Formulation development and optimization of nanoemulsion gel containing Prosopis cineraria, Aerva javanica, and Fagonia indica extracts for treatment of arthritis

Suman Jain Abhishek Pandey   

Open Access   

Published:  Sep 19, 2025

DOI: 10.7324/JAPS.2025.241266
Abstract

Herbal extracts are interesting therapeutic candidates because they are enriched with numerous bioactive compounds which can be used to treat inflammatory disorders, such as rheumatic pain, inflammation, and arthritis. However, numerous issues are associated with the use of bioactive compounds, such as poor solubility, less permeability, confined bioavailability, and instability due to oxygen and light. In the present study, formulation and optimization of nanoemulsion containing Prosopis cineraria, Aerva javanica, and Fagonia indica hydroalcoholic extracts (0.2% w/w) was performed by the ultrasonication method. The response surface methodology was employed to optimize the nanoemulsion by using Box–Behnken experimental design. The oil concentration (oleic acid and olive oil), surfactant, and cosurfactant concentration (Tween 80 and soya lecithin) were three independent variables, and droplet size and % transmittance were two dependent variables. The droplet size, transmittance, polydispersity index, and zeta potential of optimized nanoemulsion formulation were 70.72 nm, 99.21%, 0.259, and −15.9 mV, respectively. The Fourier transform infrared analysis revealed that there was no interaction between the plant extracts and excipients. Hence, it can be concluded that these results will help in the design of nanoemulsion with optimum independent variables.


Keyword:     Prosopis cineraria Aerva javanica Fagonia indica nanoemulsion optimization


Citation:

Jain S, Pandey A. Formulation development and optimization of nanoemulsion gel containing Prosopis cineraria, Aerva javanica, and Fagonia indica extracts for treatment of arthritis. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.241266

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Radu AF, Bungau SG. Management of rheumatoid arthritis: an overview. Cells 2021;10(11):2857.

2. Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: a review. JAMA. 2018;320(13):1360. https://doi.org/10.1001/jama.2018.13103

3. Pratiwi RD, Sahid MN. Synovium targeting delivery of TNFα blocker for rheumatoid arthritis therapy - a mini review. J Appl Pharm Sci. 2018;8(10):165-71. https://doi.org/10.7324/JAPS.2018.81021

4. Janbaz KH, Haider S, Imran I, Zia-Ul-Haq M, De Martino L, De Feo V. Pharmacological evaluation of Prosopis cineraria (L.) druce in gastrointestinal, respiratory, and vascular disorders. Evid Based Complement Alternat Med. 2012;2012:1-7. https://doi.org/10.1155/2012/735653

5. Iftikhar N, Chatha SAS, Ahmad T, Ali Q, Hussain AI, Rathore HA. Fagonia arabica L.: a review of its phytochemistry, pharmacology and traditional uses. Comb Chem High Throughput Screen. 2022;25(7):1187-99. https://doi.org/10.2174/1386207325666210923120957

6. Arshad HM, Ahmad FU, Lodhi AH. Methanolic extract of Aerva javanica leaves prevents LPS-induced depressive like behavior in experimental mice. Drug Des Devel Ther. 2022;16:4179-204.https://doi.org/10.2147/DDDT.S383054

7. Pandey A, Kaushik A. A phytopharmacological review on arid region medicinal plant- Aerva pseudotomentosa. Indo Am J Pharm Res. 2017;7(2):7676-80.

8. Musaddiq S, Mustafa K, Ahmad S, Aslam S, Ali B, Khakwani S, et al. Pharmaceutical, ethnopharmacological, phytochemical and synthetic importance of genus Aerva : a review. Nat Prod Commun. 2018;13(3):1934578X1801300326. https://doi.org/10.1177/1934578X1801300326

9. Sharifi-Rad J, Kobarfard F, Ata A, Ayatollahi SA, Khosravi-Dehaghi N, Jugran AK, et al. Prosopis plant chemical composition and pharmacological attributes: targeting clinical studies from preclinical evidence. Biomolecules 2019;9(12):777. https://doi.org/10.3390/biom9120777

10. Pandey A, Kaushik A. Evaluation of anti-nociceptive and anti-pyretic activity of Aerva pseudotomentosa leaves aqueous extract. Int J Pharm Sci Res. 2016;7(11):4686-92.

11. Pandey V, Patel S, Danai P, Yadav G, Kumar A. Phyto-constituents profiling of Prosopis cineraria and in vitro assessment of antioxidant and anti-ulcerogenicity activities. Phytomedicine Plus. 2023;3(3):100452. https://doi.org/10.1016/j.phyplu.2023.100452

12. Sulieman AME, Alanaizy E, Alanaizy NA, Abdallah EM, Idriss H, Salih ZA, et al. Unveiling chemical, antioxidant and antibacterial properties of Fagonia indica grown in the Hail Mountains, Saudi Arabia. Plants 2023;12(6):1354. https://doi.org/10.3390/plants12061354

13. Kotta S, Khan AW, Ansari SH, Sharma RK, Ali J. Formulation of nanoemulsion: a comparison between phase inversion composition method and high-pressure homogenization method. Drug Deliv. 2015;22(4):455-66. https://doi.org/10.3109/10717544.2013.866992

14. Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123-7. https://doi.org/10.1007/s13205-014-0214-0

15. Kord Z, Taheri A, Ghaffari M, Sharifian S. Incorporation of Prosopis cineraria extract improved the mechanical, barrier and antioxidant properties but not the antibacterial activity of tigertooth croaker fish scale gelatin film. Foods 2024;13(4):538. https://doi.org/10.3390/foods13040538

16. Azam F, Sheikh N, Ali G, Tayyeb A. Fagonia indica repairs hepatic damage through expression regulation of toll-like receptors in a liver injury model. J Immunol Res. 2018;2018:1-12. https://doi.org/10.1155/2018/7967135

17. Pandey A, Kaushik A, Wanjari M, Dey YN, Jaiswal BS, Dhodi A. Antioxidant and anti-inflammatory activities of Aerva pseudotomentosa leaves. Pharm Biol. 2017;55(1):1688-97. https://doi.org/10.1080/13880209.2017.1321022

18. Akhter A, Shirazi JH, Shoaib Khan HM, Hussain MD, Kazi M. Development and evaluation of nanoemulsion gel loaded with bioactive extract of Cucumis melo var. agrestis: a novel approach for enhanced skin permeability and antifungal activity. Heliyon 2024;10(15):e35069.https://doi.org/10.1016/j.heliyon.2024.e35069

19. Amin F, Fozia, Khattak B, Alotaibi A, Qasim M, Ahmad I, et al. Green synthesis of copper oxide nanoparticles using Aerva javanica leaf extract and their characterization and investigation of in vitro antimicrobial potential and cytotoxic activities. Evid Based Complement Alternat Med. 2021;2021:1-12. https://doi.org/10.1155/2021/5589703

20. Ahmad N, Ahmad R, Al-Qudaihi A, Alaseel SE, Fita IZ, Khalid MS, et al. Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC Adv. 2019;9(35):20192-206. https://doi.org/10.1039/C9RA03102B

21. Mehmood T, Ahmed A. Tween 80 and soya-lecithin-based food-grade nanoemulsions for the effective delivery of vitamin D. Langmuir 2020;36(11):2886-92. https://doi.org/10.1021/acs.langmuir.9b03944

22. Nirmala MJ, Durai L, Gopakumar V, Nagarajan R. Preparation of celery essential oil-based nanoemulsion by ultrasonication and evaluation of its potential anticancer and antibacterial activity. Int J Nanomedicine. 2020;15:7651-66. https://doi.org/10.2147/IJN.S252640

23. Hosny KM, Asfour HZ, Rizg WY, Alhakamy NA, Sindi AM, Alkhalidi HM, et al. Formulation, optimization, and evaluation of oregano oil nanoemulsions for the treatment of infections due to oral microbiota. Int J Nanomedicine. 2021;16:5465-78. https://doi.org/10.2147/IJN.S325625

24. Al Fatease A, Alqahtani A, Khan BA, Mohamed JMM, Farhana SA. Preparation and characterization of a curcumin nanoemulsion gel for the effective treatment of mycoses. Sci Rep. 2023;13(1):22730. https://doi.org/10.1038/s41598-023-49328-2

25. Laxmi M, Bhardwaj A, Mehta S, Mehta A. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether. Artif Cells Nanomed Biotechnol. 2015;43(5):334-44. https://doi.org/10.3109/21691401.2014.887018

26. Amgaonkar YM, Kochar NI, Chandewar AV, Umekar MJ, Wadher KJ. Boswellic acid loaded nanoemulgel for rheumatoid arthritis: formulation design and optimization by QbD, in vitro, ex vivo, and in vivo evaluation. Ind J Pharm Edu Res. 2024;58(2):546-54. https://doi.org/10.5530/ijper.58.2.61

27. Shafiq-un-Nabi S, Shakeel F, Talegaonkar S, Ali J, Baboota S, Ahuja A, et al. Formulation development and optimization using nanoemulsion technique: a technical note. AAPS PharmSciTech. 2007;8(2):E12-7. https://doi.org/10.1208/pt0802028

28. Chawla P, Kumar N, Kaushik R, Dhull SB. Synthesis, characterization and cellular mineral absorption of nanoemulsions of Rhododendron arboreum flower extracts stabilized with gum arabic. J Food Sci Technol. 2019;56(12):5194-203. https://doi.org/10.1007/s13197-019-03988-z

29. Najda A, Bains A, Klepacka J, Chawla P. Woodfordia fruticosa extract nanoemulsion: influence of processing treatment on droplet size and its assessment for in vitro antimicrobial and anti-inflammatory activity. Front Nutr. 2022;9:944856. https://doi.org/10.3389/fnut.2022.944856

30. Tarik Alhamdany A, Saeed AMH, Alaayedi M. Nanoemulsion and solid nanoemulsion for improving oral delivery of a breast cancer drug: formulation, evaluation, and a comparison study. Saudi Pharm J. 2021;29(11):1278-88. https://doi.org/10.1016/j.jsps.2021.09.016

31. Phaugat P, Nishal S, Dutt R, Khansili A. A co-additive nanoemulgel formulation of tretinoin and curcumin: formulation and optimization. J Appl Pharm Sci [Internet]. 2022;12(9):58-66. https://doi.org/10.7324/JAPS.2022.120907

32. Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm. 2007;66(2):227-43.https://doi.org/10.1016/j.ejpb.2006.10.014

33. Gaber DA, Alsubaiyel AM, Alabdulrahim AK, Alharbi HZ, Aldubaikhy RM, Alharbi RS, et al. Nano-emulsion based gel for topical delivery of an anti-inflammatory drug: in vitro and in vivo evaluation. Drug Des Devel Ther. 2023;17:1435-51. https://doi.org/10.2147/DDDT.S407475

34. Miastkowska M, Kulawik-Pióro A, Szczurek M. Nanoemulsion gel formulation optimization for burn wounds: analysis of rheological and sensory properties. Processes 2020;8(11):1416. https://doi.org/10.3390/pr8111416

35. Bernardi DS, Pereira TA, Maciel NR, Bortoloto J, Viera GS, Oliveira GC, et al. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. J Nanobiotechnol. 2011;9(1):44. https://doi.org/10.1186/1477-3155-9-44

36. Mostafa NM. Antibacterial activity of ginger (Zingiber officinale) leaves essential oil nanoemulsion against the cariogenic Streptococcus mutans. J Appl Pharm Sci. 2018;8(9):034-41. https://doi.org/10.7324/JAPS.2018.8906

37. Banerjee S, Biswas S, Chanda A, Das A, Adhikari A. Evaluation of phytochemical screening and anti-inflammatory activity of leaves and stem of Mikania scandens (L.) wild. Ann Med Health Sci Res. 2014;4(4):532. https://doi.org/10.4103/2141-9248.139302

38. Ameena M, Arumugham M, Ramalingam K, Rajeshkumar S, Shanmugam R. Evaluation of the anti-inflammatory, antimicrobial, antioxidant, and cytotoxic effects of chitosan thiocolchicoside-lauric acid nanogel. Cureus [Internet] 2023;15(9):e46003.

39. Wongsa P, Phatikulrungsun P, Prathumthong S. FT-IR characteristics, phenolic profiles and inhibitory potential against digestive enzymes of 25 herbal infusions. Sci Rep. 2022;12(1):6631.https://doi.org/10.1038/s41598-022-10669-z

40. Schreiner TB, Santamaria-Echart A, Ribeiro A, Peres AM, Dias MM, Pinho SP, et al. Formulation and optimization of nanoemulsions using the natural surfactant Saponin from Quillaja bark. Molecules 2020;25(7):1538. https://doi.org/10.3390/molecules25071538

41. Gutiérrez JM, González C, Maestro A, Solè I, Pey CM, Nolla J. Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface Sci. 2008;13(4):245-51. https://doi.org/10.1016/j.cocis.2008.01.005

42. Ullah N, Amin A, Alamoudi RA, Rasheed SA, Alamoudi RA, Nawaz A, et al. Fabrication and optimization of essential-oil-loaded nanoemulsion using box-behnken design against Staphylococos aureus and Staphylococos epidermidis isolated from oral cavity. Pharmaceutics 2022;14(8):1640.https://doi.org/10.3390/pharmaceutics14081640

43. Yunitasari N, Swasono RT, Pranowo HD, Raharjo TJ. Phytochemical screening and metabolomic approach based on Fourier transform infrared (FTIR): identification of α-amylase inhibitor metabolites in Vernonia amygdalina leaves. J Saudi Chem Soc. 2022;26(6):101540. https://doi.org/10.1016/j.jscs.2022.101540

44. Jain PK, Soni A, Jain P, Bhawsar J. Phytochemical analysis of Mentha spicata plant extract using UV-VIS, FTIR and GC/MS technique. J Chem Pharm Res. 2016;8(2):1-6.

45. Kulkarni NS, Ranpise NS, Rathore DS, Dhole SN. Characterization of self-microemulsifying dosage form: special emphasis on zeta potential measurement. Int J Pharm Biol Arch. 2019;10(3):172-9.

46. Razzaq FA, Asif M, Asghar S, Iqbal MS, Khan IU, Khan SUD, et al. Glimepiride-loaded nanoemulgel; development, in vitro characterization, ex vivo permeation and in vivo antidiabetic evaluation. Cells 2021;10(9):2404. https://doi.org/10.3390/cells10092404

47. Khan BA, Ahmad N, Alqahtani A, Baloch R, Rehman AU, Khan MK. Formulation development of pharmaceutical nanoemulgel for transdermal delivery of feboxostat: physical characterization and in vivo evaluation. Eur J Pharm Sci. 2024;195:106665. https://doi.org/10.1016/j.ejps.2023.106665

48. Grassi M, Coceani N, Magarotto L. Mathematical modeling of drug release from microemulsions: theory in comparison with experiments. J Colloid Interface Sci. 2000;228(1):141-50. https://doi.org/10.1006/jcis.2000.6945

49. Nawaz A, Latif MS, Alnuwaiser MA, Ullah S, Iqbal M, Alfatama M, et al. Synthesis and characterization of chitosan-decorated nanoemulsion gel of 5-fluorouracil for topical delivery. Gels 2022;8(7):412. https://doi.org/10.3390/gels8070412

50. Huma S, Khan HMS, Sohail M, Akhtar N, Rasool F, Majeed F, et al. Development, in-vitro characterization and assessment of cosmetic potential of Beta vulgaris extract emulsion. J Herb Med. 2020;23:100372. https://doi.org/10.1016/j.hermed.2020.100372

51. Yang T, Liu C, Zheng Y, Liu TC, Li K, Liu J, et al. Effect of WPI/ Tween 80 mixed emulsifiers on physicochemical stability of ginsenosides nanoemulsions. Food Biosci. 2023;53:102519. https://doi.org/10.1016/j.fbio.2023.102519

52. Kampa J, Koidis A, Ghawi SK, Frazier RA, Rodriguez-Garcia J. Optimisation of the physicochemical stability of extra virgin olive oil-in-water nanoemulsion: processing parameters and stabiliser type. Eur Food Res Technol. 2022;248(11):2765-77. https://doi.org/10.1007/s00217-022-04088-7

53. Mohamadi Saani S, Abdolalizadeh J, Zeinali Heris S. Ultrasonic/ sonochemical synthesis and evaluation of nanostructured oil in water emulsions for topical delivery of protein drugs. Ultrason Sonochem. 2019;55:86-95. https://doi.org/10.1016/j.ultsonch.2019.03.018

54. Shakeel F, Haq N, Al-Dhfyan A, Alanazi FK, Alsarra IA. Chemoprevention of skin cancer using low HLB surfactant nanoemulsion of 5-fluorouracil: a preliminary study. Drug Deliv. 2015;22(4):573-80. https://doi.org/10.3109/10717544.2013.868557

Article Metrics
11 Views 3 Downloads 14 Total

Year

Month

Related Search

By author names