The synergistic modification of the basic formulation for delivering natural active compounds aims to enhance stability, prevent degradation, and potentially influence their interaction with skin cells. Nanoliposomes are an effective delivery system, capable of preserving the integrity of the compounds and supporting targeted skin distribution. The system’s effectiveness will be evaluated for its antioxidant and anti-acne properties using the ethyl acetate fraction of Sonneratia caseolaris L. leaf extract. Liposomes were prepared by thin-layer hydration and then reduced and uniformed in size by ultrasonic and mini extruder into nanoliposome preparations. The preparation was evaluated descriptively and statistically based on all physical characteristics and stability tests of NANO-SERF-SCs preparation. The NANO-SERF-SCs produced were categorized as a small unilamellar vesicle with a particle size of 199.7 nm ± 3.61 with an even particle size distribution and spherical shape. The encapsulation efficiency obtained was 76.74% ± 2.80%. NANO-SERF-SCs were also stable under freeze-thaw cycle conditions, 25 times dilution, and 30 days of storage, with acceptable physical characteristics. The results of antioxidant testing using DPPH and ABTS methods show that NANO-SERF-SCs belong to the class of strong antioxidants with IC50 values close to the IC50 value of each positive control used. The results of the antimicrobial test using disc-diffusion showed that the NANO-SERF-SCs have anti-acne effectiveness that falls into the strong category because it has inhibition in the 10–20 mm range. The ethyl acetate fraction of S. caseolaris L. leaf extract can be formulated into a nanoliposome preparation and has good antioxidant and anti-acne activities.
Suryani A, Istiqhfarin HAS, Hidayah N, Nitisara NN, Aryanti AM, Ardana R, Kartika ER. Synergistic modification of polyvinyl alcohol and natural phospholipids: Nanoliposomal carrier for Sonneratia caseolaris L. delivery and therapeutic care. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.243159
1. El-Sayed DMK, Nassar AA, Khashaba SAE. Brief overview about updated management lines of post acne erythema: review article. Egypt J Hosp Med. 2023;91(1):4294–7. doi: https://doi.org/10.21608/ejhm.2023.296206
2. Fabi SG, Beleznay K, Berson DS, Cohen JL, Lee S, Dayan SH. Treatment of acne in the aesthetic patient: a round table update. J Cos Dermatol. 2023;22(9):2391–8. doi: https://doi.org/10.1111/jocd.15913
3. Halifah P, Hartati, Rachmawaty, Yusminah H, Roshanida AR. Phytochemical screening and antimicrobial activity from Sonneratia caseolaris fruit extract. MSF. 2019;967:28–33. doi: https://doi.org/10.4028/www.scientific.net/MSF.967.28
4. Dewi MK, Chaerunisaa AY, Muhaimin M, Joni IM. Improved activity of herbal medicines through nanotechnology. Nanomaterials. 2022;12(22):4073. doi: https://doi.org/10.3390/nano12224073
5. Chabib L, Hidayat AMUJ, Trianloka AMB, Pangestu MI, Suryani A, Yulianto. Therapeutic potential of Cymbopogon schoenanthus (L.) developed into nanoparticle technology. Pharm Educ. 2021;21(2):210–4. doi: https://doi.org/10.46542/pe.2021.212.210214
6. Chabib L, Suryani A, Pangestu MI, Hidayat AMUJ, Trianloka AMB. The development of Origanum vulgare L. into nanoparticles in dosage forms. Pharm Educ. 2021;21(2):205–9. doi: https://doi.org/10.46542/pe.2021.212.205209
7. Chabib L, Suryani A, Hakim SNP, Rizki MI, Firmansyah F, Yulianto, et al. Stevia rebaudiana as a nutraceutical for COVID-19 patients with no sugar diet during recovery and its nanoparticle application. Pharm Educ. 2022;22(2):174–9. doi: https://doi.org/10.46542/pe.2022.222.174179
8. Chabib L, Ar Rodli FH, Nugroho BH, Suryani A, Firmansyah F. Development of nanoliposome formulation of beta-carotene using high speed homogeniser method. Pharm Educ. 2024;24(2):1–8. doi: https://doi.org/10.46542/pe.2024.242.18
9. Suryani A, Laksitorini MD, Sulaiman TNS. Ferrous fumarate nanoliposomes: formulation, characterization, and diffusion profiles. J Appl Pharm Sci. 2024;14(5):157–65. doi: https://doi.org/10.7324/JAPS.2024.154580
10. Guillot AJ, Martínez-Navarrete M, Garrigues TM, Melero A. Skin drug delivery using lipid vesicles: a starting guideline for their development. J Cont Release. 2023;355:624–54. doi: https://doi.org/10.1016/j.jconrel.2023.02.006
11. Hua S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol. 2025;6:219. doi: https://doi.org/10.3389/fphar.2015.00219
12. Cao Y, Dong X, Chen X. Polymer-modified liposomes for drug delivery: from fundamentals to applications. Pharmaceutics. 2022;14(4):778. doi: https://doi.org/10.3390/pharmaceutics14040778
13. Esati NK, La EOJ, Sudiasih NP, Saniasih NND. Total flavonoid levels in n-hexane and ethyl acetate fractions of Rosmarinus officinalis L. leaves and their antibacterial and antioxidant activities. Borneo J Pharm. 2024;7(1):51–62. doi: https://doi.org/10.33084/bjop.v7i1.4034
14. Kessya FK, Pratiwi RI, Febriyanti R. Formulation and physical stability test of shampoo preparation combination of ethanol extract of jackfruit leaves (Artocarpus heterophyllus) and pandan leaves (Pandanus amaryllifolius) with varying carbomer concentrations. IJCST. 2024;7(1):74. doi: https://doi.org/10.24114/ijcst. v7i1.56446
15. Shalihin MI, Muhaimin, Latief M. Isolation and identification of an alkaloid compound from bebuas Leaves (Premna serratifolia) as an anti-inflammatory in white rats (Rattus norvegicus). J Teknol Laboratorium. 2022;11(2):78–94. doi: https://doi.org/10.29238/teknolabjournal.v11i2.275
16. Gomes CL, Silva CCAR, Melo CGD, Ferreira MRA, Soares LAL, DA Silva RMF, et al. Development of an analytical method for determination of polyphenols and total tannins from leaves of Syzygium cumini L. Skeels. An Acad Bras Ciênc. 2021;93(2):e20190373. doi: https://doi.org/10.1590/00013765202120190373
17. Rasyid FA, Amin A, Sukmawati S, Djakariani KP, Riska R, Aliansyah MR, et al. Toxicity activity and total phenolic content of soursop leaves from three regions in South Sulawesi, Indonesia. JECP. 2023;3(2):116. doi: https://doi.org/10.52365/jecp.v3i2.674
18. Suryani A, Chabib L, Fitria A, Nurlina S, Kartika ER. Peppermint essential oil nanoliposomes: innovative formulation for effective hair growth. J Appl Pharm Sci. 2025;15(6):178–89. doi: https://doi.org/10.7324/JAPS.2025.207281
19. Ong S, Chitneni M, Lee K, Ming L, Yuen K. Evaluation of extrusion technique for nanosizing liposomes. Pharmaceutics. 2016;8(4):36. doi: https://doi.org/10.3390/pharmaceutics8040036
20. Chabib L, Suryani A, Munawiroh SZ, Mariyam S, Nafiah Z, Laksitorini MD. Enhancing the physical characteristics and shelf life of rice water (Oryza sativa L.) gel shampoo: the role of propylene glycol concentration. Int J App Pharm. 2024:364–70. doi: https://doi.org/10.22159/ijap.2024v16i2.49766
21. Chabib L, Suryani A, Dewi LS, Noviani H, Maharani WHP, Indraswari AA. Pineapple fruit extract (Ananas comosus L. Merr) as an antioxidant and anti-acne agent made with the nano-emulsion gel delivery system. Pharm Educ. 2023;23(2):126–32. doi: https://doi.org/10.46542/pe.2023.232.126132
22. Chabib L, Suryani A, Noviani H, Werdyani S. Biosynthesis of gold nanoparticles from pineapple bromelain isolate as antioxidant. In: Proceedings of the 4th IC3PE; AIP Conf. Proc. 2024;3027:020019. doi: https://doi.org/10.1063/5.0205319
23. A. Makuasa DA, Ningsih P. The analysis of total flavonoid levels in young leaves and old soursop leaves (Annona muricata L.) using UV-Vis sepctrofotometry methods. J Appl Sci Eng Technol Educ. 2020;2(1):11–7. doi: https://doi.org/10.35877/454RI.asci2133
24. Tang J, Dunshea FR, Suleria HAR. LC-ESI-QTOF/MS Characterization of phenolic compounds from medicinal plants (Hops and Juniper Berries) and their antioxidant activity. Foods. 2019;9(1):7. doi: https://doi.org/10.3390/foods9010007
25. Bokshan SL, Ramirez Gomez J, Chapin KC, Green A, Paxton ES. Reduced time to positive Cutibacterium acnes culture utilizing a novel incubation technique: a retrospective cohort study. J Shoulder Elbow Arthroplasty. 2019;3:2471549219840823. doi: https://doi.org/10.1177/2471549219840823
26. Chabib L, Hartanto, Syukri Y, Suryani A. Cashew leaf extract gel as antibacterial with CMC-Na as gelling agent. In: Proceedings of the 4th IC3PE; AIP Conf. Proc. 2024;3027:020018. doi: https://doi.org/10.1063/5.0205318
27. Chadorshabi S, Hallaj-Nezhadi S, Ghasempour Z. Liposomal system based on lyophilization of a monophase solution for stabilization of bioactives from red onion skin. LWT. 2022;172:114174. doi: https://doi.org/10.1016/j.lwt.2022.114174
28. Németh Z, Csóka I, Semnani Jazani R, Sipos B, Haspel H, Kozma G, et al. Quality by design driven zeta potential optimisation study of liposomes with charge imparting membrane additives. Pharmaceutics. 2022;14(9):1798. doi: https://doi.org/10.3390/pharmaceutics14091798
29. Rodsamai T, Chaijan M, Rodjan P, Tamman A, Supaweera N, Yin M, et al. Design and bioanalysis of nanoliposome loaded with premium red palm oil for improved nutritional delivery and stability. Foods. 2025;14(4):566. doi: https://doi.org/10.3390/foods14040566
30. Barba AA, Bochicchio S, Dalmoro A, Lamberti G. Lipid Delivery systems for nucleic-acid-based-drugs: from production to clinical applications. Pharmaceutics. 2019;11(8):360. doi: https://doi.org/10.3390/pharmaceutics11080360
31. Monasterio A, Osorio FA. Physicochemical properties of nanoliposomes encapsulating grape seed tannins formed with ultrasound cycles. Foods. 2024;13(3):414. doi: https://doi.org/10.3390/foods13030414
32. Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022;8(5):e09394. doi: https://doi.org/10.1016/j.heliyon.2022.e09394
33. Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2015;10(2):81–98. doi: https://doi.org/10.1016/j.ajps.2014.09.004
34. Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2015;10(2):81–98. doi: https://doi.org/10.1016/j.ajps.2014.09.004
35. De Araújo FF, De Paulo Farias D, Neri-Numa IA, Pastore GM. Polyphenols and their applications: an approach in food chemistry and innovation potential. Food Chem. 2021;338:127535. doi: https://doi.org/10.1016/j.foodchem.2020.127535
36. Szymczak J, Cielecka-Piontek J. Fisetin—in search of better bioavailability—from macro to nano modifications: a review. IJMS. 2023;24(18):14158. doi: https://doi.org/10.3390/ijms241814158
37. Ranjbar S, Emamjomeh A, Sharifi F, Zarepour A, Aghaabbasi K, Dehshahri A, et al. Lipid-based delivery systems for flavonoids and flavonolignans: liposomes, nanoemulsions, and solid lipid nanoparticles. Pharmaceutics. 2023;15(7):1944. doi: https://doi.org/10.3390/pharmaceutics15071944
38. Wu C, Zhang J, Yang S, Peng C, Lv M, Liang J, et al. Preparation and pharmacokinetics of brain-targeted nanoliposome loaded with rutin. Int. J. Mol. Sci. 2024;25(21):11404. doi: https://doi.org/10.3390/ijms252111404
39. Boafo GF, Magar KT, Ekpo MD, Qian W, Tan S, Chen C. The role of cryoprotective agents in liposome stabilization and preservation. IJMS. 2022;23(20):12487. doi: https://doi.org/10.3390/ijms232012487
40. Khayrani AC, Fahmi M, Nurhayati RW, Manas NHA, Suhaeri M. Effect of freeze-thaw cycles method to transfersome characteristics for growth protein encapsulation. IJTech. 2024;15(2):267. doi: https://doi.org/10.14716/ijtech.v15i2.6670
41. Ashar F, Hani U, Osmani RAM, Kazim SM, Selvamuthukumar S. Preparation and optimization of ibrutinib-loaded nanoliposomes using response surface methodology. Polymers. 2022;14(18):3886. doi: https://doi.org/10.3390/polym14183886
42. Eugster R, Luciani P. Liposomes: bridging the gap from lab to pharmaceuticals. Curr Opin Colloid Interface Sci. 2025;75:101875. doi: https://doi.org/10.1016/j.cocis.2024.101875
43. Acharya B, Chikan V. Pulse magnetic fields induced drug release from gold coated magnetic nanoparticle decorated liposomes. Magnetochemistry. 2020;6(4):52. doi: https://doi.org/10.3390/magnetochemistry6040052
44. Danaei M, Dehghankhold M, Ataei S, Davarani FH, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. doi: https://doi.org/10.3390/pharmaceutics10020057
45. Jiang Y, Li W, Wang Z, Lu J. Lipid-based nanotechnology: liposome. Pharmaceutics. 2023;16(1):34. doi: https://doi.org/10.3390/pharmaceutics16010034
46. Chen W, Duša F, Witos J, Ruokonen SK, Wiedmer SK. Determination of the main phase transition temperature of phospholipids by nanoplasmonic sensing. Sci Rep. 2018;8(1):14815. doi: https://doi.org/10.1038/s41598-018-33107-5
47. Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. WIREs Nanomed Nanobiotechnol. 2017;9(5):e1450. doi: https://doi.org/10.1002/wnan.1450
48. Lombardo D, Kiselev MA. Methods of liposomes preparation: formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics. 2022;14(3):543. doi: https://doi.org/10.3390/pharmaceutics14030543
49. Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, et al. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules. 2022;27(4):1326. doi: https://doi.org/10.3390/molecules27041326
50. Kusumorini N, Nugroho AK, Pramono S, Martien R. Determination of the potential antioxidant activity of isolated piperine from white pepper using DPPH, ABTS, and FRAP methods. Majalah Farmaseutik. 2022;18(4):454. doi: https://doi.org/10.22146/farmaseutik.v18i4.70246
51. Ilyasov IR, Beloborodov VL, Selivanova IA, Terekhov RP. ABTS/PP Decolorization assay of antioxidant capacity reaction pathways. IJMS. 2020;21(3):1131. doi: https://doi.org/10.3390/ijms21031131
52. Cano A, Maestre AB, Hernández-Ruiz J, Arnao MB. ABTS/TAC methodology: main milestones and recent applications. Processes. 2023;11(1):185. doi: https://doi.org/10.3390/pr11010185
53. Bibi Sadeer N, Montesano D, Albrizio S, Zengin G, Mahomoodally MF. The versatility of antioxidant assays in food science and aafety— chemistry, applications, strengths, and limitations. Antioxidants. 2020;9(8):709. doi: https://doi.org/10.3390/antiox9080709
54. Akullo JO, Kiage-Mokua BN, Nakimbugwe D, Ng’ang’a J, Kinyuru J. Phytochemical profile and antioxidant activity of various solvent extracts of two varieties of ginger and garlic. Heliyon. 2023;9(8):e18806. doi: https://doi.org/10.1016/j.heliyon.2023.e18806
55. Roy A, Khan A, Ahmad I, Alghamdi S, Rajab BS, Babalghith AO, et al. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. BioMed Res Int. 2022;2022:1–9. doi: https://doi.org/10.1155/2022/5445291
56. Hassanpour SH, Doroudi A. Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. 2023;13(4):354–76. doi: https://doi.org/10.22038/AJP.2023.21774
57. Banjarnahor SDS, Artanti N. Antioxidant properties of flavonoids. Med J Indones. 2015;23(4):239–44. doi: https://doi.org/10.13181/mji.v23i4.1015
58. Rudrapal M, Khairnar SJ, Khan J, Dukhyil AB, Ansari MA, Alomary MN, et al. Dietary polyphenols and their role in oxidative stress-induced human diseases: insights into protective effects, antioxidant potentials and mechanism(s) of action. Front Pharmacol. 2022;13:806470. doi: https://doi.org/10.3389/fphar.2022.806470
59. Charlton NC, Mastyugin M, Török B, Török M. Structural features of small molecule antioxidants and strategic modifications to improve potential bioactivity. Molecules. 2023;28(3):1057. doi: https://doi.org/10.3390/molecules28031057
60. Atpadkar PP, Gopavaram S, Chaudhary S. Natural–product– inspired bioactive alkaloids agglomerated with potential antioxidant activity: recent advancements on structure-activity relationship studies and future perspectives. Vitam Horm. 2023;121:355–93. doi: https://doi.org/10.1016/bs.vh.2022.10.002
61. Timilsena YP, Phosanam A, Stockmann R. Perspectives on saponin: food functionality and applications. Int J Mol Sci. 2023;24(17):13538. doi: https://doi.org/10.20944/preprints202308.0413.v1
62. Trisia A, Philyria R, Toemon AN. Uji Aktivitas Antibakteri Ekstrak Etanol Daun Kalanduyung (Guazuma ulmifolia Lam.) Terhadap Pertumbuhan Staphylococcus aureus Dengan Metode Difusi Cakram (Kirby-Bauer). Anterior J. 2018;17(2):136–43. doi: https://doi.org/10.33084/anterior.v17i2.12
63. Mujeeb F, Bajpai P, Pathak N. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. BioMed Res Int. 2014;2014:1–11. doi: https://doi.org/10.1155/2014/497606
64. Tatli Cankaya II, Somuncuoglu EI. Potential and prophylactic use of plants containing saponin-type compounds as antibiofilm agents against respiratory tract infections. Evid-Based Complement Alternat Med. 2021;2021:1–14. doi: https://doi.org/10.1155/2021/6814215
Year
Month