Abreu GF, Borém FM, Oliveira LFC, Almeida MR, Alves APC. Raman spectroscopy: a new strategy for monitoring the quality of green coffee beans during storage. Food Chem, 2019; 287: 241-8. https://doi.org/10.1016/j.foodchem.2019.02.019 |
|
Adriansyah I, Wijaya HNM, Purwaniati P. Analysis of adulteration of Luwak coffee using fourier transform infrared (FTIR) spectroscopy. Jurnal Kimia Riset, 2021; 6(1):26-38. https://doi.org/10.20473/jkr.v6i1.23397 | |
|
Barbin DF, Felicio ALSM, Sun D, Nixdorf SL, Hirooka EY. Application of infrared spectral techniques on quality and compositional attributes of coffee: an overview. Food Res Int, 2014; 61:23-32. https://doi.org/10.1016/j.foodres.2014.01.005 | |
|
Bassbasi M, Hafid A, Platikanov S, Tauler R, Oussama A. Study of motor oil adulteration by infrared spectroscopy and chemometrics methods. Fuel, 2013; 104:798-804. https://doi.org/10.1016/j.fuel.2012.05.058 | |
|
Bázár G, Romvári R, Szabó A, Somogyi T, Éles V, Tsenkova R. NIR detection of honey adulteration reveals differences in water spectral pattern. Food Chem, 2016; 194:873-80. https://doi.org/10.1016/j.foodchem.2015.08.092 | |
|
Biancolillo A, Marini F. Chemometric methods for spectroscopy-based pharmaceutical analysis. Front Chem, 2018; 6: 1-14. https://doi.org/10.3389/fchem.2018.00576 | |
|
Brereton RG, Jansen J, Lopes J, Marini F, Pomerantsev A, Rodionova O, Roger JM, Walczak B, Tauler R. Chemometrics in analytical chemistry-part I : history, experimental design, and data analysis tools. Anal Bioanal Chem, 2017; 409(25):5891-99. https://doi.org/10.1007/s00216-017-0517-1 | |
|
Brondi AM, Torres C, Garcia JS, Trevisan MG. Differential scanning calorimetry and infrared spectroscopy combined with chemometric analysis to the determination of coffee adulteration by corn. J Braz Chem Soc, 2017; 28(7):1308-14. https://doi.org/10.21577/0103-5053.20160296 | |
|
Cai T, Ting H, Jin-Lan Z. Novel identification strategy for ground coffee adulteration based on UPLC-HRMS oligosaccharide profiling. Food Chem, 2015; 190:1046-49. https://doi.org/10.1016/j.foodchem.2015.06.084 | |
|
Calvini R, Amigo JM, Ulrici A. Transferring results from NIR-hyperspectral to NIR-multispectral imaging systems: a filter-based simulation applied to the classification of Arabica and Robusta green coffee. Anal Chim Acta, 2017; 967:33-41. https://doi.org/10.1016/j.aca.2017.03.011 | |
|
Cebi N, Yilmaz MT, Sagdic O. A rapid ATR-FTIR spectroscopic method for detection of sibutramine adulteration in tea and coffee based on the hierarchical cluster and principal component analyses. Food Chem, 2017; 229:517-26. https://doi.org/10.1016/j.foodchem.2017.02.072 | |
|
Cestari A. Development of a fast and simple method to identify pure Arabica coffee and blended coffee by Infrared Spectroscopy. J Food Sci Tech, 2021; 58(9):3645-54. https://doi.org/10.1007/s13197-021-05176-4 | |
|
Chen H, Tan C, Lin Z, Li H. Quantifying several adulterants of notoginseng powder by near-infrared spectroscopy and multivariate calibration. Spectrochim Acta A Mol Biomol Spectrosc, 2019; 211:280-6. https://doi.org/10.1016/j.saa.2018.12.003 | |
|
Correia RM, Tosato F, Domingos E, Rodrigues R, Aquino L, Filgueiras PR, Lacerda, Romao W. Portable near-infrared spectroscopy applied to quality control of Brazilian coffee. Talanta, 2018; 176: 59-68. https://doi.org/10.1016/j.talanta.2017.08.009 | |
|
Couto CDC, Freitas-silva O, Maria E, Oliveira M, Sousa C, Casal S. Near-infrared spectroscopy applied to the detection of multiple adulterants in roasted and ground Arabica coffee. Foods, 2022; 11(61):1-12. https://doi.org/10.3390/foods11010061 | |
|
Cuadros-Rodríguez L, Pérez-Castaño E, Ruiz-Samblás C. Quality performance metrics in multivariate classification methods for qualitative analysis. TrAC Trends Analyt Chem, 2016; 80:612-24. https://doi.org/10.1016/j.trac.2016.04.021 | |
|
Daniel D, Lopes FS, dos Santos VB, do Lago CL. Detection of coffee adulteration with soybean and corn by capillary electrophoresis-tandem mass spectrometry. Food Chem, 2018; 243(9):305-10. https://doi.org/10.1016/j.foodchem.2017.09.140 | |
|
de Araújo TKL, Nóbrega RO, Fernandes DDS, de Araújo MCU, Diniz PHGD, da Silva EC. Non-destructive authentication of Gourmet ground roasted coffees using NIR spectroscopy and digital images. Food Chem, 2021; 364(6):130452. https://doi.org/10.1016/j.foodchem.2021.130452 | |
|
de Marchi M, Toffanin V, Cassandro M, Penasa M. Invited review: mid-infrared spectroscopy as phenotyping tool for milk traits1. J Dairy Sci, 2014; 97(3):1171-86. https://doi.org/10.3168/jds.2013-6799 | |
|
de Morais TCB, Rodrigues DR, Souto UCP, Lemos SG. A simple voltammetric electronic tongue for analyzing coffee adulterations. Food Chem, 2018; 273(4):31-8. https://doi.org/10.1016/j.foodchem.2018.04.136 | |
|
Dias RCE, Benassi MT. Discrimination between arabica and robusta coffees using hydrosoluble compounds: is the efficiency of the parameters dependent on the roast degree? Beverages, 2015; 1(3):127-39. https://doi.org/10.3390/beverages1030127 | |
|
Dias RCE, Valderrama P, Março PH, dos Santos Scholz MB, Edelmann M, Yeretzian C. Quantitative assessment of specific defects in roasted ground coffee via infrared-photoacoustic spectroscopy. Food Chem, 2017; 255:132-8. https://doi.org/10.1016/j.foodchem.2018.02.076 | |
|
Dias RCE, Yeretzian C. Investigating coffee samples by raman spectroscopy for quality control-preliminary study. Int J Exp Spectrosc Techniques, 2016; 1(2):1-5. https://doi.org/10.35840/2631-505X/8506 | |
|
Ebrahimi-Najafabadi H, Leardi R, Oliveri P, Casolino MC, Jalali-Heravi M, Lanteri S. Detection of addition of barley to coffee using near-infrared spectroscopy and chemometric techniques. Talanta, 2012; 99:175-9. https://doi.org/10.1016/j.talanta.2012.05.036 | |
|
El-Abassy RM, Donfack P, Maternity A. Discrimination between Arabica and Robusta green coffee using visible micro Raman spectroscopy and chemometric analysis. Food Chem, 2011; 126(3):1443-8. https://doi.org/10.1016/j.foodchem.2010.11.132 | |
|
Esslinger S, Riedl J, Fauhl-Hasek C. Potential and limitations of non-targeted fingerprinting for authentication of food in official control. Food Res Int, 2014; 60:189-204. https://doi.org/10.1016/j.foodres.2013.10.015 | |
|
Ferreira T, Farah A, Oliveira TC, Lima IS, Vitório F, Oliveira EMM. Using real-time PCR as a tool for monitoring the authenticity of commercial coffees. Food Chem, 2016; 199:433-8. https://doi.org/10.1016/j.foodchem.2015.12.045 | |
|
Ferreiro-González M, Espada-Bellido E, Guillén-Cueto L, Palma M, Barroso CG, Barbero GF. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics. Talanta, 2018; 188:288-92. https://doi.org/10.1016/j.talanta.2018.05.095 | |
|
Figueiredo LP, Borém FM, Almeida MR, de Oliveira LFC, de Carvalho Alves AP, dos Santos CM. Raman spectroscopy for the differentiation of Arabic coffee genotypes. Food Chem, 2019; 288:262-7. https://doi.org/10.1016/j.foodchem.2019.02.093 | |
|
Flores-Valdez M, Meza-Márquez OG, Osorio-Revilla G, Gallardo-Velázquez T. Identification and quantification of adulterants in coffee (Coffea arabica L.) using FT-MIR spectroscopy coupled with chemometrics. Foods, 2020; 9(7):851. https://doi.org/10.3390/foods9070851 | |
|
Forchetti DAP, Poppi RJ. Detection and quantification of adulterants in roasted and ground coffee by NIR hyperspectral imaging and multivariate curve resolution. Food Anal Methods, 2020; 13(1):44-9. https://doi.org/10.1007/s12161-019-01502-x | |
|
Haughey SA, Galvin-King P, Ho YC, Bell SEJ, Elliott CT. The feasibility of using near-infrared and Raman spectroscopic techniques to detect fraudulent adulteration of chili powders with Sudan dye. Food Control, 2015; 48:75-83. https://doi.org/10.1016/j.foodcont.2014.03.047 | |
|
ICO. Coffee prices underwent further increases in September 2021, but volatility lessened substantially while the market continues to be driven by weather in Brazil and by covid-related disruption affecting trade in Asia. Coffee Market Report, pp 1-11, 2021. Available via https://ico.org/. | |
|
Kos G, Lohninger H, Krska R. Validation of chemometric models for the determination of deoxynivalenol on maize by mid-infrared spectroscopy. Mycotoxin Res, 2003; 19(2):149-53. https://doi.org/10.1007/BF02942955 | |
|
Kucharska-Ambro?ej K, Karpinska J. The application of spectroscopic techniques in combination with chemometrics for detection adulteration of some herbs and spices. Microchem J, 2019; 153(10):104278. https://doi.org/10.1016/j.microc.2019.104278 | |
|
Lohumi S, Lee S, Lee H, Cho BK. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends Food Sci Technol, 2015; 46(1):85-98. https://doi.org/10.1016/j.tifs.2015.08.003 | |
|
López MI, Trullols E, Callao MP, Ruisánchez I. Multivariate screening in food adulteration: untargeted versus targeted modeling. Food Chem, 2013; 147:177-81. https://doi.org/10.1016/j.foodchem.2013.09.139 | |
|
Luna AS, da Silva AP, da Silva CS, Lima ICA, de Gois JS. Chemometric methods for classifying clonal varieties of green coffee using Raman spectroscopy and direct sample analysis. J Food Compos Anal, 2019; 76:44-50. https://doi.org/10.1016/j.jfca.2018.12.001 | |
|
Maia M, Barros AIRNA, Nunes FM. A novel, direct, reagent-free method for the detection of beeswax adulteration by single-reflection attenuated total reflectance mid-infrared spectroscopy. Talanta, 2013; 107:74-80. https://doi.org/10.1016/j.talanta.2012.09.052 | |
|
Milani MI, Rossini EL, Catalani TA, Pezza L, Toci AT, Pezza HR. Authentication of roasted and ground coffee samples containing multiple adulterants using NMR and a chemometric approach. Food Control, 2020; 112(11):107104. https://doi.org/10.1016/j.foodcont.2020.107104 | |
|
Monteiro PI, Santos JS, Brizola VRA, Deolindo CTP, Koot A, Boerrigter-Eenling R, van Ruth S, Georgouli K, Koidis A, Granato D. Comparison between proton transfer reaction mass spectrometry and near-infrared spectroscopy for the authentication of Brazilian coffee: a preliminary chemometric study. Food Control, 2018; 91(10):276-83. https://doi.org/10.1016/j.foodcont.2018.04.009 | |
|
Moros J, Garrigues S, de la Guardia M. Vibrational spectroscopy provides a green tool for multi-component analysis. Trends Analyt Chem, 2010; 29(7):578-91. https://doi.org/10.1016/j.trac.2009.12.012 | |
|
Munyendo L, Njoroge D. The potential of spectroscopic techniques in coffee analysis - a review. Processes, 2022; 10(71):1-25. https://doi.org/10.3390/pr10010071 | |
|
Núñez N, Saurina J, Núñez O. Non-targeted HPLC-FLD fingerprinting for the detection and quantitation of adulterated coffee samples by chemometrics. Food Control, 2021; 124(12):107912. https://doi.org/10.1016/j.foodcont.2021.107912 | |
|
Oliveri P, Downey G. Multivariate class modeling for the verification of food-authenticity claims. TrAC Trends Analyt Chem, 2012; 35:74-86. https://doi.org/10.1016/j.trac.2012.02.005 | |
|
Oliveri P, Malegori C, Mustorgi E, Casale M. Application of chemometrics in the food sciences. In: Reedijk J (ed.). Reference module in chemistry, molecular sciences, and chemical engineering, Elsevier, 2019. ; doi: 10.1016/B978-0-12-409547-2.14748-1 https://doi.org/10.1016/B978-0-12-409547-2.14748-1 | |
|
Peris-Díaz MD, Kr??el A. A guide to good practice in chemometric methods for vibrational spectroscopy, electrochemistry, and hyphenated mass spectrometry. TrAC Trends Analyt Chem, 2021; 135:116157. https://doi.org/10.1016/j.trac.2020.116157 | |
|
Pizarro C, Esteban-Díez I, González-Sáiz JM. Mixture resolution according to the percentage of robusta variety in order to detect adulteration in roasted coffee by near infrared spectroscopy. Anal Chim Acta, 2007; 585(2):266-76. https://doi.org/10.1016/j.aca.2006.12.057 | |
|
Pua A, Lau H, Liu SQ, Tan LP, Goh RMV, Lassabliere B, Leong KC, Sun J, Cornuz M, Yu B. Improved detection of key odourants in Arabica coffee using gas chromatography-olfactometry in combination with low energy electron ionization gas chromatography-quadrupole time-of-flight mass spectrometry. Food Chem, 2019; 302(6):125370. https://doi.org/10.1016/j.foodchem.2019.125370 | |
|
Reis N, Botelho BG, Franca AS, Oliveira LS. Simultaneous detection of multiple adulterants in ground roasted coffee by ATR-FTIR spectroscopy and data fusion. Food Anal Methods, 2017; 10(8):2700-9. https://doi.org/10.1007/s12161-017-0832-3 | |
|
Reis N, Franca AS, Oliveira LS. Concomitant use of Fourier transform infrared attenuated total reflectance spectroscopy and chemometrics for quantification of multiple adulterants in roasted and ground coffee. J Spectrosc, 2016; 2016 ; doi:10.1155/2016/4974173. https://doi.org/10.1155/2016/4974173 | |
|
Reis N, Franca AS, Oliveira LS. Discrimination between roasted coffee, roasted corn and coffee husks by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. LWT-Food Sci Technol, 2013a; 50(2):715-22. https://doi.org/10.1016/j.lwt.2012.07.016 | |
|
Reis N, Franca AS, Oliveira LS. Performance of diffuse reflectance infrared Fourier transform spectroscopy and chemometrics for detection of multiple adulterants in roasted and ground coffee. LWT-Food Sci Tech, 2013b; 53(2):395-401. https://doi.org/10.1016/j.lwt.2013.04.008 | |
|
Reis N, Franca AS, Oliveira LS. Quantitative evaluation of multiple adulterants in roasted coffee by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and chemometrics. Talanta, 2013c; 115:563-8. https://doi.org/10.1016/j.talanta.2013.06.004 | |
|
Rohman A, Man YBC. Application of Fourier transform infrared spectroscopy for authentication of functional food oils. Appl Spectrosc Rev, 2012; 47(1):1-13. https://doi.org/10.1080/05704928.2011.619020 | |
|
Rohman A, Windarsih A. The application of molecular spectroscopy in combination with chemometrics for halal authentication analysis: a review. Int J Mol Sci, 2020; 21(14):1-18. https://doi.org/10.3390/ijms21145155 | |
|
Sezer B, Apaydin H, Bilge G, Boyaci IH. Coffee arabica adulteration: detection of wheat, corn and chickpea. Food Chem, 2018; 264(1):142-8. https://doi.org/10.1016/j.foodchem.2018.05.037 | |
|
Shen F, Wu Q, Su A, Tang P, Shao X, Liu B. Detection of adulteration in freshly squeezed orange juice by electronic nose and infrared spectroscopy. Czech J Food Sci, 2016; 34(3):224-32. https://doi.org/10.17221/303/2015-CJFS | |
|
Silva TV, Pérez-Rodríguez M, de Oliveira NR, de Santana H, de Almeida LC. Tracing commercial coffee quality by infrared spectroscopy in tandem with pattern recognition approaches. Vib Spectrosc, 2021; 116(9):23-30. https://doi.org/10.1016/j.vibspec.2021.103295 | |
|
Suhandy D, Yulia M, Ogawa Y, Kondo N. The detection and quantification of adulteration in ground roasted asian palm civet coffee using near-infrared spectroscopy in tandem with chemometrics. IOP Conf Ser Earth Environ Sci, 2018; 147(1):012011. https://doi.org/10.1088/1755-1315/147/1/012011 | |
|
Toci AT, Farah A, Pezza HR, Pezza L. Coffee adulteration: more than two decades of research. Crit Rev Anal Chem, 2016; 46(2):83-92. https://doi.org/10.1080/10408347.2014.966185 | |
|
Wang J, Jun S, Bittenbender HC, Gautz L, Li QX. Fourier transform infrared spectroscopy for Kona coffee authentication. J Food Sci, 2009; 74(5):32-44. https://doi.org/10.1111/j.1750-3841.2009.01173.x | |
|
Westad F, Marini F. Validation of chemometric models-a tutorial. Anal Chim Acta, 2015; 893(8):14-24. https://doi.org/10.1016/j.aca.2015.06.056 | |
|
Xu Y, Zhong P, Jiang A, Shen X, Li X, Xu Z, Shen Y, Sun Y, Lei H. Raman spectroscopy coupled with chemometrics for food authentication: a review. TrAC Trends Analyt Chem, 2020; 131:116017. https://doi.org/10.1016/j.trac.2020.116017 | |
|
Yang L, Wu T, Liu Y, Zou J, Huang Y, Babu VS, Lin L. Rapid identification of pork adulterated in the beef and mutton by infrared spectroscopy. J Spectrosc, 2018; 2018:1-10. https://doi.org/10.1155/2018/2413874 | |
|
Zhang C, Wang C, Liu F, He Y. Mid-infrared spectroscopy for coffee variety identification: comparison of pattern recognition methods. J Spectrosc, 2016; 2016:1-8. https://doi.org/10.1155/2016/1081674 | |