Revolutionizing drug discovery and development: A comprehensive review of microfluidics in the pharmaceutical industry

Krishna Kishor Hillemane Ganaraj Devika Nayak Praveen Halagali Raagul Seenivasan Vamshi Krishna Tippavajhala   

Open Access   

Published:  Jul 07, 2025

DOI: 10.7324/JAPS.2025.252966
Abstract

The pharmaceutical industry has undergone a transformative paradigm shift in drug discovery and development, driven by the integration of microfluidic technology. Microfluidics is a considerably newer branch of science and technology that involves systems that use channels with sizes ranging from tens to a few hundred micrometers to process small (10-9 to 10-18 l) volumes of fluid. In the past few decades, microfluidic technology has been predominantly used in biotechnology, including cloning and unit cell analysis. However, recent advancements in drug delivery technologies, along with the drawbacks associated with conventional methods, have gained the attention of scientists worldwide in the use of microfluidic technology in drug discovery and delivery. As a result, several products, especially point-of-care devices, have surfaced in the market in the last few years. According to Grand View Research, it is bound to grow with a compound annual growth rate of 12.19% from 2020 to 2030. In this review, we have attempted to provide comprehensive and up-to-date information about the fabrication, benefits, and application of microfluidics in the pharmaceutical industry. Despite the advantages, we acknowledge the challenges and have highlighted the recent advancements, their potential in drug discovery and development, and pandemic situations such as COVID-19.


Keyword:     Microfluidics drug discovery and development lab-on-chip organ-on-chip drug delivery


Citation:

Krishna Kishor HG, Nayak D, Halagali P, Seenivasan R, Tippavajhala VK. Revolutionizing drug discovery and development: A comprehensive review of microfluidics in the pharmaceutical industry. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.2529

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Thimmaraju MK, Trivedi R, Hemalatha G, Thirupathy B, Billah AM. Microfluidic revolution and its impact on pharmaceutical materials: a review. Mater Today Proc. 2023. https://doi.org/10.1016/j.matpr.2023.03.096

2. Pattanayak P, Singh SK, Gulati M, Vishwas S, Kapoor B, Chellappan DK, et al. Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives. Vol. 25, Microfluidics and Nanofluidics. Berlin: Springer Science and Business Media Deutschland GmbH; 2021. https://doi.org/10.1007/s10404-021-02502-2

3. Fallahi H, Zhang J, Phan HP, Nguyen NT. Flexible microfluidics: fundamentals, recent developments, and applications. Vol. 10, Micromachines. Basel, Switzerland: MDPI AG; 2019. https://doi.org/10.3390/mi10120830

4. Liao CC, Chen YZ, Lin SJ, Cheng HW, Wang JK, Wang YL, et al. A microfluidic microwell device operated by the automated microfluidic control system for surface-enhanced Raman scattering-based antimicrobial susceptibility testing. Biosens Bioelectron. 2021;191:113483. https://doi.org/10.1016/j.bios.2021.113483

5. Azizipour N, Avazpour R, Rosenzweig DH, Sawan M, Ajji A. Evolution of biochip technology: a review from lab-on-a-chip to organ-on-a-chip. Micromachines (Basel). 2020;11(6):1-15. https://doi.org/10.3390/mi11060599

6. Lang P, Liu Y. Soft matter at aqueous interfaces. Lecture notes in physics. 2015. https://doi.org/10.1007/978-3-319-24502-7

7. Jung W, Han J, Choi JW, Ahn CH. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Vol. 132, Microelectronic Engineering. Amsterdam, Netherlands: Elsevier B.V.; 2015. pp: 46-57. https://doi.org/10.1016/j.mee.2014.09.024

8. Kung CT, Gao H, Lee CY, Wang YN, Dong W, Ko CH, et al. Microfluidic synthesis control technology and its application in drug delivery, bioimaging, biosensing, environmental analysis and cell analysis. Vol. 399, Chemical Engineering Journal. Amsterdam, Netherlands: Elsevier B.V.; 2020. https://doi.org/10.1016/j.cej.2020.125748

9. Yaman G. A suggestion of standard and optimized steps in the LOC (Lab on a Chip), LOD (Lab on a Disc), and POC (Point of Care) development process for biomedical applications: a case study about ESR. J Comput Appl Math. 2023;417:114626. https://doi.org/10.1016/j.cam.2022.114626

10. Pradeep A, Raveendran J, Babu TGS. Chapter five¾Design, fabrication and assembly of lab-on-a-chip and its uses. In: Pandya A, Singh V, editors. Micro/nanofluidics and lab-on-chip based emerging technologies for biomedical and translational research applications - Part B [Internet]. Cambridge, MA: Academic Press; 2022. p. 121-62. https://doi.org/10.1016/bs.pmbts.2021.07.021

11. Al-wdan OA, Sharallah OA, Abdelwahab NA, Mohammed AO, Elmowafy E, Soliman ME. Insights into microfabrication and implementation of microfluidics in pharmaceutical drug delivery and analysis. OpenNano. 2023;12:100156. https://doi.org/10.1016/j.onano.2023.100156

12. Sun K, Wang Z, Jiang X. Modular microfluidics for gradient generation. Lab Chip. 2008;8(9):1536-43. https://doi.org/10.1039/b806140h

13. Shanko ES, van de Burgt Y, Anderson PD, den Toonder JMJ. Microfluidic magnetic mixing at low reynolds numbers and in stagnant fluids. Micromachines (Basel). 2019;10(11):731. https://doi.org/10.3390/mi10110731

14. Berlanda SF, Breitfeld M, Dietsche CL, Dittrich PS. Recent advances in microfluidic technology for bioanalysis and diagnostics. Vol. 93, Analytical chemistry. Washington, DC: American Chemical Society; 2021. pp: 311-31. https://doi.org/10.1021/acs.analchem.0c04366

15. Bringer MR, Gerdts CJ, Song H, Tice JD, Ismagilov RF. Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Philos Trans R Soc A Math Phys Eng Sci. 2004;362(1818):1087-104. https://doi.org/10.1098/rsta.2003.1364

16. Maurya R, Gohil N, Bhattacharjee G, Alzahrani KJ, Ramakrishna S, Singh V. Chapter Twelve - Microfluidics device for drug discovery, screening and delivery. In: Pandya A, Singh V, editors. Progress in molecular biology and translational science [Internet]. Cambridge, MA: Academic Press; 2022. pp: 335-46. https://doi.org/10.1016/bs.pmbts.2021.07.028

17. Qing LS, Wang TT, Luo HY, Du JL, Wang RY, Luo P. Microfluidic strategies for natural products in drug discovery: current status and future perspectives. TrAC Trends Analy Chem [Internet]. 2023;158:116832. https://doi.org/10.1016/j.trac.2022.116832

18. Ejeta F. Recent advances of microfluidic platforms for controlled drug delivery in nanomedicine. Vol. 15, Drug design, development and therapy. Macclesfield, United Kingdom: Dove Medical Press Ltd; 2021. pp: 3881-91. https://doi.org/10.2147/DDDT.S324580

19. Ahn J, Ko J, Lee S, Yu J, Kim YT, Jeon NL. Microfluidics in nanoparticle drug delivery; From synthesis to pre-clinical screening. Adv Drug Deliv Rev. 2018;128:29-53. https://doi.org/10.1016/j.addr.2018.04.001

20. Wongkaew N, Simsek M, Griesche C, Baeumner AJ. Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: recent progress, applications, and future perspective. Chem Rev [Internet]. 2019;119(1):120-94. https://doi.org/10.1021/acs.chemrev.8b00172

21. Ma Z, Li B, Peng J, Gao D. Recent development of drug delivery systems through microfluidics: from synthesis to evaluation. Pharmaceutics. 2022;14(2):434. https://doi.org/10.3390/pharmaceutics14020434

22. Rossow T, Heyman JA, Ehrlicher AJ, Langhoff A, Weitz DA, Haag R, et al. Controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics. J Am Chem Soc. 2012;134(10):4983-9. https://doi.org/10.1021/ja300460p

23. Forbes N, Hussain MT, Briuglia ML, Edwards DP, Horst JH ter, Szita N, et al. Rapid and scale-independent microfluidic manufacture of liposomes entrapping protein incorporating in-line purification and at-line size monitoring. Int J Pharm. 2019;556:68-81. https://doi.org/10.1016/j.ijpharm.2018.11.060

24. Hamano N, Böttger R, Lee SE, Yang Y, Kulkarni JA, Ip S, et al. Robust microfluidic technology and new lipid composition for fabrication of curcumin-loaded liposomes: effect on the anticancer activity and safety of cisplatin. Mol Pharm. 2019;16(9):3957-67. https://doi.org/10.1021/acs.molpharmaceut.9b00583

25. Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249-58. https://doi.org/10.1016/j.biopha.2018.10.078

26. Maia R, Carvalho V, Lima R, Minas G, Rodrigues RO. Microneedles in advanced microfluidic systems: a systematic review throughout lab and organ-on-a-chip applications. Pharmaceutics. 2023;15(3):792. https://doi.org/10.3390/pharmaceutics15030792

27. Tariq N, Ashraf MW, Tayyaba S. A review on solid microneedles for biomedical applications. J Pharm Innov. 2022;17:1464-83. https://doi.org/10.1007/s12247-021-09586-x

28. Hao Y, Li W, Zhou XL, Yang F, Qian ZY. Microneedles-based transdermal drug delivery systems: a review. J Biomed Nanotechnol. 2017;13:1581-97. https://doi.org/10.1166/jbn.2017.2474

29. Hoang MT, Ita KB, Bair DA. Solid microneedles for transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride. Pharmaceutics. 2015;7(4):379-96. https://doi.org/10.3390/pharmaceutics7040379

30. Chen BZ, He MC, Zhang XP, Fei WM, Cui Y, Guo XD. A novel method for fabrication of coated microneedles with homogeneous and controllable drug dosage for transdermal drug delivery. Drug Deliv Transl Res. 2022;12(11):2730-9. https://doi.org/10.1007/s13346-022-01123-8

31. Yeung C, Chen S, King B, Lin H, King K, Akhtar F, et al. A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery. Biomicrofluidics. 2019;13(6):064125. https://doi.org/10.1063/1.5127778

32. Kolli CS, Banga AK. Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res. 2008;25(1):104- 13. https://doi.org/10.1007/s11095-007-9350-0

33. Xiang Z, Wang H, Pastorin G, Lee C. Development of a flexible and disposable microneedle-fluidic-system with finger-driven drug loading and delivery functions for inflammation treatment. J Microelectromech Syst. 2015;24(3):565-574. https://doi.org/10.1109/JMEMS.2015.2429675

34. Trzebinski J, Sharma S, Radomska-Botelho Moniz A, Michelakis K, Zhang Y, Cass AEG. Microfluidic device to investigate factors affecting performance in biosensors designed for transdermal applications. Lab Chip [Internet]. 2012;12(2):348-52. https://doi.org/10.1039/C1LC20885C

35. Zabihihesari A, Hilliker AJ, Rezai P. Localized microinjection of intact Drosophila melanogaster larva to investigate the effect of serotonin on heart rate. Lab Chip [Internet]. 2020;20(2):343-55. https://doi.org/10.1039/C9LC00963A

36. Yan Q, Wang W, Weng J, Zhang Z, Yin L, Yang Q, et al. Dissolving microneedles for transdermal delivery of huperzine A for the treatment of Alzheimer’s disease. Drug Deliv. 2020;27(1):1147- 55. https://doi.org/10.1080/10717544.2020.1797240

37. Mansor MA, Takeuchi M, Nakajima M, Hasegawa Y, Ahmad MR. A novel integrated dual microneedle-microfluidic impedance flow cytometry for cells detection in suspensions. Int J Electric Comput Eng. 2017;7(3):1513-21. https://doi.org/10.11591/ijece.v7i3.pp1513-1521

38. Trautmann A, Roth GL, Nujiqi B, Walther T, Hellmann R. Towards a versatile point-of-care system combining femtosecond laser generated microfluidic channels and direct laser written microneedle arrays. Microsyst Nanoeng. 2019;5(1):6. https://doi.org/10.1038/s41378-019-0046-5

39. Gomez FA. Bioanalytical applications in microfluidics. Vol. 2, Bioanalysis. London, UK: Wiley-Interscience; 2010. pp: 1661-2. https://doi.org/10.4155/bio.10.145

40. Bahnemann J, Grünberger A. Microfluidics in biotechnology. Vol. 179, Advances in biochemical engineering/biotechnology. Berlin: Springer-Verlag Berlin and Heidelberg GmbH & Co. K.

41. Liu X, Fang J, Huang S, Wu X, Xie X, Wang J, et al. Tumor-on-a-chip: from bioinspired design to biomedical application. Vol. 7, Microsystems and nanoengineering. Berlin: Springer Nature; 2021. https://doi.org/10.1038/s41378-021-00277-8

42. Rodriguez-Mateos P, Ngamsom B, Walter C, Dyer CE, Gitaka J, Iles A, et al. A lab-on-a-chip platform for integrated extraction and detection of SARS-CoV-2 RNA in resource-limited settings. Anal Chim Acta. 2021;1177:338758. https://doi.org/10.1016/j.aca.2021.338758

43. Murphy A, Gorey B, De Guzman K, Kelly N, Nesterenko EP, Morrin A. Microfluidic paper analytical device for the chromatographic separation of ascorbic acid and dopamine. RSC Adv. 2015;5(113):93162-9. https://doi.org/10.1039/C5RA16272F

44. Lotter C, Poehler E, Heiland JJ, Mauritz L, Belder D. Enantioselective reaction monitoring utilizing two-dimensional heart-cut liquid chromatography on an integrated microfluidic chip. Lab Chip. 2016;16(24):4648-52. https://doi.org/10.1039/C6LC01138A

45. Thurmann S, Lotter C, Heiland JJ, Chankvetadze B, Belder D. Chip-based high-performance liquid chromatography for high-speed enantioseparations. Anal Chem. 2015;87(11):5568-76. https://doi.org/10.1021/acs.analchem.5b00210

46. Ai Y, Zhang F, Wang C, Xie R, Liang Q. Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test. TrAC¾Trends Analy Chem. 2019;117:215-30. https://doi.org/10.1016/j.trac.2019.06.026

47. Koyilot MC, Natarajan P, Hunt CR, Sivarajkumar S, Roy R, Joglekar S, et al. Breakthroughs and applications of organ-on-a-chip technology. Vol. 11, Cells. Basel, Switzerland: MDPI; 2022. https://doi.org/10.3390/cells11111828

48. Mastrangeli M, van den Eijnden-van Raaij J. Organs-on-chip: the way forward. Vol. 16, Stem cell reports. Cambridge, MA: Cell Press; 2021. pp: 2037-43. https://doi.org/10.1016/j.stemcr.2021.06.015

49. Chen H, Luo Z, Lin X, Zhu Y, Zhao Y. Sensors-integrated organ-on-a-chip for biomedical applications. Nano research. Beijing, China: Tsinghua University; 2023. https://doi.org/10.1007/s12274-023-5651-9

50. Hu Y, Zhang H, Wang S, Cao L, Zhou F, Jing Y, et al. Bone/cartilage organoid on-chip: construction strategy and application. Vol. 25, Bioactive materials. Beijing, China: KeAi Communications Co.; 2023. pp: 29-41. https://doi.org/10.1016/j.bioactmat.2023.01.016

51. Hassan S, Sebastian S, Maharjan S, Lesha A, Carpenter AM, Liu X, et al. Liver-on-a-chip models of fatty liver disease. Vol. 71, Hepatology. Hoboken, NJ: John Wiley and Sons Inc.; 2020. pp: 733-40. https://doi.org/10.1002/hep.31106

52. Zhang F, Qu KY, Zhou B, Luo Y, Zhu Z, Pan DJ, et al. Design and fabrication of an integrated heart-on-a-chip platform for construction of cardiac tissue from human iPSC-derived cardiomyocytes and in situ evaluation of physiological function. Biosens Bioelectron [Internet]. 2021;179:113080. https://doi.org/10.1016/j.bios.2021.113080

53. Yang Q, Xiao Z, Lv X, Zhang T, Liu H. Fabrication and biomedical applications of heart-on-a-chip. Int J Bioprint. 2021;7(3):54-70. https://doi.org/10.18063/ijb.v7i3.370

54. Chen S, Jang TS, Pan HM, Jung H Do, Sia MW, Xie S, et al. 3D freeform printing of nanocomposite hydrogels through in situ precipitation in reactive Viscous fluid. Int J Bioprint. 2020;6(2):1- 21. https://doi.org/10.18063/ijb.v6i2.258

55. Emmermacher J, Spura D, Cziommer J, Kilian D, Wollborn T, Fritsching U, et al. Engineering considerations on extrusion-based bioprinting: interactions of material behavior, mechanical forces and cells in the printing needle. Biofabrication. 2020;12(2):ab7553. https://doi.org/10.1088/1758-5090/ab7553

56. Huang Y, Liu T, Huang Q, Wang Y. From organ-on-a-chip to human-on-a-chip: a review of research progress and latest applications. ACS Sens. 2024;9(7):3466-88. https://doi.org/10.1021/acssensors.4c00004

57. Criscione J, Rezaei Z, Hernandez Cantu CM, Murphy S, Shin SR, Kim DH. Heart-on-a-chip platforms and biosensor integration for disease modeling and phenotypic drug screening. Biosens Bioelectron. 2023;220:114840. https://doi.org/10.1016/j.bios.2022.114840

58. Azizgolshani H, Coppeta JR, Vedula EM, Marr EE, Cain BP, Luu RJ, et al. High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows. Lab Chip. 2021;21(8):1454- 74. https://doi.org/10.1039/D1LC00067E

59. Halagali P, Nayak D, Seenivasan R, Manikkath J, Rathnanand M, Tippavajhala VK. Artificial intelligence revolution in pharmaceutical sciences: advancements, clinical impacts, and applications. Curr Pharm Biotechnol. 2025;26. https://doi.org/10.2174/0113892010356115241224104018

60. Raagul Seenivasan, Anitha Marimuthu, Jey Kumar Pachiyappan GG. Integrating organ-on-chip models in drug discovery: a comprehensive review on innovations and implications. Curr Pharm Anal. 2024;20: 953-65. https://doi.org/10.2174/0115734129333473241018114102

61. Vilimi Z, Pápay ZE, Basa B, Orekhova X, Kállai-Szabó N, Antal I. Microfluidic rheology: an innovative method for viscosity measurement of gels and various pharmaceuticals. Gels. 2024;10(7):464. https://doi.org/10.3390/gels10070464

62. Lambert M, Grossier R, Lagaize M, Bactivelane T, Heresanu V, Robert B, et al. Modular microfluidic platform for solubility measurement, nucleation statistics and polymorph screening of active pharmaceutical ingredients: Irbesartan, Rimonabant, Aripiprazole and Sulfathiazole. J Cryst Growth. 2023;616:127252. https://doi.org/10.1016/j.jcrysgro.2023.127252

63. Xie X, Maharjan S, Kelly C, Liu T, Lang RJ, Alperin R, et al. Customizable microfluidic origami liver-on-a-chip (oLOC). Adv Mater Technol. 2022;7(5):2100677. https://doi.org/10.1002/admt.202100677

64. Watanabe M, Salvadori A, Markovic M, Sudo R, Ovsianikov A. Advanced liver-on-chip model mimicking hepatic lobule with continuous microvascular network via high-definition laser patterning. Mater Today Bio. 2025;32:101643. https://doi.org/10.1016/j.mtbio.2025.101643

65. Zheng L, Wang B, Sun Y, Dai B, Fu Y, Zhang Y, et al. An oxygen-concentration-controllable multiorgan microfluidic platform for studying hypoxia-induced lung cancer-liver metastasis and screening drugs. ACS Sens. 2021;6(3):823-32. https://doi.org/10.1021/acssensors.0c01846

66. Nguyen TTY, Lee J, Choi S, Jeon NL. Surface tension-based open microfluidic platform using micropillars to recreate the 3D lung cellular microenvironment. Biochip J. 2024;18:589-600. https://doi.org/10.1007/s13206-024-00171-1

67. Hiratsuka K, Miyoshi T, Kroll KT, Gupta NR, Valerius MT, Ferrante T, et al. Organoid-on-a-chip model of human ARPKD reveals mechanosensing pathomechanisms for drug discovery. Sci Adv. 2022;8(38):eabq0866. https://doi.org/10.1126/sciadv.abq0866

68. Aceves JO, Heja S, Kobayashi K, Robinson SS, Miyoshi T, Matsumoto T, et al. 3D proximal tubule-on-chip model derived from kidney organoids with improved drug uptake. Sci Rep. 2022;12(1):14997. https://doi.org/10.1038/s41598-022-19293-3

69. Mastikhina O, Moon BU, Williams K, Hatkar R, Gustafson D, Mourad O, et al. Human cardiac fibrosis-on-a-chip model recapitulates disease hallmarks and can serve as a platform for drug testing. Biomaterials. 2020;233:119741. https://doi.org/10.1016/j.biomaterials.2019.119741

70. Ren L, Zhou X, Nasiri R, Fang J, Jiang X, Wang C, et al. Combined effects of electric stimulation and microgrooves in cardiac tissue-on-a-chip for drug screening. Small Methods. 2020;4(10):2000438. https://doi.org/10.1002/smtd.202000438

71. Kuzma BA, Tu D, Goss A, Iliopoulos F, Slade JB, Wiatrowski A, et al. Instantaneous topical drug quantification using a 3D printed microfluidic device and coherent Raman imaging. OpenNano. 2023;12:100151. https://doi.org/10.1016/j.onano.2023.100151

72. Baghban HN, Hasanzadeh M. Multifunctional one-droplet microfluidic chemosensing of ractopamine in real samples: a user-oriented flexible nano-architecture for on-site food and pharmaceutical analysis using optical sensors. Analyt Methods. 2023;15(35):4506-17. https://doi.org/10.1039/D3AY01064C

Article Metrics
9 Views 4 Downloads 13 Total

Year

Month

Related Search

By author names