Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (MTB). In this study, various molecular modeling tools were used to search for potent TB therapeutics. Approximately 792 anti-TB inhibitors were collected from the literature, along with their experimentally determined biological activities. These compounds were then classified into three groups based on their biological activities. The geometries of all the collected inhibitors were optimized, followed by docking them into a few anti-TB receptors obtained from the Protein Data Bank. The docking results express the nature of interactions between the ligands and their respective receptors, which are prevalently noncovalent, dominated by hydrogen bonds and van der Waals’ interactions. Later, we generated structure-based 14 quantitative structure-activity relationship models using appropriate descriptors to predict the bioactivity values of the selected anti-TB inhibitors against a few cell lines. The best models were selected on the basis of statistical parameters and were validated by training and test set division. The predicted bioactivities of the selected inhibitors are comparable to the experimentally determined bioactivity values.
Panthi B, Pandey A, Ram IS, Begum S, Kumar S. In-silico studies of anti-tuberculosis drugs using advanced computational technique: A DFT, molecular docking, and QSAR analysis. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.v15.i12.13
1. Global tuberculosis report 2024. Geneva, Switzerland: World Health Organization; 2024.
2. Kochi A. The global tuberculosis situation and the new control strategy of the World Health Organization. Tubercle 1991;72(1):1-6. https://doi.org/10.1016/0041-3879(91)90017-M
3. Migliori GB, Sotgiu G, Rosales-Klintz SR, van der Werf MJ. European Union standard for tuberculosis care on treatment of multidrug-resistant tuberculosis following new World Health Organization recommendations. Eur Respir J. 2018;52(5):1801617. https://doi.org/10.1183/13993003.01617-2018
4. Floyd K, Glaziou P, Zumla A, Raviglione M. The global tuberculosis epidemic and progress in care, prevention, and research: an overview in year 3 of the end TB era. Lancet Respir Med. 2018;6(4):299-314. https://doi.org/10.1016/S2213-2600(18)30057-2
5. Kochi A. The global tuberculosis situation and the new control strategy of the World Health Organization. Bull World Health Organ. 2001;79(1):71-5.
6. Connolly LE, Edelstein PH, Ramakrishnan L. Why is long-term therapy required to cure tuberculosis? PLoS Med. 2007;4(3):435-42. https://doi.org/10.1371/journal.pmed.0040120
7. Garcia-Basteiro AL, Brew J, Williams B, Borgdorff M, Cobelens F. What is the true tuberculosis mortality burden? Differences in estimates by the World Health Organization and the Global Burden of Disease study. Int J Epidemiol. 2018;47(5):1549-60. https://doi.org/10.1093/ije/dyy144
8. Kirigia JM, Muthuri RDK. Productivity losses associated with tuberculosis deaths in the World Health Organization African region. Infect Dis Poverty. 2016;5(1):43. https://doi.org/10.1186/s40249-016-0138-5
9. Falzon D, Schünemann HJ, Harausz E, González-Angulo L, Lienhardt C, Jaramillo E, et al. World Health Organization treatment guidelines for drug-resistant tuberculosis, 2016 update. Eur Respir J. 2017;49(3):1602308. https://doi.org/10.1183/13993003.02308-2016
10. Varaine F, Guglielmetti L, Huerga H, Bonnet M, Kiria N, Sitienei JK, et al. Eligibility for the shorter multidrug-resistant tuberculosis regimen: ambiguities in the World Health Organization recommendations. Am J Respir Crit Care Med. 2016;194(8): 1028-9. https://doi.org/10.1164/rccm.201605-1080LE
11. Rado TA, Bates JH, Engel HW, Mankiewicz E, Murohashi T, Mizuguchi Y, et al. World Health Organization studies on bacteriophage-typing of mycobacteria-subdivision of species Mycobacterium tuberculosis. Am Rev Respir Dis. 1975;111(4):459-68.
12. CDC. Extensively drug-resistant tuberculosis-United States, 1993- 2006. Morb Mortal Wkly Rep. 2007;56(11):250-3.
13. Young C, Walzl G, Plessis ND. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol. 2020;13(2):190-204. https://doi.org/10.1038/s41385-019-0226-5
14. Shahab M, Morais GCF, Akash S, Fulco UL, Oliveira JIN, Zheng G, et al. A robust computational quest: discovering potential hits to improve the treatment of pyrazinamide-resistant Mycobacterium tuberculosis. J Cell Mol Med. 2024;28(8):e18279. https://doi.org/10.1111/jcmm.18279
15. Halleux CM, Falzon D, Merle C, Jaramillo E, Mirzayev F, Olliaro P, et al. The World Health Organization global aDSM database: generating evidence on the safety of new treatment regimens for drug-resistant tuberculosis. Eur Respir J. 2018;51(3):1701643. https://doi.org/10.1183/13993003.01643-2017
16. Capela R, Félix R, Clariano M, Nunes D, Perry MJ, Lopes F. Target identification in anti-tuberculosis drug discovery. Int J Mol Sci. 2023;24(13):10482. https://doi.org/10.3390/ijms241310482
17. Perveen S, Kumari D, Singh K, Sharma R. Tuberculosis drug discovery: progression and future interventions in the wake of emerging resistance. Eur J Med Chem. 2022;229:114066. https://doi.org/10.1016/j.ejmech.2021.114066
18. Winters N, Butler-Laporte G, Menzies D. Efficacy and safety of World Health Organization group 5 drugs for multidrug-resistant tuberculosis treatment. Eur Respir J. 2015;46(5):1461-70. https://doi.org/10.1183/13993003.00649-2015
19. Ciaranello A, Lu Z, Ayaya S, Losina E, Musick B, Vreeman R. Incidence of World Health Organization stage 3 and 4 events, tuberculosis and mortality in untreated, HIV-infected children enrolling in care before 1 year of age AnIeDEA (International Epidemiologic Databases To Evaluate AIDS) East Africa regional analysis. Pediatr Infect Dis J. 2014;33(6):623-9. https://doi.org/10.1097/INF.0000000000000223
20. Pingale RN, Pratyush K, Wagh B, Jain AA. Evaluation of PPAR gamma agonists: a molecular docking and QSAR study of chalcone analog. J Appl Pharm Sci. 2025;15(02):155-63. https://doi.org/10.7324/JAPS.2024.190652
21. Yoosefian M, Moghani MZ, Juan A. In silico evaluation of atazanavir as a potential HIV main protease inhibitor and its comparison with new designed analogs. Comput Biol Med. 2022;145:105523. https://doi.org/10.1016/j.compbiomed.2022.105523
22. Yoosefian M, Sabaghian H. The role of weak interactions in evaluation of inhibitory potential of Indinavir as an HIV protease inhibitor and its comparison with innovative drug candidates. Comput Biol Med. 2025;187:109675. https://doi.org/10.1016/j.compbiomed.2025.109675
23. Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146-57. https://doi.org/10.2174/157340911795677602
24. Ragno R, Marshall GR, Santo RD, Costi R, Massa S, Rompei R, et al. Antimycobacterial pyrroles: synthesis, anti-Mycobacterium tuberculosis activity and QSAR studies. Bioorg Med Chem. 2000;8(6):1423-32. https://doi.org/10.1016/S0968-0896(00)00061-4
25. Nayyar A, Monga V, Malde A, Coutinho E, Jain R. Synthesis, anti-tuberculosis activity, and 3D-QSAR study of 4-(adamantan-1-yl)-2- substituted quinolines. Bioorg Med Chem. 2007;15(2):626-40. https://doi.org/10.1016/j.bmc.2006.10.064
26. Senthilkumar P, Dinakaran M, Chandraseakaran Y, Yogeeswari P, Sriram D. Synthesis and in-vitro antimycobacterial evaluation of 1-(cyclopropyl/2,4-difluorophenyl/tert-butyl)-1,4-dihydro- 8-methyl- 6-nitro-4-oxo-7-(substituted secondary amino)quinoline-3-carboxylic acids. Archiv der Pharmazie (Weinheim) 2009;342(2):100-12. https://doi.org/10.1002/ardp.200800015
27. Hearn MJ, Cynamon MH, Chen MF, Coppins R, Davis J, Kang HJO, et al. Preparation and antitubercular activities in vitro and in vivo of novel Schiff bases of isoniazid. Eur J Med Chem. 2009;44(10):4169-78. https://doi.org/10.1016/j.ejmech.2009.05.009
28. Guan YF, Song X, Qiu MH, Luo SH, Wang BJ, Hung NV, et al. Bioassay-guided isolation and structural modification of the anti- TB resorcinols from Ardisia gigantifolia. Chem Biol Drug Des. 2016;88(2):293-301. https://doi.org/10.1111/cbdd.12756
29. Yoya GK, Bedos-Belval F, Constant P, Duran H, Daffé M, Baltas M. Synthesis and evaluation of a novel series of pseudo-cinnamic derivatives as antituberculosis agents. Bioorg Med Chem Lett. 2009;19(2):341-3. https://doi.org/10.1016/j.bmcl.2008.11.082
30. De P, Yoya GK, Constant P, Bedos-Belval F, Duran H, SaffonN. De¬sign, synthesis, and biological evaluation of new cinnamic deriva¬tives as antituberculosis agents. J Med Chem. 2011;54(5):1449-61. https://doi.org/10.1021/jm101510d
31. Suresh A, Suresh N, Misra S, Kumar MMK, Venkata K, Sekhar GC. Design, synthesis and biological evaluation of new substituted sulfonamide tetrazole derivatives as antitubercular agents. Chem Select 2016;1(8):1705-10. https://doi.org/10.1002/slct.201600286
32. Pitta E, Rogacki MK, Balabon O, Huss S, Cunningham F, Lopez- Roman EM, et al. Searching for new leads for tuberculosis: design, synthesis, and biological evaluation of novel 2-quinolin-4- yloxyacetamides. J Med Chem. 2016;59(14):6709-28. https://doi.org/10.1021/acs.jmedchem.6b00245
33. Biava M, Porretta GC, Poce G, Deidda D, Pompei R, Tafi A, et al. Antimycobacterial compounds. Optimization of the BM 212 structure, the lead compound for a new pyrrole derivative class. Bioorg Med Chem. 2005;13(4):1221-30. https://doi.org/10.1016/j.bmc.2004.11.018
34. Moraski GC, Seeger N, Miller PA, Oliver AG, Boshoff HI, Cho S, et al. Arrival of imidazo[2,1-b]thiazole-5-carboxamides: potent anti-tuberculosis agents that target QcrB. ACS Infect Dis. 2016;2(6):393-8. https://doi.org/10.1021/acsinfecdis.5b00154
35. Biava M, Porretta GC, Poce G, De Logu A, Meleddu R, De Rossi E, et al. 1,5-Diaryl-2-ethyl pyrrole derivatives as antimycobacterial agents: design, synthesis, and microbiological evaluation. Eur J Med Chem. 2009;44(11):4734-8. https://doi.org/10.1016/j.ejmech.2009.06.005
36. Zampieri D, Mamolo MG, Laurini E, Scialino G, Banfi E, Vio L. Antifungal and antimycobacterial activity of 1-(3,5-diaryl-4,5- dihydro-1H-pyrazol-4-yl)-1H-imidazole derivatives. Bioorg Med Chem. 2008;16(8):4516-22. https://doi.org/10.1016/j.bmc.2008.02.055
37. Sasaki H, Haraguchi Y, Itotani M, Kuroda H, Hashizume H, Tomishige T, et al. Synthesis and antituberculosis activity of a novel series of optically active 6-nitro-2,3-dihydroimidazo[2,1-b]oxazoles. J Med Chem. 2006;49(26):7854-60. https://doi.org/10.1021/jm060957y
38. Sutherland HS, Blaser A, Kmentova I, Franzblau SG, Wan B, Wang Y, et al. Synthesis and structure-activity relationships of antitubercular 2-nitroimidazooxazines bearing heterocyclic side chains. J Med Chem. 2010;53(2):855-66. https://doi.org/10.1021/jm901378u
39. Thompson AM, O’Connor PD, Blaser A, Yardley V, Maes L, Gupta S, et al. Repositioning antitubercular 6-nitro-2,3-dihydroimidazo[2,1-b] [1,3]oxazoles for neglected tropical diseases: structure-activity studies on a preclinical candidate for visceral leishmaniasis. J Med Chem. 2016;59(6):2530-50. https://doi.org/10.1021/acs.jmedchem.5b01699
40. Koseki Y, Aoki S. Computational medicinal chemistry for rational drug design: identification of novel chemical structures with potential anti-tuberculosis activity. Curr Top Med Chem. 2014;14(1):176-88. https://doi.org/10.2174/1568026613666131113155042
41. Kumar M, Singh K, Naran K, Hamzabegovic F, Hoft DF, Warner DF, et al. Design, synthesis, and evaluation of novel hybrid efflux pump inhibitors for use against Mycobacterium tuberculosis. ACS Infect Dis. 2016;2(10):714-25. https://doi.org/10.1021/acsinfecdis.6b00111
42. Scotti L, Tullius Scotti M, de Oliveira Lima E, Sobral da Silva M, do Carmo Alves de Lima M, da Rocha Pitta I, et al. Experimental methodologies and evaluations of computer-aided drug design methodologies applied to a series of 2-aminothiophene derivatives with antifungal activities. Molecules 2012;17(3):2298-315. https://doi.org/10.3390/molecules17032298
43. Lilienkampf A, Mao J, Wan B, Wang Y, Franzblau SG, Kozikowski AP. Structure-activity relationships for a series of quinoline-based compounds active against replicating and nonreplicating Mycobacterium tuberculosis. J Med Chem. 2009;52(7):2109-18. https://doi.org/10.1021/jm900003c
44. Saquib M, Husain I, Sharma S, Yadav G, Singh VK, Sharma SK, et al. 2,3-dideoxy hex-2-enopyranosid-4-uloses as promising new anti-tubercular agents: design, synthesis, biological evaluation and SAR studies. Eur J Med Chem. 2011;46(6):2217-23. https://doi.org/10.1016/j.ejmech.2011.03.002
45. Nefzi A, Appel J, Arutyunyan S, Houghten RA. Parallel synthesis of chiral pentaamines and pyrrolidine containing bis-heterocyclic libraries. Multiple scaffolds with multiple building blocks: a double diversity for the identification of new antitubercular compounds. Bioorg Med Chem Lett. 2009;19(17):5169-175. https://doi.org/10.1016/j.bmcl.2009.07.010
46. Liu ML, Pan XY, Yang T, Zhang WM, Wang TQ, Wang HY, et al. The synthesis and antistaphylococcal activity of dehydroabietic acid derivatives: Modifications at C-12. Bioorg Med Chem Lett. 2016;26(22):5492-6. https://doi.org/10.1016/j.bmcl.2016.10.018
47. He C, Preiss L, Wang B, Fu L, Wen H, Zhang X, et al. Structural simplification of bedaquiline: the discovery of 3-(4-(N,N-dimethylaminomethyl)phenyl)quinoline-derived antitubercular lead compounds. ChemMedChem. 2017;12(2):106-19. https://doi.org/10.1002/cmdc.201600441
48. Liu J, Bruhn DF, Lee RB, Zheng Z, Janusic T, Scherbakov D, et al. Structure-activity relationships of spectinamide antituberculosis agents: a dissection of ribosomal inhibition and native efflux avoidance contributions. ACS Infect Dis. 2017;3(1):72-88. https://doi.org/10.1021/acsinfecdis.6b00158
49. North EJ, Scherman MS, Bruhn DF, Scarborough JS, Maddox MM, Jones V, et al. Design, synthesis and anti-tuberculosis activity of 1-adamantyl-3-heteroaryl ureas with improved in vitro pharmacokinetic properties. Bioorg Med Chem. 2013;21(9):2587-99. https://doi.org/10.1016/j.bmc.2013.02.028
50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Revision A.02. Wallingford CT: Gaussian, Inc.; 2016.
51. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-61. https://doi.org/10.1002/jcc.21334
52. Verdonk ML, Chessari G, Cole JC, Hartshorn MJ, Murray CW, Nissink JW, et al. Modeling water molecules in protein-ligand docking using GOLD. J Med Chem. 2005;48(20):6504-15. https://doi.org/10.1021/jm050543p
53. Li R, Sirawaraporn R, Chitnumsub P, Sirawaraporn W, Wooden J, Athappilly F, et al. Three-dimensional structure of M. tuberculosis dihydrofolate reductase reveals opportunities for the design of novel tuberculosis drugs. J Mol Biol. 2000;295:307-23. https://doi.org/10.1006/jmbi.1999.3328
54. Li de la Sierra I, Munier-Lehmann H, Gilles AM, Barzu O, Delarue M. X-ray structure of TMP kinase from Mycobacterium tuberculosis complexed with TMP at 1.95 A resolution. J Mol Biol. 2001;311: 87-100. https://doi.org/10.1006/jmbi.2001.4843
55. May JJ, Kessler N, Marahiel MA, Stubbs MT. Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc Natl Acad Sci USA. 2002;99:12120-5. https://doi.org/10.1073/pnas.182156699
56. Cohen-Gonsaud M, Ducasse S, Hoh F, Zerbib D, Labesse G, Quemard A. Crystal structure of maba from Mycobacterium tuberculosis, a reductase involved in long-chain fatty acid biosynthesis. J Mol Biol. 2002;320:249. https://doi.org/10.1016/S0022-2836(02)00463-1
57. Rozwarski DA, Grant GA, Barton DH, Jacobs WR Jr, Sacchettini JC. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 1998;279:98-102. https://doi.org/10.1126/science.279.5347.98
58. Oliveira JS, Pereira JH, Canduri F, Rodrigues NC, de Souza ON, de Azevedo WF Jr, et al. Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP(CoA) reductase enzymes from Mycobacterium tuberculosis. J Mol Biol. 2006;359:646-66. https://doi.org/10.1016/j.jmb.2006.03.055
59. Podust LM, Von Kries JP, Eddine AN, Kim Y, Yermalitskaya LV, Kuehne R, et al. Small molecule scaffolds for Cyp51 inhibitors identified by high throughput screening and defined by X-ray crystallography. Antimicrob Agents Chemother. 2007;51:3915. https://doi.org/10.1128/AAC.00311-07
60. Dias MV, Faim LM, Vasconcelos IB, de Oliveira, JS, Basso LA, Santos DS, et al. Effects of the magnesium and chloride ions and shikimate on the structure of shikimate kinase from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007;63:1-6. https://doi.org/10.1107/S1744309106046823
61. Wehenkel A, Fernandez P, Bellinzoni M, Catherinot V, Barilone N, Labesse G, et al. The structure of PknB in complex with mitoxantrone, an ATP-competitive inhibitor, suggests a mode of protein kinase regulation in mycobacteria. FEBS Lett. 2006;580:3018-22. https://doi.org/10.1016/j.febslet.2006.04.046
62. Lombana TN, Echols N, Good MC, Thomsen ND, Ng HL, Greenstein AE, et al. Allosteric activation mechanism of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknB. Structure 2010;18:1667-77. https://doi.org/10.1016/j.str.2010.09.019
63. He X, Alian A, Stroud RM, Ortiz de Montellano PR. Pyrrolidine carboxamides as a novel class of inhibitors of enoyl acyl carrier protein reductase from Mycobacterium tuberculosis. J Med Chem. 2006;49:6308-23. https://doi.org/10.1021/jm060715y
64. Katritzky AR, Lobanov VS, Karelson M. QSPR: the correlation and quantitative prediction of chemical and physical properties from structure. Chem Soc Rev. 1995;24:279-87. https://doi.org/10.1039/cs9952400279
65. Proft FD, Geerlings P. Calculation of ionization energies, electron affinities, electronegativities, and hardnesses using density functional methods. J Chem Phys. 1997;106:3270-9. https://doi.org/10.1063/1.473796
66. Wadehra A, Ghosh SK. A density functional theory-based chemical potential equalisation approach to molecular polarizability. J Chem Sci. 2005;117:401-9. https://doi.org/10.1007/BF02708343
67. Sabin JR, Trickey SB, Apell SP, Oddershede J. Molecular shape, capacitance, and chemical hardness. Int J Quantum Chem. 2000;77:358-66. https://doi.org/10.1002/(SICI)1097-461X(2000)77:1<358::AID-QUA35>3.0.CO;2-D
68. Moulishankar A, Thirugnanasambandam S. Quantitative structure activity relationship (QSAR) modeling study of some novel thiazolidine 4-one derivatives as potent anti-tubercular agents. J Recept Signal Transduct. 2023;43(3):83-92. https://doi.org/10.1080/10799893.2023.2281671
69. Valencia J, Rubio V, Puerto G, Vasquez L, Bernal A, Mora JR, et al. QSAR studies, molecular docking, molecular dynamics, synthesis, and biological evaluation of novel quinolinone-based thiosemicarbazones against Mycobacterium tuberculosis. Antibiotics 2022;12(1):61. https://doi.org/10.3390/antibiotics12010061
70. Pietra D, Imbriani M, Borghini A, Giorgi I, Settimo FD, Breschi MC, et al. Structure-activity relationships on purine and 2,3-dihydropurine derivatives as antitubercular agents: a data mining approach. Chem Biol Drug Des. 2011;78:718-24. https://doi.org/10.1111/j.1747-0285.2011.01181.x
71. Shagufta, Kumar A, Panda G, Siddiqi MI. CoMFA and CoMSIA 3D-QSAR analysis of diaryloxy-methano-phenanthrene derivatives as anti-tubercular agents. J Mol Model. 2007;13:99-109. https://doi.org/10.1007/s00894-006-0124-0
Year
Month