Novel in-situ emulgel of acetazolamide for ocular drug delivery

Fulchan Ali Sk Habibullah Biswaranjan Mohanty Amulyaratna Behera Yashwant Giri Bhabani Shankar Nayak   

Open Access   

Published:  Nov 30, 2022

DOI: 10.7324/JAPS.2023.53382
Abstract

In this investigation, a novel in-situ emulgel of acetazolamide was developed and evaluated. The gel was prepared using corn oil, pectin, and GellanGum at different concentrations of 10%–50% (w/w) and added to the homogenizer tube followed by the addition of the emulsifier (Tween 80 and span 80 in the ratio of 1:1) at 0.2% (w/w). The pH of all five formulations was between 5.58 and 5.75. The Fourier-transform infrared spectroscopy (FTIR) spectrum of all the formulations showed broadband in between the wavenumber range of 3,700 cm−1 and 2,980 cm−1. The FTIR spectrum of all the formulations showed broadband in between the wavenumber range of 3,700 cm−1 and 2,980 cm−1. The drug content in the samples was determined by a spectrophotometer at 267 nm The drug release mechanism may be Fickian transport (0.45 ≤ n), anomalous (non-Fickian) transport (0.45 ≤ n < 0.89), and/or super case-II transport (n > 0.89). The n values of all formulations were greater than 0.45. The in-vivo corneal tolerance experimentation of the prepared formulation eyes was assessed for 72 hours and found to be biocompatible based on visual inspection.


Keyword:     Ocular drug delivery gellan gum corn oil acetazolamide intraocular pressure in-situ emulgel


Citation:

Ali F, Habibullah SK, Mohanty B, Behera A, Giri Y, Nayak BS. Novel in-situ emulgel of acetazolamide for ocular drug delivery. J Appl Pharm Sci, 2022. https://doi.org/10.7324/JAPS.2023.53382

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Balasubramaniam J, Kant S, Pandit JK. In vitro and in vivo evaluation of Gelrite® gellan gum-based ocular delivery system for indomethacin. Acta Pharm, 2003; 53(4):251-62. Behera B, Sagiri SS, Pal K, Srivastava A. Modulating the physical properties of sunflower oil and sorbitanmonopalmitate-based organogels. J Appl Polym Sci, 2013; 127(6):4910-7. https://doi.org/10.1002/app.37506

Calvo P, Vila-Jato JL, Alonso MJ. Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int J Pharm, 1997; 153(1):41-50. https://doi.org/10.1016/S0378-5173(97)00083-5

Carlfors J, Edsman K, Petersson R, Jörnving K. Rheological evaluation of Gelrite® in situ gels for ophthalmic use. Eur J Pharm Sci, 1998; 6(2):113-9. https://doi.org/10.1016/S0928-0987(97)00074-2

Chen MJ, Chen KN. Applications of probiotic encapsulation in dairy products, Encap and cont release tech in food systems, Blackwell Publisher, Hoboken,NJ, pp 83-112, 2007. https://doi.org/10.1002/9780470277881.ch4

Cohen S, Lobel E, Trevgoda A, Peled Y. A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye. J Control Release, 1997; 44(2-3):201-8. https://doi.org/10.1016/S0168-3659(96)01523-4

Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm, 2010; 67(3):217-23.

Epstein DL, Grant WM. Carbonic anhydrase inhibitor side effects: serum chemical analysis. Arch Ophthalmol, 1977; 95(8):1378-82. https://doi.org/10.1001/archopht.1977.04450080088009

Ezati P, Rhim JW. pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydr Polym, 2020; 230:115638. https://doi.org/10.1016/j.carbpol.2019.115638

Fernández-Ferreiro A, Barcia MG, Gil-Martínez M, Vieites- Prado A, Lema I, Argibay B, Méndez JB, Lamas MJ, Otero-Espinar FJ. In vitro and in vivo ocular safety and eye surface permanence determination by direct and magnetic resonance imaging of ion-sensitive hydrogels based on gellan gum and kappa-carrageenan. Eur J Pharm Biopharm, 2015; 94:342-51. https://doi.org/10.1016/j.ejpb.2015.06.003

Friedberg ML, Pleyer U, Mondino BJ. Device drug delivery to the eye: collagen shield's, iontophoresis, and pumps. Ophthalmology, 1991; 98(5):725-32. https://doi.org/10.1016/S0161-6420(91)32227-9

Gamm E. Origination of side effects of acetazolamide. Glaucoma, 1984; 6:60-3.

Gnanasambandam R, Proctor A. Determination of pectin degree of esterification by diffuse reflectance fourier transform infrared spectroscopy. Food Chem, 2000; 68(3):327-32. https://doi.org/10.1016/S0308-8146(99)00191-0

Grass GM, Robinson JR. Mechanisms of corneal drug penetration II: ultrastructural analysis of potential pathways for drug movement. J Pharm Sci, 1988; 77(1):15-23. https://doi.org/10.1002/jps.2600770104

Gupta A, Mishra AK, Singh AK, Gupta V, Bansal P. Formulation and evaluation of topical gel of diclofenac sodium using different polymers. Drug Invent Today, 2010; 2(5):250-3.

Kaur IP, Singh M, Kanwar M. Formulation and evaluation of ophthalmic preparations of acetazolamide. Int J Pharm, 2000; 199(2):119-27. https://doi.org/10.1016/S0378-5173(00)00359-8

Kaur IP, Smitha R, Aggarwal D, Kapil M. Acetazolamide: future perspective in topical glaucoma therapeutics. Int J Pharm, 2002; 248(1- 2):1-4. https://doi.org/10.1016/S0378-5173(02)00438-6

Kaur IP, Singh H, Kakkar S. Newer therapeutic vistas for antiglaucoma medicines. Crit Rev Ther, 2011; 28(2):165-202. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v28.i2.20

Khaw PT, Cordeiro MF. Towards better treatment of glaucoma: recent advances could have a major impact on preventing damage worldwide. BMJ, 2000; 320(7250):1619-20. https://doi.org/10.1136/bmj.320.7250.1619

Kreuter J. Particulates (nanoparticles and microparticles). Drugs Pharma Sci, 1993; 58:275-87.

Krstonoši? V, Doki? L, Doki? P, Dap?evi? T. Effects of xanthan gum on physicochemical properties and stability of corn oil-in-water emulsions stabilized by polyoxyethylene (20) sorbitan monooleate. Food Hydrocoll, 2009; 23(8):2212-8. https://doi.org/10.1016/j.foodhyd.2009.05.003

Kunou N, Ogura Y, Hashizoe M, Honda Y, Hyon SH, Ikada Y. Controlled intraocular delivery of ganciclovir with use of biodegradable scleral implant in rabbits. J Control Release, 1995; 37(1-2):143-50. https://doi.org/10.1016/0168-3659(95)00074-I

Lee VH, Robinson JR. Topical ocular drug delivery: recent developments and future challenges. J OculPharmacol Ther, 1986; 2(1):67- 108. https://doi.org/10.1089/jop.1986.2.67

Lin D, Zheng Y, Wang X, Huang Y, Ni L, Chen X, Wu Z, Huang C, Yi Q, Li J, Qin W, Zhang Q, Chen H, Wu D. Study on physicochemical properties, antioxidant and antimicrobial activity of okara soluble dietary fiber/sodium carboxymethyl cellulose/thyme essential oil active edible composite films incorporated with pectin. Int J Biol Macromol, 2020; 165:1241-9. https://doi.org/10.1016/j.ijbiomac.2020.10.005

Marcus JB. Food science basics: healthy cooking and baking demystified: the science behind healthy foods, cooking and baking. Academic Press, San Diego, CA, pp 51-97, 2013. https://doi.org/10.1016/B978-0-12-391882-6.00002-9

Marquardt D, Sucker H. Oil-in-water-emulsion gels: determination and mathematical treatment of flow properties. Eur J Pharm Biopharm, 1998; 46(1):115-24. https://doi.org/10.1016/S0939-6411(97)00167-7

Maru S, Ongarora DS, Njoroge RW. Formulation and in vitro evaluation of a mucoadhesive metronidazole dental gel for oral application. East Cent Afr J Pharm Sci, 2019; 22(2):52-6.

Mohsen AM, Salama A, Kassem AA. Development of acetazolamide loaded bilosomes for improved ocular delivery: preparation, characterization and in vivo evaluation. J Drug Deliv Sci Technol, 2020; 59:101910. https://doi.org/10.1016/j.jddst.2020.101910

Narkar M, Sher P, Pawar A. Stomach-specific controlled release gellan beads of acid-soluble drug prepared by ionotropic gelation method. Aaps Pharm Sci Tech, 2010; 11(1):267-77. https://doi.org/10.1208/s12249-010-9384-1

Neeraja P, Amaleshwari M, Ravali G. Formulation and evaluation of nifedipine multiple emulsions. Int J Pharm Chem Biol Sci, 2014; 4(3): 673-680

Pal K, Banthia AK, Majumdar DK. Biomedical evaluation of polyvinyl alcohol-gelatin esterified hydrogel for wound dressing. J Mater Sci Mater Med, 2007a; 18(9):1889-94. https://doi.org/10.1007/s10856-007-3061-2

Pal K, Banthia AK, Majumdar DK. Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. Aaps Pharm Sci Tech, 2007b; 8(1):142-6. https://doi.org/10.1208/pt080121

Patton TF, Robinson JR. Ocular evaluation of polyvinyl alcohol vehicle in rabbits. J Pharm Sci, 1975; 64(8):1312-6. https://doi.org/10.1002/jps.2600640811

Paulsson M, Hägerström H, Edsman K. Rheological studies of the gelation of deacetylated gellan gum (Gelrite®) in physiological conditions. Eur J Pharm Sci, 1999; 9(1):99-105. https://doi.org/10.1016/S0928-0987(99)00051-2

Prajapati VD, Jani GK, Zala BS, Khutliwala TA. An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydr Polym, 2013; 93(2):670-8. https://doi.org/10.1016/j.carbpol.2013.01.030

Qureshi D, Behera KP, Mohanty D, Mahapatra SK, Verma S, Sukyai P, Banerjee I, Pal SK, Mohanty B, Kim D, Pal K. Synthesis of novel poly (vinyl alcohol)/tamarind gum/bentonite-based composite films for drug delivery applications. Colloids Surf A PhysicochemEng Asp, 2021; 613:126043. https://doi.org/10.1016/j.colsurfa.2020.126043

Quereshi D, Dhal S, Das D, Mohanty B, Anis A, Shaikh H, Hanh Nguyen TT, Kim D, Sarkar P, Pal K. Neem seed oil and gum arabic-based oil-in-water emulsions as potential ocular drug delivery system. J Dispers Sci Technol, 2020; 41(13):1911-24. https://doi.org/10.1080/01932691.2019.1638272

Rozier A, Mazuel C, Grove J, Plazonnet B. Functionality testing of gellan gum, a polymeric excipient material for ophthalmic dosage forms. Int J Pharm, 1997; 153(2):191-8. https://doi.org/10.1016/S0378-5173(97)00109-9

Rupenthal ID, Green CR, Alany RG. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: physicochemical characterisation and in vitro release. Int J Pharm, 2011a; 411(1-2):69-77. https://doi.org/10.1016/j.ijpharm.2011.03.042

Rupenthal ID, Green CR, Alany RG. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 2: precorneal retention and in vivo pharmacodynamic study. Int J Pharm, 2011b; 411(1- 2):78-85. https://doi.org/10.1016/j.ijpharm.2011.03.043

Saettone MF, Salminen L. Ocular inserts for topical delivery. Adv Drug Deliv Rev, 1995; 16(1):95-106. https://doi.org/10.1016/0169-409X(95)00014-X

Shivangi S, Dorairaj D, Negi PS, Shetty NP. Development and characterisation of a pectin-based edible film that contains mulberry leaf extract and its bio-active component. Food Hydrocoll, 2021; 121:107046. https://doi.org/10.1016/j.foodhyd.2021.107046

Soltau JB, Zimmerman TJ. Changing paradigms in the medical treatment of glaucoma. Surv Ophthalmol, 2002; 47:S2-5. https://doi.org/10.1016/S0039-6257(02)00291-6

Sun J, Zhou Z. A novel ocular delivery of brinzolamide based on gellan gum: in vitro and in vivo evaluation. Drug Des DevelTher, 2018; 12:383. https://doi.org/10.2147/DDDT.S153405

Wei G, Xu H, Ding PT, Li SM, Zheng JM. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. J Control Release, 2002; 83(1):65-74. Wo N, Zhai J. Combinatorial therapeutic drug delivery of riboflavin and dexamethasone for the treatment of keratoconus affected corneas of mice: ex vivo permeation and hemolytic toxicity. Micro Nano Lett, 2021; 16(10):492-9. https://doi.org/10.1049/mna2.12079

Zhang X, Chen X, Gong Y, Li Z, Guo Y, Yu D, Pan M. Emulsion gels stabilized by soybean protein isolate and pectin: effects of high intensity ultrasound on the gel properties, stability and β-carotene digestive characteristics. Ultrason Sonochem, 2021; 79:105756. https://doi.org/10.1016/j.ultsonch.2021.105756

Zia KM, Tabasum S, Khan MF, Akram N, Akhter N, Noreen A, Zuber M. Recent trends on gellan gum blends with natural and synthetic polymers: a review. Int J Biol Macromol, 2018; 109:1068-87. https://doi.org/10.1016/j.ijbiomac.2017.11.099

Zignani M, Tabatabay C, Gurny R. Topical semi-solid drug delivery: kinetics and tolerance of ophthalmic hydrogels. Adv Drug Deliv Rev, 1995; 16(1):51-60. https://doi.org/10.1016/0169-409X(95)00015-Y

Article Metrics

2 Absract views 10 PDF Downloads 12 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required