Thermoresponsive drug delivery systems offer precise, on-demand, and site-specific release of therapeutic agents in response to temperature changes, thereby enhancing drug stability, minimizing side effects, and improving patient compliance. Among these, thermotropic liquid crystals (TLCs) represent a unique class of temperature-dependent mesophases with tunable properties, extended-release profiles, and targeted delivery capabilities. This review provides an in-depth examination of thermoresponsive mesophases, with a particular focus on TLCs, exploring their fundamental chemistry, structural characteristics, and adaptability in pharmaceutical sciences. A comprehensive literature survey was conducted using Scopus, PubMed, and Web of Science to analyze recent advancements in TLC-based drug delivery, biomedical applications, and associated challenges. The review discusses the mechanisms by which TLC mesophases enable thermoresponsive and sustained drug administration, as well as their integration into biosensors and diagnostic platforms, highlighting their broader biomedical potential. Key formulation strategies are outlined, alongside major obstacles such as toxicity, formulation complexity, stability, scalability, and regulatory considerations that must be addressed for clinical translation. The article also showcases recent developments and future directions in this rapidly evolving field, emphasizing the need for biocompatible and scalable TLC systems. By addressing a significant gap in the application of thermotropic mesophases specifically for drug delivery, this review underscores the promise of TLCs as intelligent drug carriers and multifunctional biomedical materials, while also identifying critical areas for future research and development.
Kailas AA, Abutwaibe KA, Bhagavath P, Bhattacharjee D, Rama A, Govindan I, Annadurai T, Naha A. Thermotropic liquid crystals for precision drug delivery and diagnostics: Molecular design, characterization, and clinical translation. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.255035
1. Safari J, Zarnegar Z. Advanced drug delivery systems: nanotechnology of health design a review. J Saudi Chem Soc. 2014;18:85–99. doi: https://doi.org/10.1016/j.jscs.2012.12.009
2. Geszke-Moritz M, Moritz M. Biodegradable polymeric nanoparticle-based drug delivery systems: comprehensive overview, perspectives and challenges. Polymers. 2024;16:2536. doi: https://doi.org/10.3390/polym16172536
3. Liquid Crystals. Chem Libr. 2013. [cited 2023 November 22]. Available from: https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/States_of_Matter/Liquid_Crystals
4. Ola M, Bhaskar R, Patil GR. Liquid crystalline drug delivery system for sustained release loaded with an antitubercular drug. J Drug Deliv Ther. 2018;8:93–101. doi: https://doi.org/10.22270/jddt.v8i4.1719
5. Rajak P, Nath LK, Bhuyan B. Liquid crystals: an approach in drug delivery. Indian J Pharm Sci. 2019;81:1000474. doi: https://doi.org/10.4172/pharmaceutical-sciences.1000474
6. Collings PJ, Hird M. Introduction to liquid crystals chemistry and physics. Milton Park: Taylor Francis; 2009.
7. Stephen MJ, Straley JP. Physics of liquid crystals. Rev Mod Phys. 1974;46:617–704. doi: https://doi.org/10.1103/RevModPhys.46.617
8. Houston JE, Kelly EA, Kruteva M, Chrissopoulou K, Cowieson N, Evans RC. Multimodal control of liquid crystalline mesophases from surfactants with photoswitchable tails. J Mater Chem C. 2019;7:10945–52. doi: https://doi.org/10.1039/C9TC04079J
9. Burducea G. Lyotropic liquid crystals I. Specific structures. Romanian reports in physics. 2004;56(1):66–86.
10. Ashok CK, Ola M, Ramesh DR, Ashok V. Liquid crystals: a review. 2019;1:119–29.
11. Mo J, Milleret G, Nagaraj M. Liquid crystal nanoparticles for commercial drug delivery. Liq Cryst Rev. 2017;5:69–85. doi: https://doi.org/10.1080/21680396.2017.1361874
12. Madheswaran T, Kandasamy M, Bose RJ, Karuppagounder V. Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems. Drug Discov Today. 2019;24:1405–12. doi: https://doi.org/10.1016/j.drudis.2019.05.004
13. Rabbi AR, Faysal JA. Preparation, characterization and applications of liquid crystals: a review. IOSR J Appl Chem. 13(12):43.
14. An JG, Hina S, Yang Y, Xue M, Liu Y. Characterization of liquid crystals: a literature review. Rev. Adv. Mater. Sci. 2016;44:398–406.
15. Govindan I, Paul A, Rama A, Kailas AA, Abutwaibe KA, Annadurai T, et al. Mesogenic architectures for advanced drug delivery: interrogating lyotropic and thermotropic liquid crystals. AAPS PharmSciTech. 2024;26:6. doi: https://doi.org/10.1208/s12249-024- 02985-6
16. Brown GH, Dome JW, Neff VD. Structure and physical properties of liquid crystals. C R C Crit Rev Solid State Sci. 1970;1:303–79. doi: https://doi.org/10.1080/10408437008243422
17. Dinarvand R, Khodaverdi E, Atyabi F. Temperature-sensitive permeation of methimazole through cyano-biphenyl liquid crystals embedded in cellulose nitrate membranes. Mol Cryst Liq Cryst. 2005;442:19–30. doi: https://doi.org/10.1080/154214090964870
18. Javaid A, Abutwaibe KA, Sharma KK, Sherilraj PM, Verma A, Mudavath SL. Niacin-loaded liquid crystal nanoparticles ameliorate prostaglandin D2-mediated niacin-induced flushing and hepatotoxicity. ACS Appl Nano Mater. 2024;7:444–54. doi: https://doi.org/10.1021/acsanm.3c04649
19. Rajabalaya R, Musa MN, Kifli N, David SR. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals. Drug Des Devel Ther. 2017;11:393–406. doi: https://doi.org/10.2147/DDDT.S103505
20. Lodha AP, Jadhav GP, Pande VV. Liquid crystals as a Cubo-hexagonal topical controlled drug delivery system. Pharmacophore. 2014;5(3):430–41.
21. Philip H-M. Liquid crystal physics and materials. Encycl. Mod. Opt. Elsevier; 2018, pp. 8–11. doi: https://doi.org/10.1016/B978-0-12-803581-8.09623-5
22. Bisoyi HK, Kumar S. Discotic nematic liquid crystals: science and technology. Chem Soc Rev. 2010;39:264–85. doi: https://doi.org/10.1039/B901792P
23. Wöhrle T, Wurzbach I, Kirres J, Kostidou A, Kapernaum N, Litterscheidt J, et al. Discotic liquid crystals. Chem Rev. 2016;116:1139–241. doi: https://doi.org/10.1021/acs.chemrev.5b00190
24. Lagerwall JPF, Giesselmann F. Current topics in smectic liquid crystal research. ChemPhysChem. 2006;7:20–45. doi: https://doi.org/10.1002/cphc.200500472
25. Lubensky TC. Molecular description of nematic liquid crystals. Phys Rev A. 1970;2:2497–514. doi: https://doi.org/10.1103/PhysRevA.2.2497
26. Andrienko D. Introduction to liquid crystals. J Mol Liq. 2018;267:520–41. doi: https://doi.org/10.1016/j.molliq.2018.01.175
27. Al-Zangana S, Iliut M, Turner M, Vijayaraghavan A, Dierking I. Properties of a thermotropic nematic liquid crystal doped with graphene oxide. Adv Opt Mater. 2016;4:1541–8. doi: https://doi.org/10.1002/adom.201600351
28. Kirsch P, Bremer M. Nematic liquid crystals for active matrix displays: molecular design and synthesis. Angew Chem. 2000;39:4216–35. doi: https://doi.org/10.1002/1521-3773(20001201)39:23<4216::AID-ANIE4216>3.0.CO;2-K
29. Trbojevi N. Templating novel thermotropic liquid crystal phases. 2020.
30. Gangwar LK, Choudhary A, Rewri S, Singh G, Biradar AM, Sumana G, et al. Evidence of cholesterol crystallization along with smectic layers in ferroelectric liquid crystal. J Mol Liq. 2023;369:120830. doi: https://doi.org/10.1016/j.molliq.2022.120830
31. Kim DS, Yoon DK. Curvatures of smectic liquid crystals and their applications. J Inf Disp. 2018;19:7–23. doi: https://doi.org/10.1080/1 5980316.2017.1410500
32. Vries AD. A structural classification of smectic liquid crystals. Mol Cryst Liq Cryst. 1981;63:215–29. doi: https://doi.org/10.1080/00268948108071997
33. Hirlekar R, Bulbule P, Kadam V. Innovation in drug carriers: supercooled smectic nanoparticles. Curr Drug Ther. 2012;7:56–63. doi: https://doi.org/10.2174/157488512800389173
34. Schenning APHJ, Crawford GP, Broer DJ, Schenning A, editors. Liquid crystal sensors. New York, NY: CRC Press, Taylor & Francis Group; 2018.
35. Coates D. Development and applications of cholesteric liquid crystals. Liq Cryst. 2015; 2015:1–13. doi: https://doi.org/10.1080/02 678292.2015.1020454
36. Dowden WA. Cholesteric liquid crystals a review of developments and applications. Non-destructive testing. 1967:99–102.
37. Dreher R, Meier G. Optical properties of cholesteric liquid crystals. Phys Rev A. 1973;8:1616–23. doi: https://doi.org/10.1103/PhysRevA.8.1616
38. Meiboom S, Sethna JP, Anderson PW, Brinkman WF. Theory of the blue phase of cholesteric liquid crystals. Phys Rev Lett. 1981;46:1216–9. doi: https://doi.org/10.1103/PhysRevLett.46.1216
39. Dierking I. One- and two-dimensional fluids: properties of smectic, lamellar and columnar liquid crystals by A. Jákli and A. Saupe, Boca Raton, FL: CRC Press, 2006, 352pp., US$139.46 (hardback), ISBN: 978-0-7503-0969-1 or 0-7503-0969-5. Liq Cryst Today. 2009;18:28– 9. doi: https://doi.org/10.1080/13583140902940347
40. Jakli A, Saupe A. One- and two-dimensional fluids: properties of smectic, lamellar and columnar liquid crystals. Boca Raton, FL: CRC Press; 2006.
41. Banach MJ, Friend RichardH, Sirringhaus H. Influence of the casting solvent on the thermotropic alignment of thin liquid crystalline polyfluorene copolymer films. Macromolecules. 2004;37:6079–85. doi: https://doi.org/10.1021/ma035775h
42. Cetin EO, Gundogdu E, Baspinar Y, Karasulu E, Kirilmaz L. Novel application of Eudragit RL and cholesteryl oleyl carbonate to thermo-sensitive drug delivery system. Drug Dev Ind Pharm. 2013;39:1881– 6. doi: https://doi.org/10.3109/03639045.2012.662504
43. Alfagih IM, AlQuadeib B, Aldosari B, Almurshedi A, Badran MM, Eltahir E, et al. Cubosomes dispersions as enhanced indomethacin oral delivery systems: in vitro and stability evaluation. J Pharm Res Int 2021;2021:24–35. doi: https://doi.org/10.9734/jpri/2021/v33i25A31449
44. Vivek R, Joseph K, Simon GP, Bhattacharyya AR. Melt-mixed composites of multi-walled carbon nanotubes and thermotropic liquid crystalline polymer: morphology, rheology and mechanical properties. Compos Sci Technol. 2017;151:184–92. doi: https://doi.org/10.1016/j.compscitech.2017.07.024
45. Zhang B, Schmidtke J, Kitzerow H-S. Fabrication of lyotropic alignment layers for thermotropic liquid crystals facilitated by a polymer template. Adv Opt Mater. 2019;7:1801766. doi: https://doi.org/10.1002/adom.201801766
46. Zhou W-J, Kornfield JA, Burghardt WR. Shear aligning properties of a main-chain thermotropic liquid crystalline polymer. Macromolecules. 2001;34:3654–60. doi: https://doi.org/10.1021/ma0018493
47. Park H, Parrott EPJ, Fan F, Lim M, Han H, Chigrinov VG, et al. Evaluating liquid crystal properties for use in terahertz devices. Opt Express. 2012;20:11899–905. doi: https://doi.org/10.1364/OE.20.011899
48. Mewis J, Moldenaers P. Rheology of polymeric liquid crystals. Curr Opin Colloid Interface Sci. 1996;1:466–71. doi: https://doi.org/10.1016/S1359-0294(96)80114-2
49. Phase Transitions. NETZSCH - Anal Test Lead Therm Anal Rheol Fire Test. n.d. 2024 [cited 2024 June 7]. Available from: https://analyzing-testing.netzsch.com/en/training-know-how/glossary/phase-transitions
50. Nesterkina M, Kravchenko I, Hirsch AKH, Lehr C-M. Thermotropic liquid crystals in drug delivery: a versatile carrier for controlled release. Eur J Pharm Biopharm. 2024;200:114343. doi: https://doi.org/10.1016/j.ejpb.2024.114343
51. Singh S. Handbook of liquid crystals—Volume I: foundations and fundamental aspects. Cham: Springer International Publishing; 2024. doi: https://doi.org/10.1007/978-3-031-50058-9
52. Özgan ?, Okumu? M. Thermal and spectrophotometric analysis of liquid crystal 8CB/8OCB mixtures. Braz J Phys. 2011;41:118–22. doi: https://doi.org/10.1007/s13538-011-0034-1
53. Perju E, Paslaru E, Marin L. Polymer-dispersed liquid crystal composites for bio-applications: thermotropic, surface and optical properties. Liq Cryst. 2015;42:370–82. doi: https://doi.org/10.1080 /02678292.2014.992055
54. Azároff LV. X-ray diffraction by liquid crystals. Mol Cryst Liq Cryst. 1980;60:73–97. doi: https://doi.org/10.1080/00268948008072426
55. JoVE. X-ray diffraction for determining atomic and molecular structure | Materials Engineering | 2024 [cited 2024 April 22]. Available from: https://www.jove.com/v/10446/x-ray-diffraction-for-determining-atomic-and-molecular-structure
56. Basumatary J, Gangopadhyay D, Nath A, Devi TK. Temperature dependent Raman spectroscopy of a nematic liquid crystal compound 6CHBT. J Mol Liq. 2019;288:111065. doi: https://doi.org/10.1016/j.molliq.2019.111065
57. Basumatary J, Gangopadhyay D, Nath A, Devi Thingujam K. Studies of temperature dependent Raman spectroscopy of two nematic liquid crystalline compounds of homologous series. Spectrochim Acta A Mol Biomol Spectrosc. 2023;300:122898. doi: https://doi.org/10.1016/j.saa.2023.122898
58. Miskovic V, Malafronte E, Minetti C, Machrafi H, Varon C, Iorio CS. Thermotropic liquid crystals for temperature mapping. Front Bioeng Biotechnol. 2022;10:806362. doi: https://doi.org/10.3389/fbioe.2022.806362
59. Ibrahim R, Nyska A, Ramot Y. Biocompatibility of polymers. 2023;7:1–271.
60. Mosca M, Murgia S, Ceglie A, Monduzzi M, Ambrosone L. Biocompatible lipid-based liquid crystals and emulsions. J Phys Chem B. 2006;110:25994–6000. doi: https://doi.org/10.1021/jp062622y
61. Prévôt M, Ustunel S, Hegmann E. Liquid crystal elastomers—a path to biocompatible and biodegradable 3D-LCE scaffolds for tissue regeneration. Materials. 2018;11:377. doi: https://doi.org/10.3390/ma11030377
62. Luk Y-Y, Campbell S. Non-toxic thermotropic liquid crystals for use with mammalian cells. Liq Cryst. 2004;31:611–21. doi: https://doi.org/10.1080/02678290410001666020
63. Soon CF, Youseffi M, Blagden N, Berends R, Lobo SB, Javid FA, et al. Characterization and biocompatibility study of nematic and cholesteryl liquid crystals. Proc World Congress Eng. 2009;2.
64. Chen C-H, Dierking I. Nanoparticles in thermotropic and lyotropic liquid crystals. Front Soft Matter. 2025;4:1518796. doi: https://doi.org/10.3389/frsfm.2024.1518796
65. Collyer AA. Thermotropic liquid crystal polymers for engineering applications. Mater Sci Technol. 1989;5:309–22. doi: https://doi.org/10.1179/mst.1989.5.4.309
66. Brown GH. Liquid crystals and some of their applications in chemistry. Anal Chem. 1969;41:26A–39A. doi: https://doi.org/10.1021/ac60282a042
67. Dinarvand R, Ansari Dogaheh M. The use of thermoresponsive Hydrogel membrane as modulated drug delivery system. Daru. 2002;10:105–10.
68. D’Emanuele A, Dinarvand R. Preparation, characterisation, and drug release from thermoresponsive microspheres. Int J Pharm. 1995;118:237–42. doi:
https://doi.org/10.1016/0378-5173(94)00384-H
69. Aeinlang N, Srichana T, Songkro S. Cholesteryl cetyl carbonate as a smart material for drug delivery application. Adv Mater Res. 2008;55–57:713–6. doi: https://doi.org/10.4028/www.scientific.net/AMR.55-57.713
70. Fraccia TP, Zanchetta G. Liquid–liquid crystalline phase separation in biomolecular solutions. Curr Opin Colloid Interface Sci. 2021;56:101500. doi: https://doi.org/10.1016/j.cocis.2021.101500
71. Patel M, Shimizu S, Bates MA, Fernandez-Nieves A, Guldin S. Long term phase separation dynamics in liquid crystal-enriched microdroplets obtained from binary fluid mixtures. Soft Matter. 2023;19:1017–24. doi: https://doi.org/10.1039/D2SM01348G
72. Nozawa I, Suzuki Y, Sato S, Sugibayashi K, Morimoto Y. Preparation of thermo-responsive polymer membranes. I. J Biomed Mater Res. 1991;25:243–54. doi: https://doi.org/10.1002/jbm.820250210
73. Dinarvand R, Khodaverdi E, Atyabi F, Erfan M. Thermoresponsive drug delivery using liquid crystal-embedded cellulose nitrate membranes. Drug Deliv. 2006;13:345–50. doi: https://doi.org/10.1080/10717540500394729
74. Dinarvand R, Ansari M. Temperature-modulated permeation of hydroxy urea through thermotropic liquid crystals embedded in poly-HEMA. J Membr Sci. 2003;223:217–26. doi: https://doi.org/10.1016/S0376-7388(03)00340-5
75. Chuealee R, Wiedmann TS, Suedee R, Srichana T. Interaction of amphotericin B with cholesteryl palmityl carbonate ester. J Pharm Sci. 2010;99:4593–602. doi: https://doi.org/10.1002/jps.22176
76. Aeinleng N, Songkro S, Noipha K, Srichana T. Physicochemical performances of indomethacin in cholesteryl cetyl carbonate liquid crystal as a transdermal dosage. AAPS PharmSciTech. 2012;13:513– 21. doi: https://doi.org/10.1208/s12249-012-9768-5
77. Chuealee R, Aramwit P, Srichana T. Characteristics of cholesteryl cetyl carbonate liquid crystals as drug delivery systems. In Proceedings of the 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand: IEEE; 2007, pp. 1098–103. doi: https://doi.org/10.1109/NEMS.2007.352210
78. Lin Y-Y, Chen K-S, Lin S-Y. Development and investigation of a thermo-responsive cholesteryl oleyl carbonate-embedded membrane. J Control Rel. 1996;41:163–70. doi: https://doi.org/10.1016/0168-3659(96)01321-1
79. Lin S-Y, Lin Y-Y, Chent K-S. A thermoswitchable membrane for drug delivery. Drug Deliv. 1995;2:123–7.
80. Lin SY, Lin YY, Chen KS. Permeation behavior of salbutamol sulfate through hydrophilic and hydrophobic membranes embedded by thermo-responsive cholesteryl oleyl carbonate.pdf; 1996.
81. Lin S Y, YY Lin, K S Chen. Permeation behavior of salbutamol sulfate through hydrophilic and hydrophobic membranes embedded by thermo-responsive cholesteryl oleyl carbonate. Pharm Res. 1996;13(6):914–9.
82. Ju H-K, Kim J-W, Han S-H, Chang I-S, Kim H-K, Kang H-H, et al. Thermotropic liquid-crystal/polymer microcapsules prepared by in situ suspension polymerization. Colloid Polym Sci. 2002;280:879– 85. doi: https://doi.org/10.1007/s00396-002-0696-x
83. Lin S-Y, Ho C-J, Li M-J.Precision and reproducibility of temperature response of a thermo-responsive membrane embedded by binary liquid crystals for drug delivery. J Control Rel. 2001;73:293–301. doi: https://doi.org/10.1016/S0168-3659(01)00300-5
84. Bagheri M, Tahririan P. Preparation and study of a thermo-responsive membrane using binary liquid crystal mixtures of cholesteryl cetyl ether and cholesteryl oleyl carbonate. Iran Polym J.2012;21:157–64. doi: https://doi.org/10.1007/s13726-012-0018-1
85. Liu K, Chen D, Marcozzi A, Zheng L, Su J, Pesce D, et al. Thermotropic liquid crystals from biomacromolecules. Proc Natl Acad Sci. 2014;111:18596–600. doi: https://doi.org/10.1073/pnas.1421257111
86. Popov N, Honaker LW, Popova M, Usol’tseva N, Mann EK, Jákli A, et al. Thermotropic liquid crystal-assisted chemical and biological sensors. Materials 2017;11:20. doi: https://doi.org/10.3390/ma11010020
87. Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B. 2018;8:34–50. doi: https://doi.org/10.1016/j.apsb.2017.11.005
88. Singh S. Handbook of liquid crystals—volume II: advanced aspects and applications. Cham: Springer Nature Switzerland; 2024. doi: https://doi.org/10.1007/978-3-031-52621-3
89. Rao Y, Xu Y. Liquid crystal thermography measurement uncertainty analysis and its application to turbulent heat transfer measurements. Adv Condens Matter Phys. 2012;2012:1–8. doi: https://doi.org/10.1155/2012/898104
90. Jacob G, Jose IS. Breast cancer detection: a comparative review on passive and active thermography. Infrared Phys Technol. 2023;134:104932. doi: https://doi.org/10.1016/j.infrared.2023.104932
91. Yeo D-H, Park S-Y. Liquid-crystal-based biosensor for detecting Ca2+ in human saliva. J Ind Eng Chem 2019;74:193–8. doi: https://doi.org/10.1016/j.jiec.2019.03.001
92. Hodorowicz-Zaniewska D, Zurrida S, Kotlarz A, Kasprzak P, Skupie? J, ?wierz A, et al. A prospective pilot study on use of liquid crystal thermography to detect early breast cancer. Integr Cancer Ther. 2020;19:1534735420915778. doi: https://doi.org/10.1177/1534735420915778
93. Shiralipour F, Nik Akhtar Y, Gilmor A, Pegorin G, Valerio-Aguilar A, Hegmann E. The role of liquid crystal elastomers in pioneering biological applications. Crystals. 2024;14:859. doi: https://doi.org/10.3390/cryst14100859
94. Bunjes H, Rades T. Thermotropic liquid crystalline drugs. J Pharm Pharmacol. 2010;57:807–16. doi: https://doi.org/10.1211/0022357056208
95. Liu L, Liu H, Wang R, Zhou J, Zhao L, Li Q, et al. Preparation and application of environmentally-responsive hydrogels in tissue engineering. Mater Today Commun. 2024;40:109493. doi: https://doi.org/10.1016/j.mtcomm.2024.109493
96. Ranjan N, Tyagi R, Kumar R, Babbar A. 3D printing applications of thermo-responsive functional materials: a review. Adv Mater Process Technol. 2023;2023:1–17. doi: https://doi.org/10.1080/237 4068X.2023.2205669
97. Johann KS, Böhm F, Kapernaum N, Giesselmann F, Bonten C. Orientation of liquid crystalline polymers after filament extrusion and after passing through a 3D printer nozzle. ACS Appl Polym Mater. 2024;6:10006–18. doi: https://doi.org/10.1021/acsapm.4c01921
98. Houriet C, Damodaran V, Mascolo C, Gantenbein S, Peeters D, Masania K. 3D printing of flow-inspired anisotropic patterns with liquid crystalline polymers. Adv Mater. 2024;36:2307444. doi: https://doi.org/10.1002/adma.202307444
99. Jiang Y, Zhu C, Ma X, Fan D. Smart hydrogel-based trends in future tendon injury repair: a review. Int J Biol Macromol. 2024;282:137092. doi: https://doi.org/10.1016/j.ijbiomac.2024.137092
100. Prajakta P. Gaikwad, Maya T. Desai. liquid-crystalline-phase—its-pharma-applications. Int. J.Pharma Res Rev. 2013 [cited 2024 May 29];2(12):40–52. Available from: https://www.rroij.com/open-access/liquid-crystalline-phase--its-pharma-applications.pdf
101. Clapp TV, Crossland WA, Davey AB, Grasmann M, Hannington JP, King RK, et al. Liquid crystal formulations and structures for smectic A optical devices. US8956548B2, 2015.
102. Israeel FAM, Patil S, Ashmeena S, Naziya K, Suryawanshi C, Taskeen R. Pharmaceutical applications of liquid crystal with special emphasized on advanced drug delivery system: an overview. EPRA Int J Multidiscip Res. 2021;7:214–24. doi: https://doi.org/10.36713/epra2013
103. Su Z. The investigation of pharmaceutical liquid crystals: formation, stability and phase behavior. Theses and Dissertations 2011. pp. 1–197. Available from: ProQuest
104. Yang R, Zhao D, Dong G, Liu Y, Wang D. Synthesis and characterization of photo-responsive thermotropic liquid crystals based on azobenzene. Crystals. 2018;8:147. doi: https://doi.org/10.3390/cryst8040147
105. Zhang Z, Su R, Han F, Zheng Z, Liu Y, Zhou X, et al. A soft intelligent dressing with pH and temperature sensors for early detection of wound infection. RSC Adv. 2022;12:3243–52. doi: https://doi.org/10.1039/D1RA08375A
106. Nesterkina M, Vashchenko O, Vashchenko P, Lisetski L, Kravchenko I, Hirsch KHA, et al. Thermoresponsive cholesteric liquid–crystal systems doped with terpenoids as drug delivery systems for skin applications. Eur J Pharm Biopharm. 2023;191:139–49. https://doi.org/10.1016/j.ejpb.2023.09.002
107. El-Say KM, El-Sawy HS. Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm. 2017;528:675–91. doi: https://doi.org/10.1016/j.ijpharm.2017.06.052
108. Choudhury A, Sonowal K, Laskar RE, Deka D, Dey BK. Liposome: a carrier for effective drug delivery. J Appl Pharm Res. 2020;8:22–8. doi: https://doi.org/10.18231/j.joapr.2019.v.8.i.1.003
Year
Month