Application of metabolomics on marine sponges and sponge-associated microorganisms: A review

Putu Oka Samirana Riris Istighfari Jenie Yosi Bayu Murti Erna Prawita Setyowati   

Open Access   

Published:  Jun 18, 2022

Abstract

Sponges and their associated microorganisms have tremendous potential in the medical world to be explored. However, improper exploration will cause habitat destruction and cost much. The application of metabolomics to sponges and their associted microbes can be the best solution in their exploration, which involves a combination of chemical profiling and multivariate analysis (chemometrics). In this , we 47 genera of sponges and 24 genera of their associated microorganisms that were studied with a metabolomic approach until July 2021. The sponges most often studied in metabolomics-related research are Geodia, Xestospongia, Agelas, and Aplysina. There are four analytical techniques that are often used, namely, liquid chromatography-mass spectrometry, polymerase chain reaction, nuclear magnetic resonance, and gas chromatography-mass spectrometry, in determining the chemical/genomic profile. There are eight chemometric analyses that are often used in metabolomic applications on sponges and their associated microbes, namely, similarity analysis, principal component analysis, hierarchical cluster analysis, partial least square, partial least square-discriminant analysis, orthogonal projections to latent structures, orthogonal projections to latent structures-discriminant analysis, and linear discriminant analysis. The most widely used metabolomic applications for sponges and their associated microbes for the last decade are for identification and dereplication purposes, for quality control purposes, and for the purpose of linking chemical profiles and bioactivity patterns. The purpose of other metabolomic applications, namely, to determine bioavailability to quantitatively determine bioactivity, and to test safety and toxicity, has yet to be carried out because research on sponges and their associated microbes is still around the discovery of new compounds and quality control.


Keyword:     Metabolomics sponge associated microorganism chemometrics chemical profile.


Citation:

Samirana PO, Jenie RI, Murti YB, Setyowati EP. Application of metabolomics on marine sponges and sponge-associated microorganisms: A review. J Appl Pharm Sci, 2022; 12(07):018–033.

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Abdelhameed RFA, Habib ES, Eltahawy NA, Hassanean HA, Ibrahim AK, Mohammed AF, Fayez S, Hayallah AM, Yamada K, BeheryFA, Al-Sanea MM, Alzarea SI, Bringmann G, Ahmed SA, Abdelmohsen UR. New cytotoxic natural products from the red sea sponge stylissa carteri. Mar Drugs, 2020; 18:1-13. https://doi.org/10.3390/md18050241

Abdelmohsen UR, Cheng C, Viegelmann C, Zhang T, Grkovic T, Ahmed S, Quinn RJ, Hentschel U, Edrada-Ebel R. Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins a and B from a marine sponge associated-Actinokineospora sp. EG49. Mar Drugs, 2014; 12:1220-44. https://doi.org/10.3390/md12031220

Achlatis M, Pernice M, Green K, De Goeij JM, Guagliardo P, Kilburn MR, Hoegh-Guldberg O, Dove S. Single-cell visualization indicates direct role of sponge host in uptake of dissolved organic matter. Proc R Soc B Biol Sci, 2019; 286:1-9. https://doi.org/10.1098/rspb.2019.2153

Adams MJ. Chemometrics in analytical spectroscopy. 2nd edition, The Royal Society of Chemistry, Cambridge, UK, 2004.

Ali K, Iqbal M, Yuliana ND, Lee YJ, Park S, Han S, Lee J-W, Lee H-S, Verpoorte R, Choi YH. Identification of bioactive metabolites against adenosine A1 receptor using NMR-based metabolomics. Metabolomics, 2013; 9:778-85. https://doi.org/10.1007/s11306-013-0498-9

Alkhalifah DHM. Sponge-associated sp. RM66 metabolome induction with N-acetylglucosamine: antibacterial, antifungal and antitrypanosomal activities. Saudi J Biol Sci, 2021; 28:4691-8. https://doi.org/10.1016/j.sjbs.2021.04.082

Audoin C, Bonhomme D, Ivanisevic J, De La Cruz M, Cautain B, Monteiro MC, Reyes F, Rios L, Perez T, Thomas OP. Balibalosides, an original family of glucosylated sesterterpenes produced by the Mediterranean sponge Oscarella balibaloi. Mar Drugs, 2013; 11:1477-89. https://doi.org/10.3390/md11051477

Badjakov I, Nikolova M, Gevrenova R, Kondakova V, Todorovska E, Atanassov A. Bioactive compounds in small fruits and their influence on human health. Biotechnol Biotechnol Equip, 2008; 22:581-7. https://doi.org/10.1080/13102818.2008.10817517

Baral B, Akhgari A, Metsä-Ketelä M. Activation of microbial secondary metabolic pathways: avenues and challenges. Synth Syst Biotechnol, 2018; 3:163-78.
https://doi.org/10.1016/j.synbio.2018.09.001

Bauvais C, Bonneau N, Blond A, Pérez T, Bourguet-Kondracki ML, Zirah S. Furanoterpene diversity and variability in the marine sponge Spongia officinalis, from untargeted LC-MS/MS metabolomic profiling to furanolactam derivatives. Metabolites, 2017; 7:1-20. https://doi.org/10.3390/metabo7020027

Bayona LM, Van Leeuwen G, Erol Ö, Swierts T, Swierts T, Van Der Ent E, de Voogd NJ, Choi YH. Influence of geographical location on the metabolic production of giant barrel sponges (Xestospongia spp.) revealed by metabolomics tools. ACS Omega, 2020; 5:12398-408. https://doi.org/10.1021/acsomega.0c01151

ayona LM, Videnova M, Choi YH. Increasing metabolic diversity in marine sponges extracts by controlling extraction parameters. Mar Drugs, 2018; 16:1-12. https://doi.org/10.3390/md16100393

Beebe KR, Pell RJ, Seasholtz MB. Chemometrics: a practical guide. Wiley, New York, 1998.

Berrueta LA, Alonso-Salces RM, Héberger K. Supervised pattern recognition in food analysis. J Chromatogr A, 2007; 1158:196-214. https://doi.org/10.1016/j.chroma.2007.05.024

Betancur LA, Naranjo-Gaybor SJ, Vinchira-Villarraga DM, Moreno-Sarmiento NC, Maldonado LA, Suarez-Moreno ZR, AcostaGonzález A, Padilla-Gonzalez GF, Puyana M, Castellanos L, Ramos FA. Marine Actinobacteria as a source of compounds for phytopathogen control: an integrative metabolic-profiling/bioactivity and taxonomical approach. PLoS One, 2017; 12:1-25. https://doi.org/10.1371/journal.pone.0170148

Bojko B, Onat B, Boyaci E, Psillakis E, Dailianis T, Pawliszyn J. Application of in situ solid-phase microextraction on mediterranean sponges for untargeted exometabolome screening and environmental monitoring. Front Mar Sci, 2019; 6:1-13. https://doi.org/10.3389/fmars.2019.00632

Bose U, Hewavitharana AK, Ng YK, Shaw PN, Fuerst JA, Hodson MP. LC-MS-based metabolomics study of marine bacterial secondary metabolite and antibiotic production in salinispora arenicola. Mar Drugs, 2015; 13:249-66. https://doi.org/10.3390/md13010249

Brereton RG. Chemometrics : data analysis for laboratory and chemical plant. John Wiley and Sons Ltd., Chichester, UK, 2003.

Cantrell TP, Freeman CJ, Paul VJ, Agarwal V, Garg N. Mass spectrometry-based integration and expansion of the chemical diversity harbored within a marine sponge. J Am Soc Mass Spectrom, 2019; 30:1373-84. https://doi.org/10.1007/s13361-019-02207-5

Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep, 2019; 36:122-73. https://doi.org/10.1039/C8NP00092A

Caso A, Esposito G, Sala G Della, Pawlik JR, Teta R, Mangoni A, Costantino V. Fast detection of two smenamide family members using molecular networking. Mar Drugs, 2019; 17:1-12. https://doi.org/10.3390/md17110618

Chaudhari S, Kumar MS. Marine sponges Sarcotragus foetidus, Xestospongia carbonaria and Spongia obscura constituents ameliorate IL 1 β and IL 6 in lipopolysaccharide induced RAW 264.7 macrophages and carageenan induced.pdf. Inflammopharmacology, 2020; 28:1091-119. https://doi.org/10.1007/s10787-020-00699-2

Che Man YB, Rohman A, Mansor TST. Differentiation of lard from other edible fats and oils by means of Fourier transform infrared spectroscopy and chemometrics. JAOCS, J Am Oil Chem Soc, 2011; 88:187-92. https://doi.org/10.1007/s11746-010-1659-x

Chen Q, Zhao J, Guo Z, Wang X. Determination of caffeine content and main catechins contents in green tea (Camellia sinensis L.) using taste sensor technique and multivariate calibration. J Food Compos Anal, 2010; 23:353-8. https://doi.org/10.1016/j.jfca.2009.12.010

Cheng C, Macintyre L, Abdelmohsen UR, Horn H, Polymenakou PN, Edrada-Ebel R, Hentschel U. Biodiversity, anti-trypanosomal activity screening, and metabolomic profiling of actinomycetes isolated from Mediterranean sponges. PLoS One, 2015; 10:1-21. https://doi.org/10.1371/journal.pone.0138528

Cheng C, Othman EM, Stopper H, Edrada-Ebel RA, Hentschel U, Abdelmohsen UR. Isolation of petrocidin a, a new cytotoxic cyclic dipeptide from the marine sponge-derived bacterium Streptomyces sp. SBT348. Mar Drugs, 2017; 15:1-9. https://doi.org/10.3390/md15120383

Colquhoun IJ. Use of NMR for metabolic profiling in plant systems. J Pestic Sci, 2007; 32:200-12. https://doi.org/10.1584/jpestics.R07-03

Costantini S, Guerriero E, Teta R, Capone F, Caso A, Sorice A, Romano G, Ianora A, Ruocco N, Budillon A, Costantino V, Costantini M . Evaluating the effects of an organic extract from the mediterranean sponge Geodia cydonium on human breast cancer cell lines. Int J Mol Sci, 2017; 18:1-16. https://doi.org/10.3390/ijms18102112

Debbab A, Aly AH, Proksch P. Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Divers, 2011; 49:1-12. ttps://doi.org/10.1007/s13225-011-0114-0

Einarsdottir E, Magnusdottir M, Astarita G, Köck M, Ögmundsdottir HM, Thorsteinsdottir M, Rapp HT, Omarsdottir S, Paglia G. Metabolic profiling as a screening tool for cytotoxic compounds: Identification of 3-alkyl pyridine alkaloids from sponges collected at a shallow water hydrothermal vent site North of Iceland. Mar Drugs, 2017; 15:1-15. https://doi.org/10.3390/md15020052

El-Hawary SS, Sayed AM, Mohammed R, Hassan HM, Rateb ME, Amin E, Mohammed TA, El-Mesery M, Bin Muhsinah A, Alsayari A, Wajant H, Anany MA, Abdelmohsen UR. Bioactive brominated oxindole alkaloids from the red sea sponge Callyspongia siphonella. Mar Drugs, 2019; 17:1-13. https://doi.org/10.3390/md17080465

Ellis GA, Thomas CS, Chanana S, Adnani N, Szachowicz E, Braun DR,

Harper MK, Wyche TP, Bugni TS. Brackish habitat dictates cultivable Actinobacterial diversity from marine sponges. PLoS One, 2017; 12:1-19. https://doi.org/10.1371/journal.pone.0176968

Elsayed Y, Refaat J, Abdelmohsen UR, Othman EM, Stopper H, Fouad MA. Metabolomic profiling and biological investigation of the marine sponge-derived bacterium Rhodococcus sp. UA13.pdf. Phytochem Anal, 2018:1-6. https://doi.org/10.1002/pca.2765

Erngren I, Smit E, Pettersson C, Cárdenas P, Hedeland M. The effects of sampling and storage conditions on the metabolite profile of the marine sponge Geodia barretti. Front Chem, 2021; 9:1-19. https://doi.org/10.3389/fchem.2021.662659

Fagundes T da SF, da Silva LRG, Brito M de F, Schmitz LSS, Rigato DB, Jimenez PC, Soares AR, Costa-Lotufo LV, Muricy G, Vasconcelos TRA, Cass QB, Valverde AL. Metabolomic fingerprinting of Brazilian marine sponges: a case study of Plakinidae species from Fernando de Noronha Archipelago. Anal Bioanal Chem, 2021; 413:4301-10. https://doi.org/10.1007/s00216-021-03385-6

Favre L, Ortalo-Magné A, Greff S, Pérez T, Thomas OP, Martin JC, Culioli G. Discrimination of four marine biofilm-forming bacteria by lc-ms metabolomics and influence of culture parameters. J Proteome Res, 2017; 16:1962-75.
https://doi.org/10.1021/acs.jproteome.6b01027

Fiore CL, Freeman CJ, Kujawinski EB. Sponge exhalent seawater contains a unique chemical profile of dissolved organic matter. PeerJ, 2017; 2017:1-22. https://doi.org/10.7717/peerj.2870

Gan F, Ye R. New approach on similarity analysis of chromatographic fingerprint of herbal medicine. J Chromatogr A, 2006; 1104:100-5. https://doi.org/10.1016/j.chroma.2005.11.099

Garthwaite PH. An interpretation of partial least squares. J Am Stat Assoc, 1994; 89:122-7. https://doi.org/10.1080/01621459.1994.10476452

Gemperline P. Practical guide to chemometrics, vol. 37, 2nd edition, Taylor & Francis Group, New York, 2006. https://doi.org/10.1201/9781420018301

Geng CA, Chen XL, Zhou NJ, Chen H, Ma YB, Huang XY, Huang XY, Zhang XM, Chen JJ. LC-MS guided isolation of (±)-sweriledugenin a, a pair of enantiomeric lactones, from Swertia leducii. Org Lett, 2014; 16:370-3. https://doi.org/10.1021/ol403198d

Gong F, Liang YZ, Xu QS, Chau FT, Ng KM. Evaluation of separation quality in two-dimensional hyphenated chromatography. Anal Chim Acta, 2001; 450:99-114. https://doi.org/10.1016/S0003-2670(01)01368-X

Grkovic T, Pouwer RH, Vial ML, Gambini L, Noël A, Hooper JNA, Wood SA, Mellick GD, Quinn RJ. NMR fingerprints of the druglike natural-product space identify iotrochotazine a: a chemical probe to study Parkinson's disease. Angew Chemie-Int Ed, 2014; 53:6070-4. https://doi.org/10.1002/anie.201402239

Guo C, Wang P, Lin X, Salendra L, Kong F, Liao S, Yang B, Zhou X, Wang J, Liu Y. Phloroglucinol heterodimers and bis-indolyl alkaloids from the sponge-derived fungus: Aspergillus sp. SCSIO 41018. Org Chem Front, 2019; 6:3053-9. https://doi.org/10.1039/C9QO00351G

Han J, Datla R, Chan S, Borchers CH. Mass spectrometrybased technologies for high-throughput metabolomics. Bioanalysis, 2009; 1:1665-84. https://doi.org/10.4155/bio.09.158

Hanrahan G, Gomez FA. Chemometric methods in capillary electrophoresis. Wiley & Sons, Inc., Hoboken, NJ, 2010. https://doi.org/10.1002/9780470530191

Hifnawy MS, Hassan HM, Mohammed R, Fouda MM, Sayed AM, Hamed AA, F AbouZid S, Rateb ME, Alhadrami HA, Abdelmohsen UR. Induction of antibacterial metabolites by co-cultivation of two red-sea-sponge-associated actinomycetes Micromonospora sp. UR56 and Actinokinespora sp. EG49. Mar Drugs, 2020; 18:1-17. https://doi.org/10.3390/md18050243

Ho XY, Katermeran NP, Deignan LK, Phyo MY, Ong JFM, Goh JX, Ng JY, Tun K, Tan LT. Assessing the diversity and biomedical potential of microbes associated with the neptune's cup sponge, Cliona patera. Front Microbiol, 2021; 12:1-17.
https://doi.org/10.3389/fmicb.2021.631445

Hooper JNA, Van Soest RWM. Systema porifera: a guide to the classification of sponges. Kluwer Academic, Plenum Publisher, New York, NY, vol. 1, 2002. https://doi.org/10.1007/978-1-4615-0747-5_1

Huang J, Lu C, Qian X, Huang Y, Zheng Z, Shen Y. Effect of salinity on the growth, biological activity and secondary metabolites of some marine fungi. Acta Oceanol Sin, 2011; 30:118-23. https://doi.org/10.1007/s13131-011-0126-3

Isgut M, Rao M, Yang C, Subrahmanyam V, Rida PCG, Aneja R. Application of combination high-throughput phenotypic screening and target identification methods for the discovery of natural product-based combination drugs. Med Res Rev, 2018; 38:504-24. https://doi.org/10.1002/med.21444

Ivaniševi? J, Thomas OP, Lejeusne C, Chevaldonné P, Pérez T. Metabolic fingerprinting as an indicator of biodiversity: Towards understanding inter-specific relationships among Homoscleromorpha sponges. Metabolomics, 2011; 7:289-304. https://doi.org/10.1007/s11306-010-0239-2

Ivanisevic J, Thomas OP, Pedel L, Pénez N, Ereskovsky AV, Culioli G, Perez T. Biochemical trade-offs: evidence for ecologically linked secondary metabolism of the sponge Oscarella balibaloi. PLoS One, 2011; 6:1-11. https://doi.org/10.1371/journal.pone.0028059

Johnson RA, Wichern DW. Applied multivariate statistical analysis. 6th edition, Pearson Education Limited, Upper Saddle River, NJ, 2007.

Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL. Exploring the temperature-stress metabolome. Plant Physiol, 2004; 136:4159-68. https://doi.org/10.1104/pp.104.052142

Keller-Costa T, Jousset A, Van Overbeek L, Van Elsas JD, Costa R. The freshwater sponge Ephydatia fluviatilis harbours diverse Pseudomonas species (Gammaproteobacteria, Pseudomonadales) with broad-spectrum antimicrobial activity. PLoS One, 2014; 9:1-15. https://doi.org/10.1371/journal.pone.0088429

Kim HK, Choi YH, Verpoorte R. NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol, 2011; 29:267-75. https://doi.org/10.1016/j.tibtech.2011.02.001

Kjer J, Debbab A, Aly AH, Proksch P. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc, 2010; 5:479-90. https://doi.org/10.1038/nprot.2009.233

Kouchaksaraee RM, Farimani MM, Li F, Nazemi M, Tasdemir D. Integrating molecular networking and 1H NMR spectroscopy for isolation of bioactive metabolites from the persian gulf sponge axinella sinoxea. Mar Drugs, 2020; 18:1-15. https://doi.org/10.3390/md18070366

Lee YK, Lee J, Lee HK. Minireview: microbial symbiosis in marine sponges. J Microbiol, 2001; 39:254-64.

Li F, Janussen D, Peifer C, Pérez-Victoria I, Tasdemir D. Targeted isolation of tsitsikammamines from the antarctic deep-sea sponge latrunculia biformis by molecular networking and anticancer activity. Mar Drugs, 2018; 16:1-17. https://doi.org/10.3390/md16080268

Li F, Pandey P, Janussen D, Chittiboyina AG, Ferreira D, Tasdemir D. Tridiscorhabdin and didiscorhabdin, the first discorhabdin oligomers linked with a direct C-N bridge from the sponge Latrunculia biformis collected from the deep sea in Antarctica. J Nat Prod, 2020; 83:706-13. https://doi.org/10.1021/acs.jnatprod.0c00023

Li F, Peifer C, Janussen D, Tasdemir D. New discorhabdin alkaloids from the antarctic deep-sea sponge Latrunculia biformis. Mar Drugs, 2019; 17:1-19. https://doi.org/10.3390/md17080439

Li P, Qi LW, Liu EH, Zhou JL, Wen XD. Analysis of Chinese herbal medicines with holistic approaches and integrated evaluation models. Trends Anal Chem, 2008; 27:66-77. https://doi.org/10.1016/j.trac.2007.11.005

Li Y, Wu T, Zhu J, Wan L, Yu Q, Li X, Cheng Z, Guo C. Combinative method using HPLC fingerprint and quantitative analyses for quality consistency evaluation of an herbal medicinal preparation produced by different manufacturers. J Pharm Biomed Anal, 2010; 52:597-602. https://doi.org/10.1016/j.jpba.2010.01.018

Macintyre L, Zhang T, Viegelmann C, Martinez IJ, Cheng C, Dowdells C, Abdelmohsen UR, Gernert C, Hentschel U, Edrada-Ebel R. Metabolomic tools for secondary metabolite discovery from marine microbial symbionts. Mar Drugs, 2014; 12:3416-48. https://doi.org/10.3390/md12063416

Matroodi S, Siitonen V, Baral B, Yamada K, Akhgari A, MetsäKetelä M. Genotyping-guided discovery of persiamycin a from spongeassociated halophilic Streptomonospora sp. PA3. Front Microbiol, 2020; 11:1-15. https://doi.org/10.3389/fmicb.2020.01237

McCauley E, Radjas OK, Trianto A, Crews MS, Smith A, Smith GC, Zerebinski P, Sabdono A, Crews P. The UNDIP-UCSC campaign to culture chemically prolific gram-negative bacteria from Indonesian Jaspis sponges. Arkivoc, 2018; 2018:123-31. https://doi.org/10.24820/ark.5550190.p010.505

Mehbub MF, Tanner JE, Barnett SJ, Franco CMM, Zhang W. The role of sponge-bacteria interactions: the sponge Aplysilla rosea challenged by its associated bacterium Streptomyces ACT-52A in a controlled aquarium system. Appl Microbiol Biotechnol, 2016; 100:10609-26. https://doi.org/10.1007/s00253-016-7878-9

Miller JN, Miller JC. Statistics and chemometrics for analytical chemistry. 6th edition, Pearson Education Limited, Harlow, UK, 2010

Mishra KP, Ganju L, Sairam M, Banerjee PK, Sawhney RC. A review of high throughput technology for the screening of natural products. Biomed Pharmacother, 2008; 62:94-8. https://doi.org/10.1016/j.biopha.2007.06.012

Mohanty I, Moore SG, Yi D, Biggs JS, Gaul DA, Garg N, Agarwal V. Precursor-guided mining of marine sponge metabolomes lends insight into biosynthesis of pyrrole−imidazole alkaloids. ACS Chem Biol, 2020a; 15:2185-94. https://doi.org/10.1021/acschembio.0c00375

Mohanty I, Podell S, Biggs JS, Garg N, Allen EE, Agarwal V. Multi-omic profiling of melophlus sponges reveals diverse metabolomic and microbiome architectures that are non-overlapping with ecological neighbors. Mar Drugs, 2020b; 18:124. https://doi.org/10.3390/md18020124

Mohanty I, Tapadar S, Moore SG, Biggs JS, Freeman CJ, Gaul DA, Agarwal V. Presence of bromotyrosine alkaloids in marine sponges is independent of metabolomic and microbiome architectures. MSystems, 2021; 6:1-17. https://doi.org/10.1128/mSystems.01387-20

Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod, 2016; 79:629-61. https://doi.org/10.1021/acs.jnatprod.5b01055

Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod, 2012; 75:311-35. https://doi.org/10.1021/np200906s

Ng YK, Hodson MP, Hewavitharana AK, Bose U, Shaw PN, Fuerst JA. Effects of salinity on antibiotic production in sponge-derived Salinispora actinobacteria. J Appl Microbiol, 2014; 117:109-25. https://doi.org/10.1111/jam.12507

Nouioui I, Rückert C, Willemse J, van Wezel GP, Klenk HP, Busche T, Kalinowski J, Bredholt H, Zotchev SB. Actinoalloteichus fjordicus sp. nov. isolated from marine sponges: phenotypic, chemotaxonomic and genomic characterisation. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol, 2017; 110:1705-17. https://doi.org/10.1007/s10482-017-0920-9

Olatunji OO, Brecker L, Plubrukarn A. Metabolomics approach towards the chemical distribution in the sponge penares cf. nux. Songklanakarin J Sci Technol, 2021; 43:696-702.

Olsen EK, Søderholm KL, Isaksson J, Andersen JH, Hansen E. Metabolomic profiling reveals the N-acyl-taurine geodiataurine in extracts from the marine sponge Geodia macandrewii (Bowerbank). J Nat Prod, 2015; 79:1285-91. https://doi.org/10.1021/acs.jnatprod.5b00966

Ong JFM, Goh HC, Lim SC, Pang LM, Chin JSF, Tan KS, Liang Z-X, Yang L, Glukhov E, Gerwick WH, Tan LT. Integrated genomic and metabolomic approach to the discovery of potential anti-quorum sensing natural products from microbes associated with marine samples from Singapore. Mar Drugs, 2019; 17:2-15. https://doi.org/10.3390/md17010072

Parejo I, Viladomat F, Bastida J, Schmeda-Hirschmann G, Burillo J, Codina C. Bioguided isolation and identification of the nonvolatile antioxidant compounds from fennel (Foeniculum vulgare Mill.) waste. J Agric Food Chem, 2004; 52:1890-7. https://doi.org/10.1021/jf030717g

Pratiwi DE, Harjoko A. Implementasi Pengenalan Wajah Menggunakan PCA (principal component analysis). IJEIS, 2013; 3:175-84.

Proksch P, Edrada RA, Ebel R. Drugs from the seas-current status and microbiological implications. Appl Microbiol Biotechnol, 2002; 59:125-34. https://doi.org/10.1007/s00253-002-1006-8

Raimundo I, Silva SG, Costa R, Keller-Costa T. Bioactive secondary metabolites from octocoral-associated microbes-new chances for blue growth. Mar Drugs, 2018; 16:1-25. https://doi.org/10.3390/md16120485

Rangel-Huerta OD, Gil A. Nutrimetabolomics: an update on analytical approaches to investigate the role of plant-based foods and their bioactive compounds in non-communicable chronic diseases. Int J Mol Sci, 2016; 17. https://doi.org/10.3390/ijms17122072

Reverter M, Perez T, Ereskovsky AV, Banaigs B. Secondary metabolome variability and inducible chemical defenses in the mediterranean sponge Aplysina cavernicola. J Chem Ecol, 2016; 42:60-70. https://doi.org/10.1007/s10886-015-0664-9

Reverter M, Tribalat MA, Pérez T, Thomas OP. Metabolome variability for two Mediterranean sponge species of the genus Haliclona: specificity, time, and space. Metabolomics, 2018; 14:1-12. https://doi.org/10.1007/s11306-018-1401-5

Rohman A. Statistika dan Kemometrika Dasar dalam Analisis Farmasi. Pustaka Pelajar, Yogyakarta, Indonesia, 2014.

Romoli R, Papaleo MC, de Pascale D, Tutino ML, Michaud L, LoGiudice A, Fani R, Bartolucci G. GC-MS volatolomic approach to study the antimicrobial activity of the antarctic bacterium Pseudoalteromonas sp. TB41. Metabolomics, 2014; 10:42-51. https://doi.org/10.1007/s11306-013-0549-2

Ruiz C, Ivaniševi? J, Chevaldonné P, Ereskovsky A V., Boury-Esnault N, Vacelet J, Thomas OP, Perez T. Integrative taxonomic description of Plakina kanaky, a new polychromatic sponge species from New Caledonia (Porifera: Homoscleromorpha). Mar Ecol, 2014; 36:1129- 43. https://doi.org/10.1111/maec.12209

Salvatore MM, Nicoletti R, Salvatore F, Naviglio D, Andolfi A. GC-MS approaches for the screening of metabolites produced by marinederived Aspergillus. Mar Chem, 2018; 206:19-33. https://doi.org/10.1016/j.marchem.2018.08.003

Samirana PO, Murti YB, Istighfari Jenie R, Prawita Setyowati E. Antibacterial and cytotoxic activities of supernatant and mycelium extracts from fermentation of fungal symbiont Trichoderma reesei TV221. J Appl Pharm Sci, 2021a; 11:90-9. https://doi.org/10.7324/JAPS.2021.1101207

Samirana PO, Murti YB, Jenie RI, Setyowati EP. Marine sponge-derived fungi: fermentation and cytotoxic activity. J Appl Pharm Sci, 2021b; 11:21-39.

Sartono B, Affendi FM, Syafitri UD, Sumertajaya I., Angraeni Y. Analisis Peubah Ganda. IPB Press, Bogor, Indonesia, 2003.

Sauleau P, Moriou C, Al Mourabit A. Metabolomics approach to chemical diversity of the Mediterranean marine sponge Agelas oroides. Nat Prod Res, 2017; 31:1625-32. https://doi.org/10.1080/14786419.2017.1285298

Sekurova ON, Schneider O, Zotchev SB. Novel bioactive natural products from bacteria via bioprospecting, genome mining and metabolic engineering. Microb Biotechnol, 2019; 12:828-44. https://doi.org/10.1111/1751-7915.13398

Shady NH, Fouad MA, Ahmed S, Pimentel-Elardo SM, Nodwell JR, Kamel MS, Abdelmohsen UR. A new antitrypanosomal alkaloid from the Red Sea marine sponge Hyrtios sp. J Antibiot (Tokyo), 2018; 71:1036- 9. https://doi.org/10.1038/s41429-018-0092-5

Shady NH, Khattab AR, Ahmed S, Liu M, Quinn RJ, Fouad MA, Kamel MS, Muhsinah AB, Krischke M, Mueller MJ, Abdelmohsen UR. Hepatitis c virus ns3 protease and helicase inhibitors from red sea sponge (Amphimedon) species in green synthesized silver nanoparticles assisted by in silico modeling and metabolic profiling. Int J Nanomedicine, 2020; 15:3377-89. https://doi.org/10.2147/IJN.S233766

Sharma S. Applied multivariate techniques. John Wiley and Sons Inc., Hoboken, NJ, 1996.

Shyur LF, Yang NS. Metabolomics for phytomedicine research and drug development. Curr Opin Chem Biol, 2008; 12:66-71. https://doi.org/10.1016/j.cbpa.2008.01.032

Sidebottom AM, Johnson AR, Karty JA, Trader DJ, Carlson EE. Integrated metabolomics approach facilitates discovery of an unpredicted natural product suite from Streptomyces coelicolor M145. ACS Chem Biol, 2013; 8:2009-16. https://doi.org/10.1021/cb4002798

Storey MA, Andreassend SK, Bracegirdle J, Brown A, Keyzers RA, Ackerley DF, Northcote PT, Owen JG. Metagenomic exploration of the marine sponge mycale hentscheli uncovers multiple polyketide-producing bacterial symbionts. MBio, 2020; 11:1-16. https://doi.org/10.1128/mBio.02997-19

Sumner LW, Mendes P, Dixon RA. Plant metabolomics: largescale phytochemistry in the functional genomics era. Phytochemistry, 2003; 62:817-36. https://doi.org/10.1016/S0031-9422(02)00708-2

Tapp HS, Kemsley EK. Notes on the practical utility of OPLS. TrAC-Trends Anal Chem, 2009; 28:1322-7. https://doi.org/10.1016/j.trac.2009.08.006

Tawfike A, Attia EZ, Desoukey SY, Hajjar D, Makki AA, Schupp PJ, Edrada-Ebel RA, Abdelmohsen UR. New bioactive metabolites from the elicited marine sponge-derived bacterium Actinokineospora spheciospongiae sp. nov. AMB Express, 2019a; 9:1-9. https://doi.org/10.1186/s13568-018-0730-0

Tawfike AF, Romli M, Clements C, Abbott G, Young L, Schumacher M, Diederich M, Farag M, Edrada-Ebel R. Isolation of anticancer and anti-trypanosome secondary metabolites from the endophytic fungus Aspergillus flocculus via bioactivity guided isolation and MS based metabolomics. J Chromatogr B, 2019b; 1106-7:71-83. https://doi.org/10.1016/j.jchromb.2018.12.032

Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev, 2007; 71:295-347. https://doi.org/10.1128/MMBR.00040-06

Ternon E, Perino E, Manconi R, Pronzato R, Thomas OP. How environmental factors affect the production of guanidine alkaloids by the mediterranean sponge crambe crambe. Mar Drugs, 2017; 15:1-15. https://doi.org/10.3390/md15060181

Ternon E, Zarate L, Chenesseau S, Croué J, Dumollard R, Suzuki MT, Thomas OP. Spherulization as a process for the exudation of chemical cues by the encrusting sponge C. crambe. Sci Rep, 2016; 6:1-11. https://doi.org/10.1038/srep29474

Teta R, Sala G Della, Esposito G, Via CW, Mazzoccoli C, Piccoli C, Bertin MJ, Costantino V, Mangoni A. A joint molecular networking study of a Smenospongia sponge and a cyanobacterial bloom revealed new antiproliferative chlorinated polyketides. Org Chem Front, 2019; 6:1762- 74. https://doi.org/10.1039/C9QO00074G

Thakur NL, Müller WEG. Biotechnological potential of marine sponges. Curr Sci, 2004; 86:1506-12.

Ulrich-Merzenich G, Zeitler H, Jobst D, Panek D, Vetter H, Wagner H. Application of the "-Omic-" technologies in phytomedicine. Phytomedicine, 2007; 14:70-82. https://doi.org/10.1016/j.phymed.2006.11.011

Valentino G, Graziani V, D'Abrosca B, Pacifico S, Fiorentino A, Scognamiglio M. NMR-based plant metabolomics in nutraceutical research: an overview. Molecules, 2020; 25:1-22. https://doi.org/10.3390/molecules25061444

Velasco-Alzate KY, Bauermeister A, Tangerina MMP, Lotufo TMC, Ferreira MJP, Jimenez PC, Padilla G, Lopes NP, Costa-Lotufo LV. Marine bacteria from Rocas Atoll as a rich source of pharmacologically active compounds. Mar Drugs, 2019; 17. https://doi.org/10.3390/md17120671

Verpoorte R, Choi YH, Kim HK. NMR-based metabolomics at work in phytochemistry. Phytochem Rev, 2007; 6:3-14. https://doi.org/10.1007/s11101-006-9031-3

Verpoorte R, Choi YH, Kim HK. Ethnopharmacology and systems biology: a perfect holistic match. J Ethnopharmacol, 2005; 100:53- 6. https://doi.org/10.1016/j.jep.2005.05.033

Viegelmann C, Margassery LM, Kennedy J, Zhang T, O'Brien C, O'Gara F, Morrissey JP, Dobson AD, Edrada-Ebel R . Metabolomic profiling and genomic study of a marine sponge-associated Streptomyces sp. Mar Drugs, 2014; 12:3323-51. https://doi.org/10.3390/md12063323

Villegas-Plazas M, Wos-Oxley ML, Sanchez JA, Pieper DH, Thomas OP, Junca H. Variations in microbial diversity and metabolite profiles of the tropical marine sponge Xestospongia muta with season and depth. Microb Ecol, 2019; 78:243-56. https://doi.org/10.1007/s00248-018-1285-y

Vitale GA, Sciarretta M, Cassiano C, Buonocore C, Festa C, Mazzella V, Núñez Pons L, D'Auria MV, de Pascale D. Molecular network and culture media variation reveal a complex metabolic profile in pantoea cf. Eucrina d2 associated with an acidified marine sponge. Int J Mol Sci, 2020; 21:1-18. https://doi.org/10.3390/ijms21176307

Wang G. Diversity and biotechnological potential of the spongeassociated microbial consortia. J Ind Microbiol Biotechnol, 2006; 33:545- 51. https://doi.org/10.1007/s10295-006-0123-2

Wang M, Lamers RJAN, Korthout HAAJ, Van Nesselrooij JHJ, Witkamp RF, Van Der Heijden R, Voshol PJ, Havekes LM, Verpoorte R, van der Greef J. Metabolomics in the context of systems biology: bridging traditional Chinese medicine and molecular pharmacology. Phyther Res, 2005; 19:173-82. https://doi.org/10.1002/ptr.1624

Wu H, Chen Y, Li Z, Liu X. Untargeted metabolomics profiles delineate metabolic alterations in mouse plasma during lung carcinoma development using UPLCQTOF/MS in MSE mode. R Soc Open Sci, 2018; 5:1-13. https://doi.org/10.1098/rsos.181143

Xu CJ, Liang YZ, Chau FT, Heyden Y Vander. Pretreatments of chromatographic fingerprints for quality control of herbal medicines. J Chromatogr A, 2006; 1134:253-9. https://doi.org/10.1016/j.chroma.2006.08.060

Yang Q, Lin SS, Yang JT, Tang LJ, Yu RQ. Detection of inborn errors of metabolism utilizing GC-MS urinary metabolomics coupled with a modified orthogonal partial least squares discriminant analysis. Talanta, 2017; 165:545-52. https://doi.org/10.1016/j.talanta.2017.01.018

Yuliana ND, Jahangir M, Verpoorte R, Choi YH. Metabolomics for the rapid dereplication of bioactive compounds from natural sources. Phytochem Rev, 2013; 12:293-304. https://doi.org/10.1007/s11101-013-9297-1

Yuliana ND, Khatib A, Choi YH, Verpoorte R. Metabolomics for bioactivity assessment of natural products. Phyther Res, 2011; 25:157-69. https://doi.org/10.1002/ptr.3258

Zhu H, Wang Y, Liang H, Chen Q, Zhao P, Tao J. Identification of Portulaca oleracea L. from different sources using GC-MS and FTIR spectroscopy. Talanta, 2010; 81:129-35. https://doi.org/10.1016/j.talanta.2009.11.047

Article Metrics

1 Absract views 0 PDF Downloads 1 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required