Akram M, Naqvi SBS, Gauhar S. Development of co-processed micro granules for direct compression. Int J Pharm Pharm Sci, 2011; 3(Suppl 2):64-9. |
|
Chang CK, Alvarez-Nunez FA, Rinella JV Jr, Magnusson LE, Sueda K. Roller compaction, granulation and capsule product dissolution of drug formulations containing a lactose or mannitol filler, starch, and talc. AAPS PharmSciTech, 2008; 9(2):597-604. https://doi.org/10.1208/s12249-008-9088-y | |
|
Crouter A, Briens L. The effect of moisture on the flowability of pharmaceutical excipients. AAPS PharmSciTech, 2014; 15:65-74. https://doi.org/10.1208/s12249-013-0036-0 | |
|
Daraghmeh N, Rashid I, Al Omari MM, Leharne SA, Chowdhry BZ, Badwan A. Preparation and characterization of a novel co-processed excipient of chitin and crystalline mannitol. AAPS PharmSciTech, 2010; 11(4):1558-71. https://doi.org/10.1208/s12249-010-9523-8 | |
|
Deshkar D, Gupta RN, Jayaram Kumar K. Studies on effect of co-processing on palmyrah and maize starch mixtures using DOE approach. Int J Biol Macromol, 2019; 122:417-24. https://doi.org/10.1016/j.ijbiomac.2018.10.079 | |
|
Dominik M, Vraníková B, Sva?inová P, Elbl J, Pavloková S, Prudilová BB, Šklubalová Z, Franc A. Comparison of flow and compression properties of four lactose-based co-processed excipients: Cellactose® 80, CombiLac®, MicroceLac® 100, and StarLac®. Pharmaceutics, 2021; 13(9):1486. https://doi.org/10.3390/pharmaceutics13091486 | |
|
Fuentes-González KI, Villafuerte-Robles L. Powder flowability as a functionality parameter of the excipient GalenIQ 720. Int J Pharm Pharm Sci, 2014; 1:66-74. | |
|
Gohel MC, Jogani PD, Bariya SH. Development of agglomerated directly compressible diluent consisting of brittle and ductile materials. Pharm Dev Technol, 2003; 8(2):143-51. https://doi.org/10.1081/PDT-120018481 | |
|
Gohel MC, Patel TM, Parikh RK, Parejiya PB, Barot BS, Ramkishan A. Exploration of novel co-processed multifunctional diluent for the development of tablet dosage form. Indian J Pharm Sci, 2012; 74(5):381-6. https://doi.org/10.4103/0250-474X.108412 | |
|
Haruna F, Apeji YE, Oparaeche C, Oyi AR, Gamlen M. Compaction and tableting properties of composite particles of microcrystalline cellulose and crospovidone engineered for direct compression. Futur J Pharm Sci, 2020; 6(35):9. https://doi.org/10.1186/s43094-020-00055-9 | |
|
Hasan MM, Chowdhury SS, Lina SM, Bhoumik NC, Ashab I. Comparative evaluation of Zea mays (L.) and Ipomoea batatas (L.) as a pharmaceutical excipient. IOSR-JPBS, 2012; 3:31-6. https://doi.org/10.9790/3008-0363136 | |
|
Hauschild K, Picker KM. Evaluation of a new coprocessed compound based on lactose and maize starch for tablet formulation. AAPS J, 2004; 6(2):27-38. https://doi.org/10.1208/ps060216 | |
|
Kudo Y, Yasuda M, Matsusaka S. Effect of particle size distribution on flowability of granulated lactose. Adv Powder Technol, 2020; 31(1):121-7. https://doi.org/10.1016/j.apt.2019.10.004 | |
|
Lamy B, Serrano DR, O'connell P, Couet W, Marchand S, Healy AM, Tewes F. Use of leucine to improve aerodynamic properties of ciprofloxacin-loaded maltose microparticles for inhalation. EJPR, 2019; 1(1):2-11. https://doi.org/10.34154/2019-EJPR.01(01).pp-02-11/euraass | |
|
Malamataris S, Goidas P, Dimitriou A. Moisture sorption and tensile strength of some tableted direct compression excipients. Int J Pharm, 1991; 68(1-3):51-60. https://doi.org/10.1016/0378-5173(91)90126-9 | |
|
Mizumoto T, Masuda Y, Yamamoto T, Yonemochi E, Terada K. Formulation design of a novel fast-disintegrating tablet. Int J Pharm, 2005; 306(1-2):83-90. https://doi.org/10.1016/j.ijpharm.2005.09.009 | |
|
Moondra S, Maheshwari R, Taneja N, Tekade M, Tekade RK. Bulk level properties and its role in formulation development and processing. In: Tekadle RK (ed.). Advances in pharmaceutical product development and research, dosage form design parameters. vol. II. Academic Press, London, UK, pp 221-56, 2018. https://doi.org/10.1016/B978-0-12-814421-3.00006-3 | |
|
Odeku OA, Schmid W, Picker-Freyer KM. Material and tablet properties of pregelatinized (thermally modified) Dioscorea starches. Eur J Pharm Biopharm, 2008; 70(1):357-71. https://doi.org/10.1016/j.ejpb.2008.04.011 | |
|
Olorunsola EO, Akpan GA, Adikwu MU. Evaluation of chitosan-microcrystalline cellulose blends as direct compression excipients. J Drug Deliv, 2017; 2017:8. https://doi.org/10.1155/2017/8563858 | |
|
Olowosulu AK, Oyi A, Isah AB, Ibrahim MA. Formulation and evaluation of novel coprocessed excipients of maize starch and acacia gum (StarAc) for direct compression tabletting. IJPRI, 2011; 2:39-45. | |
|
Patel P, Telange D, Sharma N. Comparison of different granulation techniques for lactose monohydrate. Int J Pharm Sci Drug Res, 2011; 3(3):222-5. | |
|
Patel S, Kaushal AM, Bansal AK. Compression physics in the formulation development of tablets. Crit Rev Ther Drug Carrier Syst, 2006; 23(1):1-65 https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v23.i1.10 | |
|
Rani U, Begum N. Overview of co processed excipients used to improve tabletting performance. JADD, 2014; 1(6):8. | |
|
Sandhan SB, Derle DV. A review on functionality assessment of multifunctional excipients. IJPSR, 2019; 10(9):4078-89. | |
|
Schwarz E, Fichtner V, Luhn O, Häusler O. Case study: properties of a co-processed compound versus the physical blend based on lactose and starch. Available via https://www.roquette.com/media-center/resources/ pharma-poster-properties-of-a-co-processed-compound-vs-blend-lactose-starch (Accessed 08 May 2022). Tomar M, Kumar SA, Raj SA. Effect of moisture content of exicipient (microcrystalline cellulose) on direct compressible solid dosage forms. IJPSR, 2017; 8(1):282. | |
|
Tye CK, Sun CC, Amidon GE. Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. J Pharm Sci, 2005; 94(3):465-72. https://doi.org/10.1002/jps.20262 | |
|
Ugoeze KC, Idris MEJ. Development of co-processed powders containing lactose, Mucuna flagellipes seed gum and Ipomoea batatas tuber starch. Int J Appl Biol Pharm, 2020; 11(4):256-75. | |