The cyclooxygenase-2 (COX-2) is an enzyme frequently overexpressed in cancer cells, making it a promising target for the preliminary screening of anticancer agents. The development of effective COX-2 inhibitors is crucial for advancing cancer therapy. This study aimed to evaluate the potential of quinazolinone derivatives as COX-2 inhibitors using in silico approaches, focusing on their structural modifications and pharmacokinetic properties. We designed and optimized 30 quinazolinone derivatives with various aromatic substituents using the DFT-B3LYP-6-31G(d,p) level of theory. Molecular docking and molecular dynamics simulations were performed to assess their binding affinity and stability within the COX-2 active site. In addition, absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions were conducted to evaluate their pharmacokinetic properties. The molecular docking results showed that benzylated quinazolinones exhibited stronger binding energies compared to phenylated ones. Specifically, methoxy (compound 5) and trifluoromethyl (compound 8) substituents at the para-position formed hydrogen bonds with key residues in the COX-2 active site. Molecular dynamics simulations confirmed the stability of these compounds during a 100 ns simulation. The molecular mechanics Poisson–Boltzmann surface area analysis indicated a higher binding energy for methoxy-substituted quinazolinones (compound 5). ADMET predictions revealed favorable pharmacokinetic properties for benzylated quinazolinones with methoxy and trifluoromethyl groups. This study highlights the potential of benzylated quinazolinones with methoxy and trifluoromethyl groups as a promising anticancer agent against COX-2.
Oktriawan T, Raharjo TJ, Haryadi W, Mardjan MID. Quinazolinone derivatives as selective COX-2 inhibitors: In silico analysis using molecular docking, dynamics, and ADMET. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2026.235134
1. Sun X, Liu J, Zhang W, Wang Y, Jiang Y, Wang L, et al. Disease burden of biliary tract cancer in 204 countries and territories, 1990– 2021: a comprehensive demographic analysis of the Global Burden of Disease Study 2021. Chin Med J.2024;137:3117–25. doi: https://doi.org/10.1097/CM9.0000000000003395
2. Cancer n.d. [cited 2025 March 12]. Available from: https://www.who.int/health-topics/cancer#tab=tab_1
3. Ghebremedhin A, Athavale D, Zhang Y, Yao X, Balch C, Song S. Tumor-associated macrophages as major immunosuppressive cells in the tumor microenvironment. Cancers. 2024;16:3410. doi: https://doi.org/10.3390/cancers16193410
4. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63. doi: https://doi.org/10.3322/caac.21834
5. Rejinthala S, Endoori S, Thumma V, Mondal T. New imidazo[4,5-c] pyridine-piperidine hybrids as potential anti-cancer agents and in-silico Studies. Chem Select. 2024;9. doi: https://doi.org/10.1002/slct.202303299
6. Joukhan A, Kononenko V, Bele T, Sollner Dolenc M, Peigneur S, et al. Attenuation of nicotine effects on A549 lung cancer cells by synthetic α7 nAChR antagonists APS7-2 and APS8-2. Mar Drugs. 2024;22:147. doi: https://doi.org/10.3390/md22040147
7. Chandraghatgi R, Ji H-F, Rosen GL, Sokhansanj BA. Streamlining computational fragment-based drug discovery through evolutionary optimization informed by ligand-based virtual prescreening. J Chem Inf Model. 2024;64:3826–40. doi: https://doi.org/10.1021/acs.jcim.4c00234
8. Parikh RV, Pandya DV, Salaria P, Amarendar RM, Vyas VK, Bhatt HG, et al. Investigation on anti-plasmodial agents against wild-type Pf DHFR through in silico computational tools. Chem Select. 2024;9. doi: https://doi.org/10.1002/slct.202304151
9. Aswathy M, Parama D, Hegde M, Sherin DR, Lankalapalli RS, Radhakrishnan KV, et al. Natural prenylflavones from the stem bark of Artocarpus altilis: promising anticancer agents for oral squamous cell carcinoma targeting the Akt/mTOR/STAT-3 signaling pathway. ACS Omega. 2024;9:24252–67. doi: https://doi.org/10.1021/acsomega.3c08376
10. Astaneh ME, Fereydouni N. Silver nanoparticles in 3D printing: a new frontier in wound healing. ACS Omega. 2024;9:41107–29. doi: https://doi.org/10.1021/acsomega.4c04961
11. Sestito S, Ibba R, Riu F, Carpi S, Carta A, Manera C, et al. Anticancer potential of decursin, decursinol angelate, and decursinol from Angelica gigas nakai: a comprehensive review and future therapeutic prospects. Food Sci Nutr. 2024;12:6970–89. doi: https://doi.org/10.1002/fsn3.4376
12. Zhang G, Xu Y, Zhou A, Yu Y, Ning X, Bao H. Bioengineered nano aid synergistically targets inflammatory pro-tumor processes to advance glioblastoma chemotherapy. Nanoscale. 2025;17:2753–68. doi: https://doi.org/10.1039/D4NR04557B
13. Hussain S, Iqbal A, Hamid S, Putra PP, Ashraf M. Identifying alkaline phosphatase inhibitory potential of cyclooxygenase-2 inhibitors: Insights from molecular docking, MD simulations, molecular expression analysis in MCF-7 breast cancer cell line and in vitro investigations. Int J Biol Macromol. 2024;277:132721. doi: https://doi.org/10.1016/j.ijbiomac.2024.132721
14. Neha K, Singh G, Singh M, Asthana S, Wakode S. In silico strategies to recognize pharmacological constraints contrary to COX-2 and 5-LOX. J Biomol Struct Dyn. 2024;2024:1–18. doi: https://doi.org/10.1080/07391102.2024.2425404
15. Ishaniya W, Sugantharam K, Subramani M, Kumar AM, Gopinath P, Rajendran S, et al. Lipid-coated mesoporous silica nanoparticles for pH-responsive release and enhanced anti-proliferative activity of piperlongumine natural product. Chem Select. 2024;9. doi: https://doi.org/10.1002/slct.202402022
16. Abd El-Karim SS, Syam YM, El Kerdawy AM, Abdel-Mohsen HT. Rational design and synthesis of novel quinazolinone N-acetohydrazides as type II multi-kinase inhibitors and potential anticancer agents. Bioorg Chem. 2024;142:106920. doi: https://doi.org/10.1016/j.bioorg.2023.106920
17. Mhetre UV, Haval NB, Bondle GM, Rathod SS, Choudhari PB, Kumari J, et al. Design, synthesis and molecular docking study of novel triazole–quinazolinone hybrids as antimalarial and antitubercular agents. Bioorg Med Chem Lett. 2024;108:129800. doi: https://doi.org/10.1016/j.bmcl.2024.129800
18. Mohammadi M, Dilmaghani KA, Sarveahrabi Y. Synthesis, antibacterial, and antifungal evaluation of some new quinazolinone-azole hybrids. Polycycl Aromat Compd. 2024;44:1805–15. doi: https://doi.org/10.1080/10406638.2023.2208706
19. Moftah HK, Mousa MHA, Elrazaz EZ, Kamel AS, Lasheen DS, Georgey HH. Novel quinazolinone derivatives: design, synthesis and in vivo evaluation as potential agents targeting Alzheimer disease. Bioorg Chem. 2024;143:107065. doi: https://doi.org/10.1016/j.bioorg.2023.107065
20. Wahan SK, Sharma B, Chawla PA. Medicinal perspective of quinazolinone derivatives: recent developments and structure– activity relationship studies. J Heterocycl Chem. 2022;59:239–57. doi: https://doi.org/10.1002/jhet.4382
21. Verma P, Xiang LZ, Chaube U, Natesan G. Synthesis, antimicrobial evaluation, molecular docking and dynamics simulations of novel 2,3-disubstituted quinazolin-4(3H)-one derivatives. Chem Select. 2024;9. doi: https://doi.org/10.1002/slct.202403009
22. Parmar D, Tripathi RKP, Panchal R, Nagani A, Kabra UD. New quinazolinone-thiouracil derivatives: design, synthesis, anticancer evaluation, and in silico analysis. Chem Select. 2024;9. doi: https://doi.org/10.1002/slct.202403717
23. Alkaoud AM, Alakhras AI, Ibrahim MA, Alghamdi SK, Hussein RK. In silico evaluation of a new compound incorporating 4(3H)- quinazolinone and sulfonamide as a potential inhibitor of a human carbonic anhydrase. BMC Chem. 2024;18:45. doi: https://doi.org/10.1186/s13065-024-01150-1
24. Chen K, Wang S, Fu S, Kim J, Park P, Liu R, et al. 4(3H)- quinazolinone: a natural scaffold for drug and agrochemical discovery. Int J Mol Sci. 2025;26:2473. doi: https://doi.org/10.3390/ijms26062473
25. Abdel-Mohsen HT, Anwar MM, Ahmed NS, Abd El-Karim SS, Abdelwahed SH. Recent advances in structural optimization of quinazoline-based protein kinase inhibitors for cancer therapy (2021– Present). Molecules. 2024;29:875. doi: https://doi.org/10.3390/molecules29040875
26. Pedrood K, Sherafati M, Mohammadi-Khanaposhtani M, Asgari MS, Hosseini S, Rastegar H, et al. Design, synthesis, characterization, enzymatic inhibition evaluations, and docking study of novel quinazolinone derivatives. Int J Biol Macromol. 2021;170:1–12. doi: https://doi.org/10.1016/j.ijbiomac.2020.12.121
27. El-Menshawe SF, Sayed OM, Abou Taleb HA, Saweris MA, Zaher DM, Omar HA. The use of new quinazolinone derivative and doxorubicin loaded solid lipid nanoparticles in reversing drug resistance in experimental cancer cell lines: a systematic study. J Drug Deliv Sci Technol. 2020;56:101569. doi: https://doi.org/10.1016/j.jddst.2020.101569
28. Kerdphon S, Khamto N, Buddhachat K, Ngoenkam J, Paensuwan P, Pongcharoen S, et al. Structure–activity relationship and molecular docking of quinazolinones inhibiting expression of COX-2, IL-1β, iNOS, and TNF-α through NF-κB pathways. ACS Med Chem Lett. 2023;14:1167–73. doi: https://doi.org/10.1021/acsmedchemlett.3c00098
29. Sakr A, Rezq S, Ibrahim SM, Soliman E, Baraka MM, Romero DG, et al. Design and synthesis of novel quinazolinones conjugated ibuprofen, indole acetamide, or thioacetohydrazide as selective COX-2 inhibitors: anti-inflammatory, analgesic and anticancer activities. J Enzyme Inhib Med Chem. 2021;36:1810–28. doi: https://doi.org/10.1080/14756366.2021.1956912
30. Yuli Astuti PD, Fadilah F, Promsai S, Bahtiar A. Integrating molecular docking and molecular dynamics simulations to evaluate active compounds of Hibiscus schizopetalus for obesity. J Appl Pharm Sci. 2024;2024. doi: https://doi.org/10.7324/JAPS.2024.158550
31. Situmeang B, Swasono RT, Raharjo TJ.Evaluation of phytochemical composition, antioxidant, cytotoxic and in silico studies of ethyl acetate fractions of Tristaniopsis merguensis leaves. Toxicol Rep. 2025;14:101911. doi: https://doi.org/10.1016/j.toxrep.2025.101911
32. Ananto AD, Pranowo HD, Haryadi W, Prasetyo N. Flavonoid compound of red fruit papua and its derivatives against SARS-CoV-2 mpro: an in silico approach. J Appl Pharm Sci. 2024;2024. doi: https://doi.org/10.7324/JAPS.2024.177392
33. Kurniawan YS, Yudha E, Nugraha G, Fatmasari N, Pranowo HD, Jumina J, et al. Molecular docking and molecular dynamic investigations of xanthone-chalcone derivatives against epidermal growth factor receptor for preliminary discovery of novel anticancer agent. Indonesian J Chem. 2024;24:250. doi: https://doi.org/10.22146/ijc.88449
34. Gomaa M, Gad W, Hussein D, Pottoo FH, Tawfeeq N, Alturki M, et al. Sulfadiazine exerts potential anticancer effect in HepG2 and MCF7 cells by inhibiting TNFα, IL1b, COX-1, COX-2, 5-LOX gene expression: evidence from in vitro and computational studies. Pharmaceuticals. 2024;17:189. doi: https://doi.org/10.3390/ph17020189
35. Fitria A, Kurniawan YS, Ananto AD, Jumina J, Sholikhah EN, Pranowo HD. Allyl-modified of calix[4]resorcinarene derivatives for HER2 inhibition agents: an in silico study. J Multidiscipl Appl Nat Sci. 2025;2025. doi: https://doi.org/10.47352/jmans.2774-3047.250
36. Nezhad NG, Borzehandani MY, Eskandari A, Rahman RNZRA, Yahaya NM, Oslan SN, et al. A comparative investigation of predicted protein structures of A histidine acid phosphatase from Saccharomyces cerevisiae through molecular docking and MD simulations. J Proteins Proteom. 2025;16:35–47. doi: https://doi.org/10.1007/s42485-025-00174-y
37. Nandhini M, Pitchumani Violet Mary C, Gopinath S, Vijayakumar S. Structure-based interaction and molecular dynamics studies of cysteine protease cathepsin B against curcumin and resveratrol. J Biomol Struct Dyn. 2024;2024:1–11. doi: https://doi.org/10.1080/07391102.2024.2431658
38. Chan L-C, Mat Yassim AS, Ahmad Fuaad AAH, Leow TC, Sabri S, Radin Yahaya RS, et al. Inhibition of SARS-CoV-2 3CL protease by the anti-viral chimeric protein RetroMAD1. Sci Rep. 2023;13:20178. doi: https://doi.org/10.1038/s41598-023-47511-z
39. Pappalardo M, Sipala FM, Nicolosi MC, Guccione S, Ronsisvalle S. Recent applications of in silico approaches for studying receptor mutations associated with human pathologies. Molecules. 2024;29:5349. doi: https://doi.org/10.3390/molecules29225349
40. Zohora FT, Azam ATMZ, Ahmed S, Rahman KM, Halim MA, Anwar MdR, et al. Isolation and in silico prediction of potential drug-like compounds with a new dimeric prenylated quinolone alkaloid from Zanthoxylum rhetsa (Roxb.) root extracts targeted against SARS-CoV-2 (Mpro). Molecules. 2022;27:8191. doi: https://doi.org/10.3390/molecules27238191
41. Laskowski RA, Jab?o?ska J, Pravda L, Va?eková RS, Thornton JM. PDBsum: structural summaries of PDB entries. Protein Sci. 2018;27:129–34. doi: https://doi.org/10.1002/pro.3289
42. Ezugwu JA, Okoro UC, Ezeokonkwo Mercy A, Hariprasad KS, Rudrapal M, Gogoi N, et al. Design, synthesis, molecular docking, drug-likeness/ADMET and molecular dynamics studies of thiazolyl benzenesulfonamide carboxylates as antimalarial agents. Chem Africa. 2024;7:2353–68. doi: https://doi.org/10.1007/s42250-024-00904-7
43. Bendjabeur S, Hazzit M. Antioxidant and anticholinesterase activities, molecular docking, ADMET and drug-likeness studies of essential oil and ethanolic extract from Ammodaucus leucotrichus Coss. and Dur. Fruits. J Essent Oil Bear Plants. 2024;27:1492–503. doi: https://doi.org/10.1080/0972060X.2024.2423774
44. Gheidari D, Mehrdad M, Bayat M. Synthesis, docking, MD simulation, ADMET, drug likeness, and DFT studies of novel furo[2,3-b]indol-3a-ol as promising cyclin-dependent kinase 2 inhibitors. Sci Rep. 2024;14:3084. doi: https://doi.org/10.1038/s41598-024-53514-1
45. Pandey SK, Yadava U, Sharma ML, Upadhyay A, Gupt MP, Dwivedi AR, et al. Synthesis, molecular structure investigation, biological evaluation and docking studies of novel spirothiazolidinones. Results Chem. 2023;5:100726. doi: https://doi.org/10.1016/j.rechem.2022.100726
46. Kassem AF, Ragab SS, Omar MA, Altwaijry NA, Abdelraof M, Temirak A, et al. New quinazolone–sulfonate conjugates with an acetohydrazide linker as potential antimicrobial agents: design, synthesis and molecular docking simulations. RSC Adv. 2025;15:1033–48. doi: https://doi.org/10.1039/D4RA07563C
47. Liu X, Zhang J, Sun W, Cao J, Ma Z. COX-2 in lung cancer: mechanisms, development, and targeted therapies. Chronic Dis Transl Med. 2024;10:281–92. doi: https://doi.org/10.1002/cdt3.120
48. Abdel-Aziz AA-M, El-Azab AS, Brogi S, Ayyad RR, Al-Suwaidan IA, Hefnawy M. Antitumor activity and multi-target mechanism of phenolic schiff bases bearing methanesulfonamide fragments: cell cycle analysis and a molecular modeling study. Int J Mol Sci. 2024;25:13621. doi: https://doi.org/10.3390/ijms252413621
49. El-Sayed NNE, Al-Otaibi TM, Barakat A, Almarhoon ZM, Hassan MohdZ, Al-Zaben MI, et al. Synthesis and biological evaluation of some new 3-Aryl-2-thioxo-2,3-dihydroquinazolin-4(1H)-ones and 3-Aryl-2-(benzylthio)quinazolin-4(3H)-ones as antioxidants; COX-2, LDHA, α-glucosidase and α-amylase inhibitors; and anti-colon carcinoma and apoptosis-inducing agents. Pharmaceuticals. 2023;16:1392. doi: https://doi.org/10.3390/ph16101392
50. Liu X, Zhang J, Sun W, Cao J, Ma Z. COX-2 in lung cancer: mechanisms, development, and targeted therapies. Chronic Dis Transl Med 2024;10:281–92. doi: https://doi.org/10.1002/cdt3.120
51. Abdel-Aziz AA-M, El-Azab AS, Brogi S, Ayyad RR, Al-Suwaidan IA, Hefnawy M. Antitumor activity and multi-target mechanism of phenolic schiff bases bearing methanesulfonamide fragments: cell cycle analysis and a molecular modeling study. Int J Mol Sci 2024;25:13621. doi: https://doi.org/10.3390/ijms252413621
52. El-Sayed NNE, Al-Otaibi TM, Barakat A, Almarhoon ZM, Hassan MohdZ, Al-Zaben MI, et al. Synthesis and biological evaluation of some new 3-Aryl-2-thioxo-2,3-dihydroquinazolin-4(1H)-ones and 3-Aryl-2-(benzylthio)quinazolin-4(3H)-ones as antioxidants; COX-2, LDHA, α-Glucosidase and α-Amylase inhibitors; and anti-colon carcinoma and apoptosis-inducing agents. Pharmaceuticals 2023;16:1392. doi: https://doi.org/10.3390/ph16101392
Year
Month