Research Article | Volume : 2 Issue : 5, May 2012

In Vitro Evaluation of Oral Extended Release Drug Delivery System for Metoprolol Succinate Using Kollidon SR

Mariyam Akter Sujan Banik Mohammad Salim Hossain   

Open Access    DOI: 10.7324/JAPS.2012.2539

Abstract

The objective of this study was to develop a sustained release matrix tablet Metoprolol Succinate by cost saving and production efficient process. Among various tablet manufacturing process, direct compression is the simplest and cost saving process. Different trials were formulated and evaluated using different concentrations of directly compressible grade Kollidon SR as release retardant. The formulated tablets were evaluated for physical and dissolution study using buffer medium. The most outstanding aspect of this study is to monitor the influence of different percentage of Kollidon SR on release rate from the matrix tablet. In this study, influence of different ratio of polymer concentration on drug release was evaluated. The release pattern of different batches were evaluated for Zero order, Higuchi, First order, Krosmeyer-Peppas and Hixson-Crowell kinetics and showed that all the batches followed best the Higuchi kinetics. The drug release kinetics was found to be governed by the amount of the polymer in the matrix system. The higher polymeric content in the matrix decrease the release rate of the drug. The nature of the drug release from the matrix tablets was dependent on drug diffusion and polymer relaxation and therefore followed non-Fickian or anomales release. The studies indicated that the drug release can be modulated by varying the concentration of the polymer. Among the four formulations, formulation 1 is the best formulation as it controls the release best and best linearity for zero order plots.


Keyword:     Metoprolol Succinate Kollidon SR Matrix Tablet


Copyright:The Author(s). This is an open access article distributed under the Creative Commons Attribution Non-Commercial License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Article Metrics
404 Views 17 Downloads 421 Total

Year

Month

Related Search

By author names