Research Article | Volume: 13, issue: 2, February, 2023

Phytochemical screening and antioxidant and cytotoxic activities of ethyl acetate subfractions of soft coral Nepthea sp. growing in Southeast Sulawesi

Idin Sahidin Baru Sadrun Nur Syifa Rahmatika Agung Wibawa M. Yodha Adryan Fristiohady Andini Sundowo Sofa Fajriah   

Open Access   

Published:  Feb 05, 2023

DOI: 10.7324/JAPS.2023.130211
Abstract

Nepthea sp. is a soft coral that grows abundantly in the seas of Southeast Sulawesi, Indonesia. However, there is no information available regarding its pharmacological or chemical characteristics. As a result, the goal of this research was to uncover the chemical profile of the Nepthea sp. ethyl acetate subfractions, as well as their antioxidant and anticancer potential. The sample was extracted with ethyl acetate and then fractionated using vacuum liquid chromatography with Si-gel as an adsorbent and a chosen solvent as an eluent. Phytochemical tests, Liquid Chromatography-Mass Spectroscopy/Mass Spectroscopy (LC-MS/MS), and total phenolic content were used to determine the chemical content. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals were used to test the antioxidant potency, whereas MCF-7 cell lines were used in the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide experiment to evaluate cytotoxicity. The fractionation of the ethyl acetate extract (160 g) produced six subfractions: Fractions A (35.2 g), B (4.3 g), C (5.9 g), D (10.7 g), E (26.5 g), and F (15.4 g). According to the DPPH and ABTS results, fraction E has the highest antioxidant potency (IC50 = 67.39 ± 1.56 and 54.12 ± 0.95 mgl−1, respectively), and fraction C has the highest anticancer activity (IC50 = 72.82 ± 1.30 mgl−1). Fraction C components include 3-acetyl-3,4-dihydro-5,6-dimethoxy-2(1)H-benzopyrone, oxyphyllenone B, and unidentified chemicals, according to LC-MS/MS data (C15H21NO, C21H33NO2, C15H23NO3, C15H21NO2, C15H21NO3, and C45H84O14). Rengyolester, piperolactam-C9:1(8E), valine, and unidentified chemicals (C52H79N3O, C32H51NO7) make up fraction E. As a result, the ethyl acetate extract and its subfractions from Nepthea sp., especially fractions C and E, can be used as a source of raw materials for anticancer agents and antioxidants, respectively.


Keyword:     Nepthea sp. ethyl acetate subfraction antioxidant cytotoxic Southeast Sulawesi


Citation:

Sahidin I, Sadrun B, Rahmatika NS, Yodha AWM, Fristio­hady A, Sundowo A, Fajriah S. Phytochemical screening and antioxidant and cytotoxic activities of ethyl acetate subfrac­tions of soft coral Nepthea sp. growing in Southeast Sulawesi. J Appl Pharm Sci, 2023; 13(02):099–105. https://doi.org/10.7324/JAPS.2023.130211

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

INTRODUCTION

Soft coral, specifically Nepthea sp. from Southeast Sulawesi, Indonesia, was chosen as the sample to continue our research on the chemical and pharmacological aspects of marine natural resources. We had previously worked with sponges, and through the process of isolation and structural determination, we were able to get a new compound from Clathria sp., called clathruohate (Sahidin et al., 2018), as well as the chemical screening of various sponges (Sahidin et al., 2020). Antihyperlipidemic properties (Wahyuni et al., 2019), anti-inflammatory properties (Fristiohady et al., 2019), antioxidant properties, and acute toxicity (Fristiohady et al., 2020) are some of the biological activities of the sponges growing in Southeast Sulawesi.

The Indo-Pacific region (Seah et al., 2015), the Mauritius and Rodrigues Island (Jahajeeah et al., 2021), and the Brazilian Coast (Almeida et al., 2014) are all thought to be home to Nepthea sp. (Nephtheidae). According to the study, a derivate of tetraprenyl-benzoquinone generated by Nepthea sp. and a guaiane-based sesquiterpene discovered from Nepthea chabroli (Almeida et al., 2014), a molecule from Nepthea sp., called nephtoacetal, is cytotoxic to the HeLa cell lines (Zhang et al., 2013). Furthermore, erectasteroids A–H from Nepthea erecta are active against the HT-29 and P-388 cell lines (Cheng et al., 2007), and nebrosteroids A–H from N. chabroli have anti-inflammation activity (Huang et al., 2008).

However, no research on the chemical and pharmacological features of Nepthea growing in Southeast Sulawesi has been published yet. Soft corals whose studies have been reported from around the Sulawesi island include the following: soft coral from the South China Sea, Sarcophyton solidum, which produces diterpenoids (Zhu et al., 2015), Sinularia depressa from the South China Sea which generates sinulasterols A–C that play a role in cancer prevention through anti-inflammatory actions (Yang et al., 2020), and Lobophytum sp. from Selayar, South Sulawesi, the ethyl acetate extracts of which are active as antibacterials and antioxidants (Putra et al., 2016). Meanwhile, the mapping phase of a soft coral project in Southeast Sulawesi is still ongoing (Pedoja et al., 2018; Wanda et al., 2018).

This article describes the cytotoxicity and antioxidant properties of the ethyl acetate extract and its subfractions of soft coral Nepthea sp., as well as a chemical study of those samples using phytochemical screening, LC-MS/MS analysis, and total phenolic content (TPC) to learn more about soft corals from Southeast Sulawesi.

Figure 1. TLC chromatogram of ethylacetate extract (T) and the fraction A–F. (A) λ 254 nm (short); (B) λ 366 nm (long); and (C) CeSO4 + heat.

[Click here to view]


MATERIALS AND METHODS

General procedures

Methanol, ethyl acetate, n-hexane, Aquades, and acetone were all analytical grade compounds. The other materials used were Kieselgel 60 F254 0.25 mm (Merck), Si-gel 60 GF254 p.a (Merck®), silica 60 G (Merck®), cerium sulfate (CeSO4) (Merck®), ascorbic acid (Merck®), gallic acid (Merck®), quercetin (Merck®), doxorubicin (Merck®), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The LC-MS/MS study used Waters ACQUITY UPLC I–Class together with the Xevo G2-X2 Quadrupole Time-of-Flight Mass Spectrometer.

Collection of Nepthea sp.

Nepthea sp. was taken on the reef slopes of the Saponda Islands in Indonesia’s Province of Southeast Sulawesi. Scuba diving at a depth of 4–10 m was used to collect the sample. The material was collected and put in separate ice containers before being returned to the laboratory for further analysis. Soft coral identification was made by the specialist staff of Universitas Halu Oleo’s Faculty of Fisheries and Marine Science (Baru Sadarun, Ph.D.), and the specimen was placed at the Faculty of Pharmacy.

Fractionation and extraction

Fresh samples of Nepthea sp. (3 kg) were extracted with ethyl acetate at room temperature (3 × 10 l, 24 hours each time), and a dark brown extract was produced after being compressed under lower pressure. The extract was fractionated using vacuum liquid chromatography with Si-gel as an adsorbent and a combination of n-hexane: ethyl acetate (polarity rising) and 100% of methanol as eluent, yielding six fractions (A–F).

Screening of phytochemical contents

Screening of secondary metabolites in all the samples was done using the Harborne methods (Sadarun et al., 2022).

Total phenolic content

Total phenolic compounds were determined using the Folin–Ciocalteu reagent with slight adjustments to Singleton and Rossi’s description (Chandra et al., 2014).

Table 1. Weight and chemical profiles the samples.

[Click here to view]

LC-MS/MS analysis

The LC-MS/MS standard operating procedure was prepared for the chemical identification of the soft coral Nepthea sp. ethyl acetate extract and its subfractions (A–F). The UNIFI software was used to identify the mass-to-charge ratio (m/z) values of all peaks obtained from the LC-MS/MS analysis using the MSE identification method. The chemicals found were thoroughly examined using the Dictionary of Marine Natural Products (Blunt and Munro, 2008).

Antioxidant and cytotoxic activities

The antioxidant activity of those samples was measured by the DPPH radical (Sahidin et al., 2020) and the ABTS method (Wahyuni et al., 2021). The cytotoxicity property was evaluated toward the MCF-7 cells by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in vitro (Asasutjarit et al., 2021).


RESULTS AND DISCUSSION

The study of the chemical and pharmaceutical aspects of soft coral Nepthea sp. (3 kg) from the Southeast Sulawesi Sea, starting with sample extraction using ethyl acetate, yielded 160 g of the extract. The ethyl acetate extract of Nepthea sp. was fractionated into six fractions (A–F). The compounds profile of each fraction was analyzed using thin-layer chromatography (TLC), which is shown in Figure 1.

The chemical contents in the ethyl acetate extract and fractions A–F of Nepthea sp. are quite different, as shown by the TLC chromatogram in Figure 1. Qualitatively, terpenoids, alkaloids, and phenolics are compounds produced by Nepthea sp. based on phytochemical screening. Flavonoids are extremely rare and nearly undetectable in this sample. Fractions A and B do not contain phenolic compounds. Detailed data on the weight and chemical profile of samples are presented in Table 1.

Fraction C has the best cytotoxic potential against MCF-7 breast cancer cells lines compared to other samples with IC50 72.82 ± 1.30 mgl−1, and fraction E had the most antioxidant potential compared to other samples with IC50 67.39 ± 1.56 mgl−1 (DPPH) and IC50 54.12 ± 0.95 mgl−1 (ABTS) (Table 2 and Fig. 2). The difference in the biological activity of each fraction is strongly influenced by the content of its secondary metabolites.

Fractions C and E were studied in depth because they demonstrated the greatest promise for anticancer and antioxidant properties, respectively. Table 3 presents the chemicals identified and unidentified in the ethyl acetate extract, fractions C and F, of Nepthea sp. based on LC-MS/MS data. In addition, Figure 3 shows the identified structure of the identified compounds.

Figure 3 shows that the majority of the compounds found in Nepthea sp. are terpenoids, particularly sesquiterpenes and diterpenes, lactone, and nitrogenous compounds like 8 and 9. The number of terpenoids detected in Nepthea sp. is comparable to those found in other soft corals, such as sarcophine (Saleh et al., 2020), terpenoids from Lobophytum crassum, and steroids from Sarcophyton pauciplicatum (Florean et al., 2020; Saleh et al., 2020). The majority of the unidentified molecules are nitrogen compounds, and alkaloids are assumed to represent a type of secondary metabolites that include nitrogen atoms.

Table 2. Biological properties of all samples.

[Click here to view]

Figure 2. Bwwiological activities of the samples.

[Click here to view]

Table 3. Chemical profile of ethylacetat extract, fraction C and F based on LC-MS/MS data.

[Click here to view]

When compared to other samples, the biological activity of fraction C revealed that it had the strongest cytotoxic capability against MCF-7 breast cancer cells lines (Table 2 and Fig. 2). Based on the cytotoxicity level (Sadarun et al., 2022), the extract is categorized as very active (IC50 < 10 mg.ml−1), active (10–100 mg.ml−1), and moderately active (100–500 mg.ml−1). Thus, the ethyl acetate extract and fraction E were categorized as moderately active, while fraction C was categorized as active against MCF-7 breast cancer cells lines. The component concentration of fraction C, which is primarily nitrogen compounds, is assumed to be the cause (Table 3). Doxorubicin, a nitrogen molecule with the chemical formula C27H29NO11, is used as a positive control. Tamoxifen is a nitrogen molecule with the chemical formula C26H29NO or 2-[4-[(Z)-1,2-diphenylbut-1-enyl]phenoxy]-N,N-dimethylethanamine, which is often used by breast cancer patients. Tamoxifen works by preventing estrogen from acting on the breast. The hormone estrogen is required for the development of several kinds of breast cancer. This mechanism of action can be employed in both the treatment and prevention of breast cancer in high-risk women (Thayyeb et al., 2020).

Figure 3. Identified compound structures of ethyl acetate extract, fraction C and E.

[Click here to view]

In comparison to the other samples, fraction E had a maximum level of antioxidant capacity. The IC50 value of the DPPH and ABTS test findings is demonstrated in Table 2, and Figure 2 shows the classification of the antioxidant potential proposed by Blois, where Blois distinguishes it into four levels, namely very strong if IC50 < 50 mgml−1, strong if IC50 is between 50 and 100 _etl−1, moderate if IC50 is between 100 and 150 _etl−1, and weak if IC50 is more than 150 _orl−1 (Nur et al., 2021). According to the Blois criteria, the ethyl acetate extract and fraction C were categorized as weak antioxidants, while fraction E was included in the category of strong antioxidants. The quantity of phenolic compounds in fraction E influenced the strength of the antioxidant activity of the fraction quantitatively. The TPC value of fraction E was the greatest compared to the other samples, and the presence of flavonoids was detected in fraction E as well, as evidenced by the TFC value (Table 1). In terms of quality, phenolic compounds have conjugated double bonds with hydroxyl groups, allowing them to neutralize free radicals via resonance (Sahidin et al., 2014). Vitamin C (ascorbic acid), for example, has four hydroxyl groups, a conjugated double bond with a carbonyl unit, and an ester group, making it an excellent antioxidant substance. Rengyolester as the owner of this condition has a phenolic unit, an ester group, and two hydroxyl units that make up this chemical. Fraction E is regarded to have greater antioxidant effects than other samples due to the presence of this molecule. The ethyl acetate extract had rengyolester as well; however, fraction E had a larger mole fraction of rengyolester than the ethyl acetate extract.


CONCLUSION

The diversity of chemicals and biological activities of soft coral Nepthea sp. was clearly observed after fractionation. Fractionation of the ethyl acetate extract of soft coral Nepthea sp. produced six fractions (fractions A–F). Fraction C revealed that it had the strongest cytotoxic capability against MCF-7 breast cancer cells lines compared to other samples, which has an active category that is thought to be due to the high amount of nitrogenous chemicals. Meanwhile, the most antioxidant potential was shown by fraction E, which has a strong category that is caused by the content of phenolic compounds. As a result, the ethyl acetate extract and its subfraction from Nepthea sp., especially fractions C and E, can be used as a source of raw materials for anticancer agents and antioxidants, respectively.


ACKNOWLEDGMENTS

The Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia supported this project with a research grant under the Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT) 2021 No. 21/UN29.20/PG/2021 scheme.


CONFLICTS OF INTEREST

The authors declared no conflicts of interest in this study.


AUTHORS’ CONTRIBUTIONS

The idea was developed by I. Sahidin, B. Sadarun, and A. Fristiohady. Sample collection was arranged by B. Sadarun and A. W. M. Yodha. I. Sahidin, B. Sadarun, and A. W. M. Yodha worked on sample preparation, extraction, and fractionation. Evaluations of biological activities were done by A. Fristiohady and N. S. Rahmatika. A. Sundowo and I. Sahidin worked on the LC-MS/MS experiment and interpretation of the data. I. Sahidin, B. Sadarun, and A. Fristiohady contributed to manuscript preparation and revision.


ETHICAL APPROVALS

This study does not involve experiments on animals or human subjects.


DATA AVAILABILITY

All data generated and analyzed are included within this research article.


PUBLISHER’S NOTE

This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.


REFERENCES

 Almeida MTR, Moritz MIG, Capel KCC, Perez CD, Schenkel EP. Chemical and biological aspects of octocorals from the Brazilian coast. Rev Bras Farmacogn, 2014; 24:446–67. CrossRef

 Asasutjarit R, Sooksai N, Fristiohad A, Lairungruang K, Ng SF, Fuongfuchat A. Optimization of production parameters for andrographolide-loaded nanoemulsion preparation by microfluidization and evaluations of its bioactivities in skin cancer cells and UVB radiation-exposed skin. Pharmaceutics, 2021; 13(8):1290; doi:10.3390/pharmaceutics13081290 CrossRef

 Blunt JW, Munro MHG. Dictionary of marine natural products with CD-ROM. Chapman and Hall/CRC, Taylor and Francis, Boca Raton, FL, 2018.

 Chandra S, Khan S, Avula B, Lata H, Yang MH, El-Sohly MA, Khan IA. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: a comparative study. Evid Based Complement Alternat Med, 2014; 2014:253875; doi:10.1155/2014/253875 CrossRef

 Cheng S, Dai C, Duh C. New 4-methylated and 19-oxygenated steroids from the formosan soft coral Nepthea erecta. Steroids, 2007; 72:653–9; doi:10.1016/j.steroids.2007.05.001 CrossRef

 Florean C, Dicato M, Diederich M. Immune-modulating and anti-inflflammatory marine compounds against cancer. Semin Cancer Biol, 2020; In Press.

 Fristiohady A, Wahyuni, Malik F, Purnama LOMJ, Sahidin I. Anti-Inflammatory Activity of marine sponge Callyspongia sp. and its acute toxicity. Asian J Pharm Clin Res, 2019; 12(12):97–100. CrossRef

 Fristiohady A, Sadrun B, Wahyuni, Malaka MH, Ahmad F, Malik F, Julian Purnama LOMJ, Sahidin I. Isolation and identification of secondary metabolite acetone extract Aaptos sp. and its antioxidant properties and acute toxicity. J Appl Pharm Sci, 2020; 10(6):081–9. CrossRef

 Huang Y, Wen Z, Wang S, Hsu C, Duh C. New anti-inflammatory 4-methylated steroids from the Formosan soft coral Nepthea chabroli. Steroids, 2008; 73:1181–6; doi:10.1016/j.steroids.2008.05.007 CrossRef

 Jahajeeah D, Bhoyroo V, Ranghoo-Sanmukhiya M. An assessment of soft coral community (Octocorallia; Alcyonacea) around Mauritius and Rodrigues Island—new record of soft coral. Reg Stud Mar Sci, 2021; 47:101976; doi:10.1016/j.rsma.2021.101976 CrossRef

 Nur S, Aisyah AN, Lukitaningsih E, Rumiyati, Juhardi RI, Andirah R, Hajar AS. Evaluation of antioxidant and cytotoxic effect against cancer cell lines of Angiopteris ferox Copel tuber and its compounds by LC-MS analysis. J Appl Pharm Sci, 2021; 11(08):054–61.

 Pedoja K, Husson L, Bezos L, Pastier AW, Imran AM, Arias-Ruiz C, Sarr AC, Elliot M, Pons-Branchu E, Nexer M, Regard V, Hafidz A, Robert X, Benoit L, Delcaillau B, Authemayou C, Dumoulin C, Choblet G. On the long-lasting sequences of coral reef terraces from SE Sulawesi (Indonesia): distribution, formation, and global significance. Quat Sci Rev, 2018; 188:37e57; doi:10.1016/j.quascirev.2018.03.033 CrossRef

 Putra MY, Murniasih T, Swasono RT, Wibowo JT, Saputri ANC, Widhiana MR, Arlyza IS. Secondary metabolites and their biological activities in Indonesian soft coral of the genus Lobophytum. Asian Pac J Trop Biomed, 2016; 6(11):909–13. CrossRef

 Sadarun B, Rahmatika NS, Yodha AWM, Fristiohady A, Sundowo A, Baharum SN, Sahidin I. Antioxidant and cytotoxic properties of soft coral Nepthea sp. Indones J Mar Sci, 2022; 27(1):29–36; doi:10.14710/ik.ijms.27.1.29-36 CrossRef

 Sahidin S, Nohong N, Sani A, Manggau MA, Sukohar S, Widodo H, Baharum SN. Radical scavenging activity of triterpene steroids from stem of Polygonum pulchrum Bl. IJPPS, 2014; 6(8):350–4.

 Sahidin I, Sabandar CW, Wahyuni, Hamsidi R, Malaka MH, Sadarun B, Aslan LO. A-nor sterols from an Indonesian marine sponge Clathria species. Malays J Anal Sci, 2018; 22(3):375–82. Available via http://www.ukm.my/mjas/mjas2018/; doi:10.17576/mjas-2018-2203-02

 Sahidin I, Sabandar CW, Wahyuni, Hamsidi R, Mardikasari SA, Zubaydah WOS, Sadarun B, Musnina WOS, Darmawan A, Sundowo A. Investigation of compounds and biological activity of selected Indonesian marine sponges. Nat Prod J, 2020; 10(3):312–21. CrossRef

 Saleh HA, Raafat KM, Temraz TA, Noureldin N, Breitinger HG, Breitinger U. Sarcophine and (7S, 8R)-dihydroxydeepoxysarcophine from the Red Sea soft coral Sarcophyton glaucum as in vitro and in vivo modulators of glycine receptors. Neurotoxicology, 2020; 80:105–11. CrossRef

 Seah JZS, Yap NW, Tan LT, Goh BPL. Distribution and abundant of octocoral (Octocorallia, Alcyonacea) communities at three Southern Island of Singapore. Ocean Sci J, 2015; 50(2):299–306. CrossRef

 Thayyeb H, Muis M, Murtala B. Gambaran Ultrasonografi Kelainan Endometrium pada Penderita Kanker Payudara yang Mendapat Terapi Hormonal di Rumah Sakit Wahidin Sudirohusodo. Nusantara Med Sci J, 2020; 5(2):13408; doi:10.20956/nmsj.v5i2.13408 CrossRef

 Wanda E, sadarun B, Rahmadani. Keanekaragaman dan kepadatan karang lunak di perairan Waworaha Kecamatan Soropia. Sapa Laut, 2018; 3(1):9-15; doi:10.33772/jsl.v3i1.6504

 Wahyuni, Fristiohady A, Malaka MH, Malik F, Yusuf MI, Leorita M, Sadarun B, Saleh A, Musnina WOS, Sabandar CW, Sahidin I. Effects of Indonesian marine sponges ethanol extracts on the lipid profile of hyperlipidemic rats. J Appl Pharm Sci, 2019; 9(10):008. CrossRef

 Wahyuni, Diantini A, Ghozali M, Subarnas A, Julaeha E, Amalia R, Sahidin I. Phytochemical screening, toxicity activity, and antioxidant capacity of ethanolic extract of Etlingera alba rhizomes. Pak J Biol Sci, 2021; 24:807–14. CrossRef

 Yang M, Cui WX, Li H, Li SW, Yao LG, Tang W. Sinulasterols A–C, three new bioactive oxygenated steroids from the South China Sea soft coral Sinularia depressa. Steroids, 2020; 157:08598; doi:10.1016/j.steroids.2020.108598 CrossRef

 Zhang J, Li L, Wang K, Liao X, Deng Z, Xu S. Pentacyclic hemiacetal sterols with antifouling and cytotoxic activities from soft coral Nepthea sp. Bioorg Med Chem Lett, 2013; 23:1079–82; doi:10.1016/j. bmcl. 2012.12.012 CrossRef

 Zhu JY, Li W, Bao JM, Zhang JS, Yin S, Tang GH. Diterpenoids from the South China Sea soft coral Sarcophyton solidum. Biochem Syst Ecol, 2015; 62:6e10. CrossRef

Reference

Almeida MTR, Moritz MIG, Capel KCC, Perez CD, Schenkel EP. Chemical and biological aspects of octocorals from the Brazilian coast. Rev Bras Farmacogn, 2014; 24:446-67. https://doi.org/10.1016/j.bjp.2014.05.002

Asasutjarit R, Sooksai N, Fristiohad A, Lairungruang K, Ng SF, Fuongfuchat A. Optimization of production parameters for andrographolide-loaded nanoemulsion preparation by microfluidization and evaluations of its bioactivities in skin cancer cells and UVB radiation-exposed skin. Pharmaceutics, 2021; 13(8):1290 https://doi.org/10.3390/pharmaceutics13081290

Blunt JW, Munro MHG. Dictionary of marine natural products with CD-ROM. Chapman and Hall/CRC, Taylor and Francis, Boca Raton, FL, 2018.

Chandra S, Khan S, Avula B, Lata H, Yang MH, El-Sohly MA, Khan IA. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: a comparative study. Evid Based Complement Alternat Med, 2014; 2014:253875. https://doi.org/10.1155/2014/253875

Cheng S, Dai C, Duh C. New 4-methylated and 19-oxygenated steroids from the formosan soft coral Nepthea erecta. Steroids, 2007; 72:653-9. https://doi.org/10.1016/j.steroids.2007.05.001

Florean C, Dicato M, Diederich M. Immune-modulating and anti-inflflammatory marine compounds against cancer. Semin Cancer Biol, 2020; In Press.

Fristiohady A, Wahyuni, Malik F, Purnama LOMJ, Sahidin I. Anti-Inflammatory Activity of marine sponge Callyspongia sp. and its acute toxicity. Asian J Pharm Clin Res, 2019; 12(12):97-100. https://doi.org/10.22159/ajpcr.2019.v12i12.34737

Fristiohady A, Sadrun B, Wahyuni, Malaka MH, Ahmad F, Malik F, Julian Purnama LOMJ, Sahidin I. Isolation and identification of secondary metabolite acetone extract Aaptos sp. and its antioxidant properties and acute toxicity. J Appl Pharm Sci, 2020; 10(6):081-9. https://doi.org/10.7324/JAPS.2020.10611

Huang Y, Wen Z, Wang S, Hsu C, Duh C. New anti-inflammatory 4-methylated steroids from the Formosan soft coral Nepthea chabroli. Steroids, 2008; 73:1181-6. https://doi.org/10.1016/j.steroids.2008.05.007

Jahajeeah D, Bhoyroo V, Ranghoo-Sanmukhiya M. An assessment of soft coral community (Octocorallia; Alcyonacea) around Mauritius and Rodrigues Island-new record of soft coral. Reg Stud Mar Sci, 2021; 47:101976. https://doi.org/10.1016/j.rsma.2021.101976

Nur S, Aisyah AN, Lukitaningsih E, Rumiyati, Juhardi RI, Andirah R, Hajar AS. Evaluation of antioxidant and cytotoxic effect against cancer cell lines of Angiopteris ferox Copel tuber and its compounds by LC-MS analysis. J Appl Pharm Sci, 2021; 11(08):054-61.

Pedoja K, Husson L, Bezos L, Pastier AW, Imran AM, Arias- Ruiz C, Sarr AC, Elliot M, Pons-Branchu E, Nexer M, Regard V, Hafidz A, Robert X, Benoit L, Delcaillau B, Authemayou C, Dumoulin C, Choblet G. On the long-lasting sequences of coral reef terraces from SE Sulawesi (Indonesia): distribution, formation, and global significance. Quat Sci Rev, 2018; 188:37e57. https://doi.org/10.1016/j.quascirev.2018.03.033

Putra MY, Murniasih T, Swasono RT, Wibowo JT, Saputri ANC, Widhiana MR, Arlyza IS. Secondary metabolites and their biological activities in Indonesian soft coral of the genus Lobophytum. Asian Pac J Trop Biomed, 2016; 6(11):909-13. https://doi.org/10.1016/j.apjtb.2016.08.011

Sadarun B, Rahmatika NS, Yodha AWM, Fristiohady A, Sundowo A, Baharum SN, Sahidin I. Antioxidant and cytotoxic properties of soft coral Nepthea sp. Indones J Mar Sci, 2022; 27(1):29-36. https://doi.org/10.14710/ik.ijms.27.1.29-36

Sahidin S, Nohong N, Sani A, Manggau MA, Sukohar S, Widodo H, Baharum SN. Radical scavenging activity of triterpene steroids from stem of Polygonum pulchrum Bl. IJPPS, 2014; 6(8):350-4.

Sahidin I, Sabandar CW, Wahyuni, Hamsidi R, Malaka MH, Sadarun B, Aslan LO. A-nor sterols from an Indonesian marine sponge Clathria species. Malays J Anal Sci, 2018; 22(3):375-82.

Sahidin I, Sabandar CW, Wahyuni, Hamsidi R, Mardikasari SA, Zubaydah WOS, Sadarun B, Musnina WOS, Darmawan A, Sundowo A. Investigation of compounds and biological activity of selected Indonesian marine sponges. Nat Prod J, 2020; 10(3):312-21. https://doi.org/10.2174/2210315509666190627105237

Saleh HA, Raafat KM, Temraz TA, Noureldin N, Breitinger HG, Breitinger U. Sarcophine and (7S, 8R)-dihydroxydeepoxysarcophine from the Red Sea soft coral Sarcophyton glaucum as in vitro and in vivo modulators of glycine receptors. Neurotoxicology, 2020; 80:105-11. https://doi.org/10.1016/j.neuro.2020.07.002

Seah JZS, Yap NW, Tan LT, Goh BPL. Distribution and abundant of octocoral (Octocorallia, Alcyonacea) communities at three Southern Island of Singapore. Ocean Sci J, 2015; 50(2):299-306. https://doi.org/10.1007/s12601-015-0027-z

Thayyeb H, Muis M, Murtala B. Gambaran Ultrasonografi Kelainan Endometrium pada Penderita Kanker Payudara yang Mendapat Terapi Hormonal di Rumah Sakit Wahidin Sudirohusodo. Nusantara Med Sci J, 2020; 5(2):13408. https://doi.org/10.20956/nmsj.v5i2.13408

Wanda E, sadarun B, Rahmadani. Keanekaragaman dan kepadatan karang lunak di perairan Waworaha Kecamatan Soropia. Sapa Laut, 2018; 3(1):9-15.

Wahyuni, Fristiohady A, Malaka MH, Malik F, Yusuf MI, Leorita M, Sadarun B, Saleh A, Musnina WOS, Sabandar CW, Sahidin I. Effects of Indonesian marine sponges ethanol extracts on the lipid profile of hyperlipidemic rats. J Appl Pharm Sci, 2019; 9(10):008. https://doi.org/10.7324/JAPS.2019.91001

Wahyuni, Diantini A, Ghozali M, Subarnas A, Julaeha E, Amalia R, Sahidin I. Phytochemical screening, toxicity activity, and antioxidant capacity of ethanolic extract of Etlingera alba rhizomes. Pak J Biol Sci, 2021; 24:807-14. https://doi.org/10.3923/pjbs.2021.807.814

Yang M, Cui WX, Li H, Li SW, Yao LG, Tang W. Sinulasterols A-C, three new bioactive oxygenated steroids from the South China Sea soft coral Sinularia depressa. Steroids, 2020; 157:08598. https://doi.org/10.1016/j.steroids.2020.108598

Zhang J, Li L, Wang K, Liao X, Deng Z, Xu S. Pentacyclic hemiacetal sterols with antifouling and cytotoxic activities from soft coral Nepthea sp. Bioorg Med Chem Lett, 2013; 23:1079-82. https://doi.org/10.1016/j.bmcl.2012.12.012

Zhu JY, Li W, Bao JM, Zhang JS, Yin S, Tang GH. Diterpenoids from the South China Sea soft coral Sarcophyton solidum. Biochem Syst Ecol, 2015; 62:6e10. https://doi.org/10.1016/j.bse.2015.07.033

Article Metrics
38 Views 176 Downloads 214 Total

Year

Month

Related Search

By author names