Cape gooseberry (Physalis peruviana L.) as a functional food for metabolic health: A narrative review of glucose and lipid regulatory effects

María Gabriela Mendoza-Girón Fernando Castro-Gómez Jenny Castro Guerrero   

Open Access   

Published:  Oct 16, 2025

DOI: 10.7324/JAPS.2026.260089
Abstract

Metabolic syndrome is a multifactorial and progressive disorder characterized by obesity, dyslipidemia, type 2 diabetes, and other metabolism-related conditions. Cape gooseberry (CP) (Physalis peruviana L.), an exotic fruit rich in bioactive compounds, has attracted growing attention for its potential benefits on metabolic health. This narrative review critically examines preclinical and clinical studies evaluating the metabolic effects of CP consumption, with a focus on biomarkers related to glucose and lipid metabolism, oxidative stress, and inflammation. A comprehensive search was conducted in four major scientific databases. A total of 40 studies were analyzed, including 28 preclinical investigations, 2 clinical trials, and 10 complementary studies addressing compound characterization and the impact of processing. While preclinical studies consistently report beneficial effects in animal models, clinical evidence is limited to two studies with heterogeneous results, both of which are affected by methodological limitations such as small sample sizes, short intervention durations, and inadequate dosing. Additionally, this review explores processing techniques aimed at preserving the bioactive profile of the fruit, which may enhance its application in functional food formulations. Despite encouraging evidence from preclinical studies, robust randomized controlled trials are required to validate the therapeutic potential of CP in the prevention and management of metabolic syndrome in humans.


Keyword:     Cape gooseberry (Physalis peruviana L.) functional food bioactive compounds diabetes mellitus obesity biomarkers


Citation:

Mendoza-Girón MG, Castro-Gómez F, Guerrero JC. Cape gooseberry (Physalis peruviana L.) as a functional food for metabolic health: A narrative review of glucose and lipid regulatory effects. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2026.260089

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Nhlbi.nih.gov [Internet]. Síndrome metabólico. Causas y factores de riesgo [updated 2022 May 27; cited 2024 Mar 9]. Available from: https://www.nhlbi.nih.gov/es/salud/sindrome-metabolico/causas

2. Ramírez-López LX, Aguilera AM, Rubio CM, Aguilar-Mateus ÁM. Síndrome metabólico: una revisión de criterios internacionales. Rev Colomb Cardiol. 2022;28(1):60–6. doi: https://doi.org/10.24875/RCCAR.M21000010

3. Angelico F, Baratta F, Coronati M, Ferro D, Del Ben M. Diet and metabolic syndrome: a narrative review. Intern Emerg Med. 2023;18:1007–17. doi: https://doi.org/10.1007/s11739-023-03226-7

4. Ambroselli D, Masciulli F, Romano E, Catanzaro G, Besharat ZM, Massari MC, et al. New advances in metabolic syndrome, from prevention to treatment: the role of diet and food. Nutrients. 2023;15(3):640. doi: https://doi.org/10.3390/nu15030640

5. Prat L, Sáenz C. Chemical characteristics, bioactive compounds, and advances in processing of Physalis peruviana. In: Ramadan M, editor. Handbook of goldenberry (Physalis peruviana) cultivation, processing, chemistry, and functionality. United Kingdom: Academic Press Elsevier; 2024. pp. 473–484. doi: https://doi.org/10.1016/B978-0-443-15433-1.00044-3

6. Kasali FM, Tusiimire J, Kadima JN, Tolo CU, Weisheit A, Agaba AG. Ethnotherapeutic uses and phytochemical composition of Physalis peruviana L.: an overview. Sci World J.2021;2021(1):1– 22. doi: https://doi.org/10.1155/2021/5212348

7. Odongo E, Mungai N, Mutai P, Karumi E, Mwangi J, Omale J.Ethnobotanical survey of medicinal plants used in Kakamega County, western Kenya. Appl Med Res. 2018;4(1):1–19. doi: https://doi.org/10.47363/AMR/2018(5)157

8. Pinto MDS, Ranilla LG, Apostolidis E, Lajolo FM, Genovese MI, Shetty K. Evaluation of antihyperglycemia and antihypertension potential of native Peruvian fruits using in vitro models. J Med Food. 2009;12(2):278–91. doi: https://doi.org/10.1089/jmf.2008.0113

9. Navarro-Hoyos M, Arnáez-Serrano E, Quirós-Fallas MI, Vargas-Huertas F, Wilhelm-Romero K, Vásquez-Castro F, et al. QTOF-ESI MS characterization and antioxidant activity of Physalis peruviana L. (Cape Gooseberry) husks and fruits from Costa Rica. Molecules. 2022;27(13):4238. doi: https://doi.org/10.3390/molecules27134238

10. Carrillo-Perdomo E, Aller A, Cruz-Quintana SM, Giampieri F, Alvarez-Suarez JM. Andean berries from Ecuador: a review on botany, agronomy, chemistry and health potential. J Berry Res. 2015;5(2):49–69. doi: https://doi.org/10.3233/JBR-140093

11. Kasali FM, Tuyiringire N, Peter EL, Ahovegbe LY, Ali MS, Tusiimire J, et al. Chemical constituents and evidence-based pharmacological properties of Physalis peruviana L.: an overview. J Herbmed Pharmacol. 2022;11(1):35–47. doi: https://doi.org/10.34172/jhp.2022.04

12. Mora ÁC, Aragón DM, Ospina LF. Effects of Physalis peruviana fruit extract on stress oxidative parameters in streptozotocin-diabetic rats. Latin Am J Pharm. 2010;9(7):1132–6. Available from: http://www.latamjpharm.org/resumenes/29/7/LAJOP297112.pdf

13. Fazilet E, Tubay K, Sevinc A, Orhan E, Okkes Y. The protective effects of goldenberry extract against to the oxidative and destructive effects of type I diabetes in rats. Fresenius Environ Bull. 2020;29(5):3344–53. Available from: https://www.prt-parlar.de/downloadlist/?c=FEB2020#

14. Pino-de la Fuente F, Nocetti D, Sacristán C, Ruiz P, Guerrero J, Jorquera G, et al. Physalis peruviana L. pulp prevents liver inflammation and insulin resistance in skeletal muscles of diet-induced obese mice. Nutrients. 2020;12(3):700. doi: https://doi.org/10.3390/nu12030700

15. Moussa SAA, Ibrahim FAA, Elbaset MA, Aziz SW, Morsy FA, Abdellatif N, et al. Goldenberry (Physalis peruviana) alleviates hepatic oxidative stress and metabolic syndrome in obese rats. J Appl Pharm Sci. 2022;12(11):138–50. doi: https://doi.org/10.7324/JAPS.2022.121115

16. Vaillant F, Corrales-Agudelo V, Moreno-Castellanos N, Ángel-Martín A, Henao-Rojas JC, Muñoz-Durango K, et al. Plasma metabolome profiling by high-performance chemical isotope-labelling LC-MS after acute and medium-term intervention with golden berry fruit (Physalis peruviana L.), confirming its impact on insulin-associated signaling pathways. Nutrients. 2021;13(9):3125. doi: https://doi.org/10.3390/nu13093125

17. Ludeña-Meléndez V, Ishikawa-Arias P, Gutiérrez-Guerrero A, Guevara-Coronel C, Laiza-Pajilla D, Ledesma-Chavarria L, et al. Efecto del consumo de Physalis peruviana en la glucemia de adultos jóvenes con sobrepeso y obesidad. Iatreia. 2024;38(1):56–66. doi: https://doi.org/10.17533/udea.iatreia.258

18. Suren Garg S, Kushwaha K, Dubey R, Gupta J.Association between obesity, inflammation and insulin resistance: insights into signaling pathways and therapeutic interventions. Diabetes Res Clin Pract. 2023;200:110691. doi: https://doi.org/10.1016/j.diabres.2023.110691

19. Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022;55(1):31– 55. doi: https://doi.org/10.1016/j.immuni.2021.12.013

20. Swaroop JJ, Rajarajeswari D, Naidu JN. Association of TNF-α with insulin resistance in type 2 diabetes mellitus. Indian J Med Res. 2012;135(1):127–30. doi: https://doi.org/10.4103/0971-5916.93435

21. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107. doi: https://doi.org/10.1038/nri2925

22. Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019;11(3):45–63. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6628012/

23. Jakubiak GK, Osadnik K, Lejawa M, Osadnik T, Go?awski M, Lewandowski P, et al. “Obesity and Insulin Resistance” is the component of the metabolic syndrome most strongly associated with oxidative stress. Antioxidants. 2021;11(1):79. doi: https://doi.org/10.3390/antiox11010079

24. Magliano DJ, Boyko EJ, Committee IDA 10th ES. Global picture [Internet]. IDF DIABETES ATLAS -NCBI Bookshelf. 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK581940/

25. Islam ANMS, Sultana H, Refat MNH, Farhana Z, Kamil AA, Rahman MM. The global burden of overweight-obesity and its association with economic status, benefiting from STEPs survey of WHO member states: a meta-analysis. Prev Med Rep [Internet]. 2024;46:102882. doi: https://doi.org/10.1016/j.pmedr.2024.102882

26. Dewi L, Sulchan M, Kisdjamiatun. Potency of cape gooseberry (Physalis peruviana) juice in improving antioxidant and adiponectin level of high fat diet streptozotocin rat model. Rom J Diabetes Nutr Metab Dis. 2018;25(3):253–60. Available from: https://www.rjdnmd.org/index.php/RJDNMD/article/view/484/440

27. Campos J, Bobadilla D, Huamán M, Bazán M. Efecto del extracto del fruto de Physalis peruviana “tomatillo” en Mus musculus var. swis con hiperlipidemia inducida. Sci Agropecu. 2011;2(2):83–9. doi: https://doi.org/10.17268/sci.agropecu.2011.02.03

28. Ramadan MF, Hassan NA, Elsanhoty RM, Sitohy MZ. Goldenberry (Physalis peruviana) juice rich in health-beneficial compounds suppresses high-cholesterol diet-induced hypercholesterolemia in rats. J Food Biochem. 2012;37(6):708–22. doi: https://doi.org/10.1111/j.1745-4514.2012.00669.x

29. Ramadan MF. Physalis peruviana pomace suppresses highcholesterol diet-induced hypercholesterolemia in rats. Grasas Aceites. 2012;63(4):411–22. doi: https://doi.org/10.3989/gya.047412

30. Ángel-Martín A, Vaillant F, Moreno-Castellanos N. Daily consumption of golden berry (Physalis peruviana) has been shown to halt the progression of insulin resistance and obesity in obese rats with metabolic syndrome. Nutrients. 2024;16(3):365. doi: https://doi.org/10.3390/nu16030365

31. Aljadani H, Shehta H, Khattab HAE, El-Shitany N. Protective effects of golden berry (Physalis peruviana L.) juice against diabetic renal injury in rats. Egypt J Vet Sci. 2025;56(6):1195–206. doi: https://doi.org/10.21608/ejvs.2024.274177.1891

32. Tshibangu DST, Kavugho FS, Kabengele CN, Masunda AT, Bongo GN, Kasiama GN, et al. Phytochemical study and evaluation of the antidiabetic and antihyperglycemic activities of the fruit extracts of Physalis peruviana L. (Solanaceae). Phytomedicine Plu. 2025;5(1):100675. doi: https://doi.org/10.1016/j.phyplu.2024.100675

33. World Health Organization: WHO. Healthy diet [Internet]. 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/healthy-diet

34. Pinzón EH, Reyes AJ, Álvarez-Herrera JG, Leguizamo MF, Joya JG. Comportamiento del fruto de uchuva Physalis peruviana L., bajo diferentes temperaturas de almacenamiento. Rev Cienc Agríc [Internet]. 2015;32(2):26–35. doi: http://dx.doi.org/10.22267/rcia.153202.10

35. Gallón M, Eraso S, Cortés M. Avances tecnológicos en el proceso de transformación de la uchuva: una revisión. Rev Fac Cienc Básicas [Internet]. 2021;16(1):7–18. doi: https://doi.org/10.18359/rfcb.5019

36. Borda C, Obradith C. Cambios en el contenido nutricional de la uchuva (Physalis peruviana) frente a osmodeshidratación como método de conservación. Perspectivas en Nutrición Humana. 2014;15(2):149–56. doi: https://doi.org/10.17533/udea.penh.18996

37. Narváez-Cuenca CE, Mateus-Gómez Á, Restrepo-Sánchez LP. Antioxidant capacity and total phenolic content of air-dried cape gooseberry (Physalis peruviana L.) at different ripeness stages. Agron Colomb. 2014;32(2):232–7. doi: https://doi.org/10.15446/agron.colomb.v32n2.43731

38. Vega-Gálvez A, López J, Torres-Ossandón MJ, Galotto MJ, Puente-Díaz L, Quispe-Fuentes I, et al. High hydrostatic pressure effect on chemical composition, color, phenolic acids and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). LWT Food Sci Technol. 2014;58(2):519–26. doi: https://doi.org/10.1016/j.lwt.2014.04.010

39. Cortés GM, Prieto GA, Rozo WE. Caracterización bromatológica y fisicoquímica de la uchuva [Physalis peruviana L.] y su posible aplicación como alimento nutracéutico. Cienc Desarr. 2015;6(1):87– 98. doi: https://doi.org/10.19053/01217488.3653

40. Puente L, Vega-Gálvez A, Fuentes I, Stucken K, Rodríguez A, Pastén A. Effects of drying methods on the characterization of fatty acids, bioactive compounds and antioxidant capacity in a thin layer of physalis (Physalis peruviana L.) pulp. J Food Sci Technol. 2021;58:1470–9. doi: https://doi.org/10.1007/s13197-020-04659-0

41. Marín Z, Cortés M, Montoya O. Uchuva (Physalis peruviana L.) ecotipo Colombia, mínimamente procesada inoculada con la cepa nativa Lactobacillus plantarum LPBM10 mediante la técnica de impregnación a vacío. Re Chil Nut. 2010;37(4):461–72. doi: https://doi.org/10.4067/S0717-75182010000400007

42. Etzbach L, Pfeiffer A, Weber F, Schieber A. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MS. Food Chem. 2018;245:508–17. doi: https://doi.org/10.1016/j.foodchem.2017.10.120

43. Nishino A, Maoka T, Yasui H. Preventive effects of β-Cryptoxanthin, a potent antioxidant and provitamin A carotenoid, on lifestyle-related diseases—a central focus on its effects on non-alcoholic fatty liver disease (NAFLD). Antioxidants. 2021;11(1):43. doi: https://doi.org/10.3390/antiox11010043

44. Milani A, Basirnejad M, Shahbazi S, Bolhassani A. Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol. 2017;174(11):1290–324. doi: https://doi.org/10.1111/bph.13625

45. Chatterjee M, Roy K, Janarthan M, Das S, Chatterjee M. Biological activity of carotenoids: its implications in cancer risk and prevention. Curr Pharm Biotechnol. 2012;13(1):180–90. doi: https://doi.org/10.2174/138920112798868683

46. Zhao T, He X, Yan X, Xi H, Li Y, Yang X. Recent advances in the extraction, synthesis, biological activities, and stabilisation strategies for β-carotene: a review. Int J Food Sci Technol. 2024;59(4):2136– 47. doi: https://doi.org/10.1111/ijfs.16986

47. Karakoy Z, Cadirci E, Dincer B. A new target in inflammatory diseases: lycopene. Eurasian J Med. 2022;54(1):S23–8. doi: https://doi.org/10.5152/eurasianjmed.2022.22303

48. Trapali M. Lutein in chronic diseases: a mini review. Rev Clin Pharmacol Pharmacokinet Int Ed. 2024;38(1):47–56. doi: https://doi.org/10.61873/YBCS9028

49. Badhani B, Sharma N, Kakkar R. Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015;5(35):27540–57. doi: https://doi.org/10.1039/C5RA01911G

50. Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, et al. Pharmacological effects of gallic acid in health and diseases: a mechanistic review. Iran J Basic Med Sci. 2019;22(3):225– 37. doi: https://doi.org/10.22038/ijbms.2019.32806.7897

51. Chen S, Jiang H, Wu X, Fang J.Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators Inflamm. 2016;2016(1):5. doi: https://doi.org/10.1155/2016/9340637

52. Li Y, Yao J, Han C, Yang J, Chaudhry M, Wang S, et al. Quercetin, inflammation and immunity. Nutrients. 2016;8(6):167. doi: https://doi.org/10.3390/nu8030167

53. Mukhopadhyay P, Prajapati AK. Quercetin in anti-diabetic research and strategies for improved quercetin bioavailability using polymer-based carriers—a review. RSC Adv. 2015;5(118):97547–62. doi: https://doi.org/10.1039/C5RA18896B

54. Ganeshpurkar A, Saluja AK. The pharmacological potential of rutin. Saudi Pharm J.2017;25(2):149–64. doi: https://doi.org/10.1016/j.jsps.2016.04.025

55. Enogieru AB, Haylett W, Hiss DC, Bardien S, Ekpo OE. Rutin as a potent antioxidant: implications for neurodegenerative disorders. Oxid Med Cell Longev. 2018;2018(1):17. doi: https://doi.org/10.1155/2018/6241017

56. Imran M, Saeed F, Hussain G, Imran A, Mehmood Z, Gondal TA, et al. Myricetin: a comprehensive review on its biological potentials. Food Sci Nutr. 2021;9(10):5854–68. doi: https://doi.org/10.1002/fsn3.2513

57. Rufino AT, Costa VM, Carvalho F, Fernandes E. Flavonoids as antiobesity agents: a review. Med Res Rev. 2021;41(1):556–85. doi: https://doi.org/10.1002/med.21740

58. Kim JK, Park SU. Recent studies on kaempferol and its biological and pharmacological activities. EXCLI J.2020;19:627–34.

59. Chen J, Zhong H, Huang Z, Chen X, You J, Zou T. A critical review of kaempferol in intestinal health and diseases. Antioxidants. 2023;12(8):1642. doi: https://doi.org/10.3390/antiox12081642

60. Yang Y, Chen Z, Zhao X, Xie H, Du L, Gao H, et al. Mechanisms of Kaempferol in the treatment of diabetes: a comprehensive and latest review. Front Endocrinol. 2022;13:990299. doi: https://doi.org/10.3389/fendo.2022.990299

61. Puente L, Nocetti D, Espinosa A. Physalis peruviana Linnaeus, an update on its functional properties and beneficial effects in human health. In: Mario A, editor. Wild fruits: composition, nutritional value and products, Geneva, Switzerland: Springer International Publishing; 2019. pp. 447–63. doi: https://doi.org/10.1007/978-3-030-31885-7_34

62. Ambavade SD, Misar AV, Ambavade PD. Pharmacological, nutritional, and analytical aspects of β-sitosterol: a review. Orient Pharm Exp Med. 2014;14:193–211. doi: https://doi.org/10.1007/s13596-014-0151-9

63. Bakrim S, Benkhaira N, Bourais I, Benali T, Lee LH, Omari N, et al. Health benefits and pharmacological properties of stigmasterol. Antioxidants. 2022;11(10):1912. doi: https://doi.org/10.3390/antiox11101912

64. Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, et al. Lupeol and its derivatives as anticancer and anti-inflammatory agents: molecular mechanisms and therapeutic efficacy. Pharmacol Res. 2021;164:105373. doi: https://doi.org/10.1016/j.phrs.2020.105373

65. An Q, Ren JN, Li X, Fan G, Qu SS, Song Y, et al. Recent updates on bioactive properties of linalool. Food Funct. 2021;12:10370–89. doi: https://doi.org/10.1039/D1FO02120F

66. Al Kury LT, Abdoh A, Ikbariah K, Sadek B, Mahgoub M. In vitro and in vivo antidiabetic potential of monoterpenoids: an update. Molecules. 2021;27(1):182. doi: https://doi.org/10.3390/molecules27010182

67. Coy-Barrera E. Withanolides from Physalis peruviana. In: Ramadan M, editor. Handbook of goldenberry (Physalis peruviana) ultivation, processing, chemistry, and functionality. UK: Academic Press Elsevier; 2024, pp. 271–87. doi: https://doi.org/10.1016/B978-0-443-15433-1.00021-2

68. Restrepo AM, Cortes M, Julio CM. Uchuvas (Physalis peruviana L.) mínimamente procesadas fortificadas con vitamina E. Rev Fac Quím Farm. 2009;16(1):19–30. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-40042009000100003

69. Duque A, Giraldo G, Cortes M. Fortificación de pulpa de uchuva con calcio, oligofructosa y vitamina c, estabilizada con hidrocoloide. Biotecnologia En El Sector Agropecuario y Agroindustrial. 2014;12(1):124–33.

70. Ruth P, Misael C, Olga M. Evaluation of the physicochemical, physical and sensory properties of fresh cape gooseberry and vacuum impregnated with physiologically active components. Vitae. 2013;20(1):13–22. doi: https://doi.org/10.17533/udea.vitae.11628

71. Cortés M, Hernández G, Estrada E. Optimization of the spray drying process for obtaining cape gooseberry powder: an innovative and promising functional food. Vitae. 2017;24(1):59–67. doi: https://doi.org/10.17533/udea.vitae.v24n1a07

72. Mokhtar SM, Swailam HM, Embaby HES. Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder concise title: composition of goldenberry juice waste. Food Chem. 2018;248:1–7. doi: https://doi.org/10.1016/j.foodchem.2017.11.117

73. Bazalar M, Nazareno M, Viturro C. Optimized formulation of a Physalis peruviana L. fruit nectar: physicochemical characterization, sensorial traits and antioxidant properties. J Food Sci Technol. 2020;57:3267–77. doi: https://doi.org/10.1007/s13197-020-04358-w

74. Meza PFZ, Sepúlveda-V JU, Ciro-V HJ.Evaluation of physicochemical, antioxidant and sensory properties of a beverage made with hydrolyzed sweet whey permeate enriched with agraz (Vaccinium meridionale Swartz) and cape gooseberry (Physalis peruviana L) pulp. Ing Compet. 2023;25(1):e–22012055. doi: https://doi.org/10.25100/iyc.v25i1.12055

75. Amaar FE, Khallaf MF, Ibrahim MT, Yasin NMN. Utilization of Egyptian golden berry fruit for producing sugar -preserved functional products. Egypt J Chem. 2024;68(3):79–89. doi: https://doi.org/10.21608/ejchem.2024.300706.9927

76. Ndahura NB, Nambooze J, Mangusho G, Najjuuko R. Effect of consumption of cape gooseberries on blood glucose control among patients with type 2 diabetes mellitus in Kampala, Uganda: a protocol for a randomized controlled trial. Open Access J Clin Trials. 2025;17:63–70. doi: https://doi.org/10.2147/OAJCT.S525661

Article Metrics
9 Views 2 Downloads 11 Total

Year

Month

Related Search

By author names