Gelatin can be obtained by hydrolysis of collagen partially from the skin, bone, and connective tissues of animals in acid or basic conditions, and is a functional ingredient widely used in some products which are related to food, cosmetics, and pharmaceuticals. The most common gelatins found in these products are bovine gelatin (BG), porcine gelatin (PG), and recently fishes-based gelatin was also developed. However, unclear labelling and false composition related to gelatin sources in products are serious issues, especially for some Muslims who have the faith that PGs are nonhalal. Therefore, the accessibility of reliable methods capable of identifying the gelatin types in the products is very urgent. Due to its simplicity, molecular-spectroscopic methods are proposed, developed, and validated for the detection of gelatins. In addition, the chromatographic-based methods especially hyphenated with mass spectrometers such as Liquid chromatography tandem mass spectrometry are capable of separating and identifying the gelatin sources through searching the specific markers in halal and nonhalal gelatins. The molecular spectra and chromatogram profiles of gelatins in complex sample matrixes have resulted in a huge number of data, therefore the employment of special statistical tools of chemometrics is unavoidable. This review highlighted the employment of molecular spectroscopy and chromatographic-based methods for the identification of gelatin sources and the authentication of gelatin sources and gelatin-based products (food, cosmetics, and pharmaceuticals). This review could provide analytical guidance and strategies for proposing and developing molecular spectroscopic and chromatographic-based techniques for the identification and authentication of gelatins.
Rohman A, Windarsih A, Musfiroh I, Maritha E, Wirnawati, Lestari D, Hamidi D, Susanto Y, Abu Bakar NK. Recent progress on the application of molecular spectroscopic and chromatographic methods for analysis of Halal and Kosher gelatins in food and pharmaceutical products. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.203667
1. Lever J, Miele M. The growth of halal meat markets in Europe: an exploration of the supply side theory of religion. J Rural Stud. 2012;28(4):528-37. https://doi.org/10.1016/j.jrurstud.2012.06.004 | |
2. Norazmi MN, Lim LS. Halal pharmaceutical industry: opportunities and challenges. Trends Pharmacol Sci. 2015;36(8):496-7. https://doi.org/10.1016/j.tips.2015.06.006 | |
3. Uddin SMK, Hossain MAM, Sagadevan S, Al Amin M, Johan MR. Halal and Kosher gelatin: applications as well as detection approaches with challenges and prospects. Food Biosci. 2021;44(PA):101422. https://doi.org/10.1016/j.fbio.2021.101422 | |
4. Ahmed MA, Al-Kahtani HA, Jaswir I, AbuTarboush H, Ismail EA. Extraction and characterization of gelatin from camel skin (potential halal gelatin) and production of gelatin nanoparticles. Saudi J Biol Sci. 2020;27(6):1596-601. https://doi.org/10.1016/j.sjbs.2020.03.022 | |
5. Huang Y, Li T, Deng G, Guo S, Zaman F. Recent advances in animal origin identification of gelatin-based products using liquid chromatography-mass spectrometry methods: a mini review. Rev Anal Chem. 2020;39(1):260-71. https://doi.org/10.1515/revac-2020-0121 | |
6. Lubis HN, Mohd-Naim NF, Alizul NN, Ahmed MU. From market to food plate: current trusted technology and innovations in halal food analysis. Trends Food Sci Technol. 2016;58:55-68. https://doi.org/10.1016/j.tifs.2016.10.024 | |
7. Rohman A, Che Man YB. Analysis of pig derivatives for halal authentication studies. Food Rev Int. 2012;28(1):97-112. https://doi.org/10.1080/87559129.2011.595862 | |
8. Eyupoglu OE. Halal gelatin analysis using developed on-line RP-HPLC-DAD-UV henna protein detection in confectionery and food supplements. EC Emerg Med Crit Care [Internet]. 2020;4(10):79-87. Available from: https://www.researchgate.net/publication/344445801 | |
9. Kang SSN, Lee HG, Kim H. Development and comparison of a porcine gelatin detection system targeting mitochondrial markers for Halal authentication. LWT. 2018 Nov;97:697-702. https://doi.org/10.1016/j.lwt.2018.07.062 | |
10. Jannat B, Ghorbani K, Shafieyan H, Kouchaki S, Behfar A, Sadeghi N, et al. Gelatin speciation using real-time PCR and analysis of mass spectrometry-based proteomics datasets. Food Control. 2018 May;87:79-87. https://doi.org/10.1016/j.foodcont.2017.12.006 | |
11. Pradini D, Juwono H, Madurani KA, Kurniawan F. A preliminary study of identification halal gelatin using Quartz Crystal Microbalance (QCM) sensor. Malaysian J Fundam Appl Sci. 2018;14(3):325-30. https://doi.org/10.11113/mjfas.v14n3.942 | |
12. Rohman A, Windarsih A, Erwanto Y, Zakaria Z. Review on analytical methods for analysis of porcine gelatine in food and pharmaceutical products for halal authentication. Trends Food Sci Technol [Internet]. 2020;101:122-32. Available from: https://doi.org/10.1016/j.tifs.2020.05.008 | |
13. Hassan N, Ahmad T, Zain NM. Chemical and chemometric methods for halal authentication of gelatin: an overview. J Food Sci. 2018;83(12):2903-11. https://doi.org/10.1111/1750-3841.14370 | |
14. Azilawati MI, Hashim DM, Jamilah B, Amin I. RP-HPLC method using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate incorporated with normalization technique in principal component analysis to differentiate the bovine, porcine and fish gelatins. Food Chem. 2015;172:368-76. https://doi.org/10.1016/j.foodchem.2014.09.093 | |
15. Jariyah, Yulistiani R, Afdilah SW, Mas’udah KW. Detection of pork gelatin in jelly candy using fourier transform infrared (FTIR) and polymerase chain reaction (PCR). E3S Web Conf. 2021;328:0-7. https://doi.org/10.1051/e3sconf/202132801006 | |
16. Hassan N, Ahmad T, Zain NM, Awang SR. Identification of bovine, porcine and fish gelatin signatures using chemometrics fuzzy graph method. Sci Rep. 2021;11(1):1-10. https://doi.org/10.1038/s41598-021-89358-2 | |
17. Forooghi E, Vali Zade S, Sahebi H, Abdollahi H, Sadeghi N, Jannat B. Authentication and discrimination of tissue origin of bovine gelatin using combined supervised pattern recognition strategies. Microchem J. 2023;187(December 2022):108417. https://doi.org/10.1016/j.microc.2023.108417 | |
18. Kumar Y, Chandrakant Karne S. Spectral analysis: a rapid tool for species detection in meat products. Trends Food Sci Technol. 2017;62:59-67. https://doi.org/10.1016/j.tifs.2017.02.008 | |
19. Cozzolino D. An overview of the use of infrared spectroscopy and chemometrics in authenticity and traceability of cereals. Food Res Int. 2014;60:262-5. https://doi.org/10.1016/j.foodres.2013.08.034 | |
20. Rohman A, Windarsih A. The application of molecular spectroscopy in combination with chemometrics for halal authentication analysis: a review. Int J Mol Sci. 2020;21(14):1-18. https://doi.org/10.3390/ijms21145155 | |
21. Jamwal R, Amit, Kumari S, Sharma S, Kelly S, Cannavan A, et al. Recent trends in the use of FTIR spectroscopy integrated with chemometrics for the detection of edible oil adulteration. Vib Spectrosc. 2021;113(April 2020):103222. https://doi.org/10.1016/j.vibspec.2021.103222 | |
22. Miller JN, Miller JC. Statistics and chemometrics for analytical chemistry. 6. ed. Harlow, UK: Prentice Hall; 2010. p. 278. | |
23. Brereton RG, Jansen J, Lopes J, Marini F, Pomerantsev A, Rodionova O, et al. Chemometrics in analytical chemistry-part II : modeling, validation, and applications. Anal Bioanal Chem. 2018 Oct;410(26):6691-704. https://doi.org/10.1007/s00216-018-1283-4 | |
24. Irnawati, Riyanto S, Rohman A. Adulteration of Gabus (Channa striata) fish oil with corn oil and palm oil: the use of FTIR spectra and chemometrics. Food Res. 2021;5(2):184-90. https://doi.org/10.26656/fr.2017.5(2).368 | |
25. Moros J, Garrigues S, Guardia M de la. Vibrational spectroscopy provides a green tool for multi-component analysis. TrAC Trends Anal Chem. 2010 Jul;29(7):578-91. https://doi.org/10.1016/j.trac.2009.12.012 | |
26. Rohman A. Infrared spectroscopy for quantitative analysis and oil parameters of olive oil and virgin coconut oil: a review. Int J Food Prop. 2017;20(7):1447-56. https://doi.org/10.1080/10942912.2016.1213742 | |
27. Hermanto S, Sumarlin LO, Fatimah W. Differentiation of bovine and porcine gelatin based on spectroscopic and electrophoretic analysis. J Food Pharm Sci. 2013;1(3):301-6. | |
28. Nhari RMHR, Ismail A, Che Man YB. Analytical methods for gelatin differentiation from bovine and porcine origins and food products. J Food Sci. 2012;77(1):R42-6. https://doi.org/10.1111/j.1750-3841.2011.02514.x | |
29. Hamid AH, Nurrulhidayah AF, Sani MSA, Muhammad NWF, Othman R, Rohman A. Discrimination of porcine and bovine gelatines based on reducing sugar types on maillard reaction. Food Res. 2020;4(2):301-6. https://doi.org/10.26656/fr.2017.4(2).297 | |
30. Hamid AH, Elgharbawy AA, Rohman A, Rashidi O, Hammed H, Nurrulhidayah AF. Optimisation of browning index of maillard reaction in gelatine powder by response surface methodology (RSM) for halal authentication. Food Res. 2019;3(5):525-9. https://doi.org/10.26656/fr.2017.3(5).116 | |
31. Al-Saidi GS, Al-Alawi A, Rahman MS, Guizani N. Fourier transform infrared (FTIR) spectroscopic study of extracted gelatin from shaari (Lithrinus microdon) skin: effects of extraction conditions. Int Food Res J. 2012;19(3):1167-73. | |
32. Andakke JN, Rumengan IFM, Nainggolan HHY, Parapat LRME, Pandey E, Suptijah P, et al. Molecular structure of gelatin extracted from parrot (Scarus sp) fish scales. J Pesisir Dan Laut Trop. 2020;8(1):15. https://doi.org/10.35800/jplt.8.1.2020.27286 | |
33. Abbas LM, Ahmed. GA-R. ATR-FTIR Spectroscopy for discrimination of gelatin from different sources: a comparative study. Res J Pharm Biol Chem Sci. 2020;11(4):135-44. | |
34. Hassan N, Ahmad T, Zain NM, Awang SR. A fuzzy graph based chemometrics method for gelatin authentication. Mathematics. 2020;8(11):1-18. https://doi.org/10.3390/math8111969 | |
35. Cebi N, Dogan CE, Mese AE, Ozdemir D, Ar?c? M, Sagdic O. A rapid ATR-FTIR spectroscopic method for classification of gelatin gummy candies in relation to the gelatin source. Food Chem [Internet]. 2019;277:373-81. Available from: https://doi.org/10.1016/j.foodchem.2018.10.125 | |
36. Jamalludin NH, Tukiran NA. Analysis of gelatin adulteration in edible bird’s nest using Fourier transform infrared (FTIR) spectroscopy. Int J Adv Sci Eng Inf Technol. 2018;8(6):2355-9. https://doi.org/10.18517/ijaseit.8.6.7690 | |
37. Roswiem AP, Mustaqimah DN. Identification of gelatin source in toothpaste products using combination of attenuated total reflection-fourier transform infrared ( ATR-FTIR ) spectroscopy and chemometrics. Int J Halal Res. 2020;2(1):30-9. https://doi.org/10.18517/ijhr.2.1.1-15.2020 | |
38. Cebi N, Durak MZ, Toker OS, Sagdic O, Arici M. An evaluation of Fourier transforms infrared spectroscopy method for the classification and discrimination of bovine, porcine and fish gelatins. Food Chem. 2016;190:1109-15. https://doi.org/10.1016/j.foodchem.2015.06.065 | |
39. Irfanita N, Jaswir I, Mirghani MES, Sukmasari S, Ardini YD, Lestari W. Rapid detection of gelatin in dental materials using attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR). J Phys Conf Ser. 2017;884(1):012090. https://doi.org/10.1088/1742-6596/884/1/012090 | |
40. Hassan N, Ahmad T, Zain NM, Ashaari A. A novel chemometrics method for halalauthentication of gelatin in food products. Sains Malaysiana. 2020;49(9):2083-9. https://doi.org/10.17576/jsm-2020-4909-06 | |
41. Li X, Zhang L, Zhang Y, Wang D, Wang X, Yu L, et al. Review of NIR spectroscopy methods for nondestructive quality analysis of oilseeds and edible oils. Trends Food Sci Technol. 2020;101(May):172-81. https://doi.org/10.1016/j.tifs.2020.05.002 | |
42. Rohman A, Windarsih A, Hossain MAM, Johan MR, Ali ME, Fadzilah NA. Application of near- and mid-infrared spectroscopy combined with chemometrics for discrimination and authentication of herbal products: a review. J Appl Pharm Sci. 2019;9:137-47. https://doi.org/10.7324/JAPS.2019.90319 | |
43. Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal. 2007;44(3 SPEC. ISS.):683-700. https://doi.org/10.1016/j.jpba.2007.03.023 | |
44. Duconseille A, Andueza D, Picard F, Santé-Lhoutellier V, Astruc T. Variability in pig skin gelatin properties related to production site: a near infrared and fluorescence spectroscopy study. Food Hydrocoll. 2017;63:108-19. https://doi.org/10.1016/j.foodhyd.2016.08.001 | |
45. Zhang H, Sun H, Wang L, Wang S, Zhang W, Hu J. Near infrared spectroscopy based on supervised pattern recognition methods for rapid identification of adulterated edible gelatin. J Spectrosc. 2018;2018:1-9. https://doi.org/10.1155/2018/7652592 | |
46. Li Y, Zhang JY, Wang YZ. FT-MIR and NIR spectral data fusion: a synergetic strategy for the geographical traceability of Panax notoginseng. Anal Bioanal Chem. 2018;410(1):91-103. https://doi.org/10.1007/s00216-017-0692-0 | |
47. Zhang H, Liu Z, Zhang J, Zhang L, Wang S, Wang L, et al. Identification of edible gelatin origins by data fusion of NIRS, fluorescence spectroscopy, and LIBS. Food Anal Methods. 2021;14(3):525-36. https://doi.org/10.1007/s12161-020-01893-2 | |
48. Velasco-Bejarano B, Gómez-Tagle A, Noguez-Córdova MO, Zambrano-Zaragoza ML, Miranda-Molina A, Bautista J, et al. Determination of clenbuterol at trace levels in raw gelatin powder and jellies using ultra-high-performance liquid chromatography coupled to triple quadrupole mass spectrometry. Food Chem. 2022 Feb;370:131261. https://doi.org/10.1016/j.foodchem.2021.131261 | |
49. Ishaq A, Rahman U ur, Sahar A, Perveen R, Deering AJ, Khalil AA, et al. Potentiality of analytical approaches to determine gelatin authenticity in food systems: a review. LWT. 2020 Mar;121:108968. https://doi.org/10.1016/j.lwt.2019.108968 | |
50. Amira Aqilah S , Nur Azira T, Haizatul Hadirah G, Nurul A, Syahirah SN. Analytical methods for gelatin differentiation. J Halal Ind Serv [Internet]. 2019;(1):a0000048. Available from: http://www.journals.hh-publisher.com/index.php/JHIS/article/view/57 | |
51. Sha XM, Hu ZZ, Ye YH, Xu H, Tu ZC. Effect of extraction temperature on the gelling properties and identification of porcine gelatin. Food Hydrocoll. 2019 Jul;92:163-72. https://doi.org/10.1016/j.foodhyd.2019.01.059 | |
52. Ali E, Sultana S, Hamid SBA, Hossain M, Yehya WA, Kader A, et al. Gelatin controversies in food, pharmaceuticals, and personal care products: authentication methods, current status, and future challenges. Crit Rev Food Sci Nutr. 2018 Jun;58(9):1495-511. https://doi.org/10.1080/10408398.2016.1264361 | |
53. Ismail AM, Sani MSA, Azid A, Zaki NNM, Arshad S, Tukiran NA, et al. Food forensics on gelatine source via ultra-high-performance liquid chromatography diode-array detector and principal component analysis. SN Appl Sci. 2021 Jan;3(1):1-19. https://doi.org/10.1007/s42452-020-04061-7 | |
54. Arsyanti L, Erwanto, Rohman A, Pranoto Y. Chemical composition and characterization of skin gelatin from buffalo (Bubalus bubalis). Int Food Res J. 2018;25(3):1095-9. | |
55. Dille MJ, Hattrem MN, Draget KI. Soft, chewable gelatin-based pharmaceutical oral formulations: a technical approach. Pharm Dev Technol. 2018 May;23(5):504-11. https://doi.org/10.1080/10837450.2017.1332642 | |
56. Widyaninggar A, Triyana K, Rohman A. Differentiation between porcine and bovine gelatin in capsule shells based on amino acid profiles and principal component analysis. Indones J Pharm. 2012;23(2):104-9. | |
57. Farrugia CA, Groves MJ. Gelatin behaviour in dilute aqueous solution: designing a nanoparticulate formulation. J Pharm Pharmacol. 2010;51(6):643-9. https://doi.org/10.1211/0022357991772925 | |
58. Abdullah Sani MS, Ismail AM, Azid A, Samsudin MS. Establishing forensic food models for authentication and quantification of porcine adulterant in gelatine and marshmallow. Food Control. 2021 Dec;130:108350. https://doi.org/10.1016/j.foodcont.2021.108350 | |
59. Nemati M, Oveisi MR, Abdollahi H, Sabzevari O. Differentiation of bovine and porcine gelatins using principal component analysis. J Pharm Biomed Anal. 2004;34(3):485-92. https://doi.org/10.1016/S0731-7085(03)00574-0 | |
60. Yilmaz MT, Kesmen Z, Baykal B, Sagdic O, Kacar O, Yetim H, et al. A novel method to differentiate bovine and porcine gelatins in food products: nanoUPLC-ESI-Q-TOF-MSE based data independent acquisition technique to detect marker peptides in gelatin. Food Chem. 2013;141(3):2450-8. https://doi.org/10.1016/j.foodchem.2013.05.096 | |
61. Zhu X, Gu S, Guo D, Huang X, Chen N, Niu B, et al. Determination of porcine derived components in gelatin and gelatin-containing foods by high performance liquid chromatography-tandem mass spectrometry. Food Hydrocoll. 2023 Jan;134:107978. https://doi.org/10.1016/j.foodhyd.2022.107978 | |
62. Salamah N, Erwanto Y, Martono S, Maulana I, Rohman A. Differentiation of bovine and porcine gelatines using lc-ms/ms and chemometrics. Int J Appl Pharm. 2019;11(4):159-63. https://doi.org/10.22159/ijap.2019v11i4.30248 | |
63. Sha XM, Zhang LJ, Tu ZC, Zhang LZ, Hu ZZ, Li Z, et al. The identification of three mammalian gelatins by liquid chromatography-high resolution mass spectrometry. LWT-Food Sci Technol. 2018;89:74-86. https://doi.org/10.1016/j.lwt.2017.10.001 |
Year
Month