inhibitors. RSC Adv, 2021; 11:11959-75; doi:10.1039/D1RA00441G https://doi.org/10.1039/D1RA00441G

Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci, 2018; 19; doi:10.3390/ ijms19061578 https://doi.org/10.3390/ijms19061578

Tjahjani S, Widowati W, Khiong K, Suhendra A, Tjokropranoto R. Antioxidant properties of Garcinia mangostana L (Mangosteen) rind. Procedia Chem, 2014; 13:198-203; doi:10.1016/j.proche.2014.12.027 https://doi.org/10.1016/j.proche.2014.12.027

Ur Rehman N, Rafiq K, Khan A, Ahsan Halim S, Ali L, Al- Saady N, Hilal Al-Balushi A, Al-Busaidi HK, Al-Harrasi A. α-Glucosidase inhibition and molecular docking studies of natural brominated metabolites from marine macro brown alga Dictyopteris hoytii. Mar Drugs, 2019; 17:E666; doi:10.3390/md17120666 https://doi.org/10.3390/md17120666

Windarsih A, Suratno, Warmiko HD, Indrianingsih AW, Rohman A, Ulumuddin YI. Untargeted metabolomics and proteomics approach using liquid chromatography-Orbitrap high resolution mass spectrometry to detect pork adulteration in Pangasius hypopthalmus meat. Food Chem, 2022; 386:132856; doi:10.1016/j.foodchem.2022.132856 https://doi.org/10.1016/j.foodchem.2022.132856

Yoshimura M, Ninomiya K, Tagashira Y, Maejima K, Yoshida T, Amakura Y. Polyphenolic constituents of the pericarp of mangosteen (Garcinia mangostana L.). J Agric Food Chem, 2015; 63:7670-4; doi:10.1021/acs.jafc.5b01771 https://doi.org/10.1021/acs.jafc.5b01771

Zhang AJ, Rimando AM, Mizuno CS, Mathews ST. α-Glucosidase inhibitory effect of resveratrol and piceatannol. J Nutr Biochem, 2017; 47:86-93; doi:10.1016/j.jnutbio.2017.05.008 https://doi.org/10.1016/j.jnutbio.2017.05.008

Zhao L, Au JLS, Wientjes MG. Comparison of methods for evaluating drug-drug interaction. Front Biosci Elite Ed, 2010; 2:241-9. https://doi.org/10.2741/e86

Zhao Y, Wang Y, Lou H, Shan L. Alpha-glucosidase inhibitors and risk of cancer in patients with diabetes mellitus: a systematic review and meta-analysis. Oncotarget, 2017; 8:81027-39; doi:10.18632/ oncotarget.17515 https://doi.org/10.18632/oncotarget.17515

Zhou X, Seto SW, Chang D, Kiat H, Razmovski-Naumovski V, Chan K, Bensoussan A. Synergistic effects of chinese herbal medicine: a comprehensive review of methodology and current research. Front Pharmacol, 2016; 7:201; doi:10.3389/fphar.2016.00201 https://doi.org/10.3389/fphar.2016.00201

Zhu J, Zhang B, Tan C, Huang Q. α-Glucosidase inhibitors: consistency of in silico docking data with in vitro inhibitory data and inhibitory effect prediction of quercetin derivatives. Food Funct, 2019; 10:6312-21; doi:10.1039/c9fo01333d https://doi.org/10.1039/C9FO01333D

Article Metrics

0 Absract views 46 PDF Downloads 46 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required