Dynamic in silico assessment of potential gene targets for enhancing clavulanic acid production in Streptomyces clavuligerus submerged cultures

David Gómez-Ríos Howard Ramírez-Malule Victor A. López-Agudelo   

Open Access   

Published:  Nov 14, 2022

DOI: 10.7324/JAPS.2023.130207
Abstract

Clavulanic acid (CA) is an antibiotic of the β-lactam class with moderate antimicrobial activity but a high inhibitory effect on β-lactamase enzymes. CA is one of the most important products of the secondary metabolism in Streptomyces clavuligerus, which is still the main industrial source of CA marketed worldwide. However, CA titers produced in submerged cultures by wild-type S. clavuligerus are characteristically low. The application of systems biology and constraint-based approaches such as the flux balance analysis (FBA) allows us to get insights into the metabolism, especially when it is coupled to a validated genome-scale model. In this study, FBA was applied for the in silico determination of potential metabolic targets aimed to increase the CA biosynthesis rate. In the metabolic network, the overexpression of N2-(2-carboxyethyl)-arginine synthase (CEAS), knockout of pyruvate kinase (PYK), and dampening of phosphoglycerate kinase showed the best flux ratio of CA biosynthesis. Then, submerged fed-batch cultivations with CEAS and PYK-engineered strains were simulated by using a dynamic FBA (dFBA) for analysis of the correspondent metabolic flux distribution. The dFBA provided insights about the carbon redistribution produced by the genetic perturbations potentially increasing CA production up to 1.9 and 1.1-fold for the calculated wild-type strain (2.74 mmol.l−1).


Keyword:     Clavulanic acid Streptomyces clavuligerus strain engineering FBA dFBA


Citation:

Gómez-Ríos D, Ramírez-Malule H, López-Agudelo VA. Dynamic in silico assessment of potential gene targets for enhancing clavulanic acid production in Streptomyces clavuligerus submerged cultures. J Appl Pharm Sci, 2022. https://doi.org/10.7324/JAPS.2023.130207

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Barreiro C, Martínez-Castro M. Regulation of the phosphate metabolism in Streptomyces genus: impact on the secondary metabolites. Appl Microbiol Biot, 2019; 103(4):1643-58. https://doi.org/10.1007/s00253-018-09600-2

Bellão C, Antonio T, Araujo MLGC, Badino AC. Production of clavulanic acid and cephamycin c by streptomyces clavuligerus under different fed-batch conditions. Braz J Chem Eng, 2013; 30(2):257-66. https://doi.org/10.1590/S0104-66322013000200004

Esnault C, Dulermo T, Smirnov A, Askora A, David M, Deniset- Besseau A, Holland IB, Virolle MJ. Strong antibiotic production is correlated with highly active oxidative metabolism in Streptomyces coelicolor M145. Sci Rep, 2017; 7(1):1-10. https://doi.org/10.1038/s41598-017-00259-9

Gómez S, Ramírez-Malule H, Cardona-G W, Osorio E, Restrepo A. Double-ring epimerization in the biosynthesis of clavulanic acid. J Phys Chem A, 2020; 124(45):9413-26. https://doi.org/10.1021/acs.jpca.0c05427

Gómez-Ríos D, Junne S, Neubauer P, Ochoa S, Ríos-Estepa R, Ramírez-Malule H. Characterization of the metabolic response of Streptomyces clavuligerus to shear stress in stirred tanks and single-use 2D rocking motion bioreactors for clavulanic acid production. Antibiotics, 2019; 8(4):1-16. https://doi.org/10.3390/antibiotics8040168

Gómez-Ríos D, López-Agudelo VA, Ramírez-Malule H, Neubauer P, Junne S, Ochoa S, Ríos-Estepa R. A genome-scale insight into the effect of shear stress during the fed-batch production of clavulanic acid by streptomyces clavuligerus. Microorganisms, 2020; 8(9):1-19. https://doi.org/10.3390/microorganisms8091255

Gómez-Ríos D, Ramírez-Malule H. Bibliometric analysis of recent research on multidrug and antibiotics resistance (2017-2018). J Appl Pharm Sci, 2019; 9(5):112-6. https://doi.org/10.7324/JAPS.2019.90515

Gómez-Rios D, Ramírez-Malule H, Ochoa S, Ríos-Estepa R. Rational selection of culture medium for clavulanic acid production by Streptomyces clavuligerus based on a metabolic modeling approach. Agric Nat Resour, 2022; 56(2):267-76. https://doi.org/10.34044/j.anres.2022.56.2.05

Gómez-Ríos D, Ramírez-Malule H, Neubauer P, Junne S, Ríos-Estepa R, Ochoa S. Tuning of fed-batch cultivation of Streptomyces clavuligerus for enhanced clavulanic acid production based on genome-scale dynamic modeling. Biochem Eng J, 2022; 185(1):1-10. https://doi.org/10.1016/j.bej.2022.108534

Jnawali HN, Lee HC, Sohng JK. Enhancement of clavulanic acid production by expressing regulatory genes in gap gene deletion mutant of Streptomyces clavuligerus NRRL3585. J Microbiol Biotechnol, 2010; 20(1):146-52. https://doi.org/10.4014/jmb.0907.07020

Jnawali HN, Liou K, Sohng JK. Role of σ-factor (orf21) in clavulanic acid production in Streptomyces clavuligerus NRRL3585. Microbiol Res, 2011; 166(5):369-79. https://doi.org/10.1016/j.micres.2010.07.005

Kurt-Kizildo?an A, Vanli-Jaccard G, Mutlu A, Sertdemir I, Özcengiz G. Genetic engineering of an industrial strain of Streptomyces clavuligerus for further enhancement of clavulanic acid production. Turk J Biol, 2017; 41(2):342-53. https://doi.org/10.3906/biy-1608-17

Li R, Townsend CA. Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metab Eng, 2006; 8(3):240-52. https://doi.org/10.1016/j.ymben.2006.01.003

Liras P, Martín JF. Streptomyces clavuligerus: the omics era. J Ind Microbiol Biotechnol, 2021; 48(9-10):1-18. https://doi.org/10.1093/jimb/kuab072

López-Agudelo VA, Gómez-Ríos D, Ramirez-Malule H. Clavulanic acid production by Streptomyces clavuligerus: insights from systems biology, strain engineering, and downstream processing. Antibiotics, 2021; 10(1):1-26. https://doi.org/10.3390/antibiotics10010084

Millan-Oropeza A, Henry C, Lejeune C, David M, Virolle MJ. Expression of genes of the Pho regulon is altered in Streptomyces coelicolor. Sci Rep, 2020; 10(1):1-21. https://doi.org/10.1038/s41598-020-65087-w

Paradkar A. Clavulanic acid production by Streptomyces clavuligerus: biogenesis, regulation and strain improvement. J Antibiot (Tokyo), 2013; 66(2):411-20. https://doi.org/10.1038/ja.2013.26

Pinilla L, Toro LF, Laing E, Alzate JF, Ríos-Estepa R. Comparative transcriptome analysis of Streptomyces clavuligerus in response to favorable and restrictive nutritional conditions. Antibiotics, 2019; 8(3),96:1-18. https://doi.org/10.3390/antibiotics8030096

Ramirez-Malule, H. Bibliometric analysis of global research on clavulanic acid. Antibiotics, 2018; 7(4):1-14. https://doi.org/10.3390/antibiotics7040102

Ramirez-Malule H, López-Agudelo VA, Gómez-Ríos D, Ochoa S, Ríos-Estepa R, Junne S, Neubauer P. TCA cycle and its relationship with clavulanic acid production: a further interpretation by using a reduced genome-scale metabolic model of Streptomyces clavuligerus. Bioengineering, 2021; 8(8):1-16. https://doi.org/10.3390/bioengineering8080103

Ramirez-Malule H, Restrepo A, Cardona W, Junne S, Neubauer P, Rios-Estepa R. Inversion of the stereochemical configuration (3S, 5S)- clavaminic acid into (3R, 5R)-clavulanic acid: a computationally-assisted approach based on experimental evidence. J Theor Biol, 2016; 395:40-50. https://doi.org/10.1016/j.jtbi.2016.01.028

Sanchez C, Gomez N, Quintero JC. Producción de Ácido Clavulánico por fermentación de Streptomyces clavuligerus : evaluación de diferentes medios de cultivo y modelado matemático. Dyna, 2012; 79:158-65.

Saudagar PS, Singhal RS. Optimization of nutritional requirements and feeding strategies for clavulanic acid production by Streptomyces clavuligerus. Bioresour Technol, 2007; 98(10):2010-7. https://doi.org/10.1016/j.biortech.2006.08.003

Song JY, Jensen SE, Lee KJ. Clavulanic acid biosynthesis and genetic manipulation for its overproduction. Appl Microbiol Biot. 2010; 88(3):659-69. https://doi.org/10.1007/s00253-010-2801-2

Stanford NJ, Millard P, Swainston N. RobOKoD: microbial strain design for (over)production of target compounds. Front Cell Dev Biol, 2015; 3(17):1-12. https://doi.org/10.3389/fcell.2015.00017

Tahlan K, Anders C, Wong A, Mosher RH, Beatty PH, Brumlik MJ, Griffin A, Hughes C, Griffin J, Barton B, Jensen SE. 5S clavam biosynthetic genes are located in both the clavam and paralog gene clusters in Streptomyces clavuligerus. Chem Biol, 2007; 14(2):131-42. https://doi.org/10.1016/j.chembiol.2006.11.012

Article Metrics

0 Absract views 1 PDF Downloads 1 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required