Metabolic dysfunction-associated fatty liver disease (MAFLD), characterized by excessive lipid accumulation, is a significant global health concern that is strongly associated with metabolic dysregulation, including insulin resistance and chronic inflammation. Thai kratom (Mitragyna speciosa) extracts exhibit diverse biological activities; however, their effects on hepatic lipid and glucose metabolism in MAFLD remain poorly documented. This study investigated the therapeutic effects of ethanol-extracted red and green kratom and its major alkaloid, mitragynine, in an in vitro MAFLD model using free fatty acid (FFA)-exposed HepG2 cells. Thai Kratom extracts significantly reduced FFA-induced lipid accumulation by activating the AMP-activated protein kinase pathway and downregulating lipogenic enzymes acetyl-CoA carboxylase and fatty acid synthase, key in fatty acid biosynthesis. Thai kratom extract and mitragynine enhanced glycogen production by increasing AKT and GSK3 phosphorylation, reducing precursors for fatty acid synthesis. Additionally, the extract demonstrated anti-inflammatory properties by decreasing p38 MAPK phosphorylation and downregulating key inflammatory mediators (TLR4, c-Jun, CCL2, and CCL21). These results highlight the multifaceted effects of Thai kratom extract and mitragynine on lipid metabolism, insulin signaling, and inflammation, suggesting their potential as therapeutic agents for MAFLD. Future in vivo studies are essential to elucidate the mechanisms of action, paving the way for safe and effective kratom-based MAFLD interventions.
Pouyfung P, Adokwe JB, Yimthiang S, Ma R, Khamphaya T. Thai Kratom extracts ameliorate MAFLD through multi-target mechanism in FFA-induced HepG2 cells. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.240171
1. Eslam M, Sanyal AJ, George J, Sanyal A, Neuschwander-Tetri B, Tiribelli C, et al. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020;158(7):1999–2014. doi: https://doi.org/10.1053/j.gastro.2019.11.312
2. Afroz A, Alam K, Ali L, Karim A, Alramadan MJ, Habib SH, et al. Type 2 diabetes mellitus in Bangladesh: a prevalence based cost-of-illness study. BMC Health Serv Res. 2019;19:601. doi: https://doi.org/10.1186/s12913-019-4440-3
3. Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J Hepatol. 2019;71(4):793–801. doi: https://doi.org/10.1016/j.jhep.2019.06.021
4. Wongrith P, Thirarattanasunthon P, Kaewsawat S. Glycemic control outcome in patients with type 2 diabetes mellitus: chronic care management support of family care team in Thailand. J Diabetes Metab Disord. 2021;20(2):1269–79. doi: https://doi.org/10.1007/s40200-021-00851-x
5. Bashir A, Duseja A, De A, Mehta M, Tiwari P. Non-alcoholic fatty liver disease development: a multifactorial pathogenic phenomena. Liver Res. 2022;6(2):72–83. doi: https://doi.org/10.1016/j.livres.2022.05.002
6. Kuchay MS, Choudhary NS, Mishra SK. Pathophysiological mechanisms underlying MAFLD. Diabetes Metab Syndr. 2020;14(6):1875–87. doi: https://doi.org/10.1016/j.dsx.2020.09.026
7. Subramanian P, Hampe J, Tacke F, Chavakis T. Fibrogenic pathways in metabolic dysfunction associated fatty liver disease (MAFLD). Int J Mol Sci. 2022;23(13):6996. doi: https://doi.org/10.3390/ijms23136996
8. Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci. 2018;76(1):99–128. doi: https://doi.org/10.1007/s00018-018-2947-0
9. Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol. 2018;15(6):349–64. doi: https://doi.org/10.1038/s41575-018-0009-6
10. Dusabimana T, Park EJ, Je J, Jeong K, Yun SP, Kim HJ, et al. P2y2r deficiency ameliorates hepatic steatosis by reducing lipogenesis and enhancing fatty acid β-oxidation through AMPK and PGC-1α induction in high-fat diet-fed mice. Int J Mol Sci. 2021;22(11):5528. doi: https://doi.org/10.3390/ijms22115528
11. Lee YK, Song YP, Kim YM, Won SL, Ock JP. AMP kinase/cyclooxygenase-2 pathway regulates proliferation and apoptosis of cancer cells treated with quercetin. Exp Mol Med. 2009;41(3):201–7. doi: https://doi.org/10.3858/emm.2009.41.3.023
12. Dhanya R, Arya AD, Nisha P, Jayamurthy P. Quercetin, a lead compound against type 2 diabetes ameliorates glucose uptake via AMPK pathway in skeletal muscle cell line. Front Pharmacol. 2017;8:336. doi: https://doi.org/10.3389/fphar.2017.00336
13. Wang MY, Zhang SS, An MF, Xia YF, Fan MS, Sun ZR, et al. Neferine ameliorates nonalcoholic steatohepatitis through regulating AMPK pathway. Phytomedicine. 2023;114:154798. doi: https://doi.org/10.1016/j.phymed.2023.154798
14. Kim SH, Yun C, Kwon D, Lee YH, Kwak JH, Jung YS, et al. Effect of isoquercitrin on free fatty acid-induced lipid accumulation in HepG2 cells. Molecules. 2023;28(3):1476. doi: https://doi.org/10.3390/molecules28031476
15. Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Front Pharmacol. 2023;14:1283784. doi: https://doi.org/10.3389/fphar.2023.1283784
16. Eastlack SC, Cornett EM, Kaye AD. Kratom—pharmacology, clinical implications, and outlook: a comprehensive review. Pain Ther. 2020;9(1):55–69. doi: https://doi.org/10.1007/s40122-020-00151-x
17. Derosa G, Maffioli P. Alkaloids in the nature: pharmacological applications in clinical practice of berberine and mate tea. Curr Top Med Chem. 2014;14(2):200–6. doi: https://doi.org/10.2174/1568026613666131213155252
18. Janthongkaw A, Klaophimai S, Khampaya T, Yimthiang S, Yang Y, Ma R, et al. Effect of green and red Thai kratom (Mitragyna speciosa) on pancreatic digestive enzymes (alpha-glucosidase and lipase) and acetyl-carboxylase 1 activity: a possible therapeutic target for obesity prevention. PLoS One. 2023;18(6):e0291738.
19. La-up A, Saengow U, Aramrattana A. High serum high-density lipoprotein and low serum triglycerides in kratom users: a study of kratom users in Thailand. Heliyon. 2021;7(6):e06931. doi: https://doi.org/10.1016/j.heliyon.2021.e06931
20. Karunakaran T, Ganasan J, Rusmadi NN, Santhanam R, Mordi MN. In-vitro hepatotoxic activity of mitragynine and paynantheine isolated from the leaves of Mitragyna speciosa Korth. (Kratom). Nat Prod Res. 2024;20.;1–5. doi: https://doi.org/10.1080/14786419.2024.2375760
21. Kong WM, Chik Z, Mohamed Z, Alshawsh MA. Physicochemical characterization of Mitragyna speciosa alkaloid extract and mitragynine using in vitro high throughput assays. Comb Chem High Throughput Screen. 2017;20(9):796–803.
22. Sempio C, Campos-Palomino J, Klawitter J, Zhao W, Huestis MA, Christians U, et al. Quantification of 11 kratom alkaloids including mitragynine and its main metabolites in human plasma using LC-MS/MS. Anal Bioanal Chem. 2024;416(3):761–9. doi: https://doi.org/10.1007/s00216-024-05689-9
23. Khamphaya T, Chukijrungroat N, Saengsirisuwan V, Mitchell- Richards KA, Robert ME, Mennone A, et al. Nonalcoholic fatty liver disease impairs expression of the type II inositol 1,4,5-trisphosphate receptor. Hepatology. 2018;67(2):560–74. doi: https://doi.org/10.1002/hep.29588
24. Pfaffl MW, Hageleit M. Validities of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real-time RT-PCR. Biotechnol Lett. 2001;23(4):275–82. doi: https://doi.org/10.1023/a:1005658330108
25. Gnoni A, Di Chiara Stanca B, Giannotti L, Gnoni GV, Siculella L, Damiano F. Quercetin reduces lipid accumulation in a cell model of NAFLD by inhibiting de novo fatty acid synthesis through the acetyl-CoA carboxylase 1/AMPK/PP2A axis. Int J Mol Sci. 2022;23(3):1044.
26. Zhao J, Liu L, Cao YY, Gao X, Targher G, Byrne CD, et al. MAFLD as part of systemic metabolic dysregulation. Hepatol Int. 2024;18(2):834–47. doi: https://doi.org/10.1007/s12072-024- 10660-y
27. Chen H, Nie T, Zhang P, Ma J, Shan A. Hesperidin attenuates hepatic lipid accumulation in mice fed high-fat diet and oleic acid induced HepG2 via AMPK activation. Life Sci. 2022;296:120428.
28. Li Z, Li J, Miao X, Cui W, Miao L, Cai L. A minireview: role of AMP-activated protein kinase (AMPK) signaling in obesity-related renal injury. Life Sci. 2021;265:118828. doi: https://doi.org/10.1016/j. lfs.2020.118828
29. Ho GTT, Kase ET, Wangensteen H, Barsett H. Effect of phenolic compounds from elderflowers on glucose- and fatty acid uptake in human myotubes and HepG2-cells. Molecules. 2017;22(1):90. doi: https://doi.org/10.3390/molecules22010090
30. Lee AV, Gooch JL, Oesterreich S, Guler RL, Yee D. Insulin-like growth factor I-induced degradation of insulin receptor substrate 1 is mediated by the 26S proteasome and blocked by phosphatidylinositol 3′-kinase inhibition. Mol Cell Biol. 2000;20(5):1489–96. doi: https://doi.org/10.1128/mcb.20.5.1489-1496.2000
31. Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev. 2012;92(2):689–737. doi: https://doi.org/10.1152/physrev.00028.2011
32. Granado-Serrano AB, Martín MA, Bravo L, Goya L, Ramos S. Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: involvement of p38. Chem Biol Interact. 2012;195(2):154–64.
33. Gusev E, Sarapultsev A. Atherosclerosis and inflammation: insights from the theory of general pathological processes. Int J Mol Sci. 2023;24(9):7910. doi: https://doi.org/10.3390/ijms24097910
34. Chang S, Li X, Zheng Y, Shi H, Zhang D, Jing B, et al. Kaempferol exerts a neuroprotective effect to reduce neuropathic pain through TLR4/NF-?B signaling pathway. Phytother Res. 2022;36(4):1678– 91.
35. Song N, Cui K, Zeng L, Li M, Fan Y, Shi P, et al. Advance in the role of chemokines/chemokine receptors in carcinogenesis: focus on pancreatic cancer. Eur J Pharmacol. 2024;967:176357. doi: https://doi.org/10.1016/j.ejphar.2024.176357
36. Hardie DG. Keeping the home fires burning: AMP-activated protein kinase. J R Soc Interface. 2018;15(138):20170774. doi: https://doi.org/10.1098/rsif.2017.0774
37. O’Neill HM, Holloway GP, Steinberg GR. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol. 2013;366(2):135–51. doi: https://doi.org/10.1016/j.mce.2012.06.019
38. Herzig S, Shaw RJ. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2017;19(2):121– 35. doi: https://doi.org/10.1038/nrm.2017.95
39. Zhao P, Saltiel AR. From overnutrition to liver injury: AMP-activated protein kinase in nonalcoholic fatty liver diseases. J Biol Chem. 2020;295(34):12279–89. doi: https://doi.org/10.1074/jbc. rev120.011356
40. Ren L, Sun D, Zhou X, Yang Y, Huang X, Li Y, et al. Chronic treatment with the modified Longdan Xiegan Tang attenuates olanzapine-induced fatty liver in rats by regulating hepatic de novo lipogenesis and fatty acid beta-oxidation-associated gene expression mediated by SREBP-1c, PPAR-alpha and AMPK-alpha. J Ethnopharmacol. 2019;232:176–87.
41. Fariha A, Hami I, Tonmoy MIQ, Akter S, Al Reza H, Bahadur NM, et al. Cell cycle associated miRNAs as target and therapeutics in lung cancer treatment. Heliyon. 2022;8(10):e11081. doi: https://doi.org/10.1016/j.heliyon.2022.e11081
42. Zhang M, Dong K, Du Q, Xu J, Bai X, Chen L, et al. Chemically synthesized osteocalcin alleviates NAFLD via the AMPK-FOXO1/ BCL6-CD36 pathway. J Transl Med. 2024;22(1):1–20. doi: https://doi.org/10.1186/s12967-024-05592-y
43. Olivares-Vicente M, Sánchez-Marzo N, Encinar JA, de La Luz Cádiz- Gurrea M, Lozano-Sánchez J, Segura-Carretero A, et al. The potential synergistic modulation of AMPK by Lippia citriodora compounds as a target in metabolic disorders. Nutrients. 2019;11(12):2961. doi: https://doi.org/10.3390/nu11122961
44. Jiang H, Yamashita Y, Nakamura A, Croft K, Ashida H. Quercetin and its metabolite isorhamnetin promote glucose uptake through different signalling pathways in myotubes. Sci Rep. 2019;9(1):1–15.
45. Wang M, Wang B, Wang S, Lu H, Wu H, Ding M, et al. Effect of quercetin on lipids metabolism through modulating the gut microbial and AMPK/PPAR signaling pathway in broilers. Front Cell Dev Biol. 2021;9:616219. doi: https://doi.org/10.3389/fcell.2021.616219
46. Gao M, Kong Q, Hua H, Yin Y, Wang J, Luo T, et al. AMPK-mediated up-regulation of mTORC2 and MCL-1 compromises the anti-cancer effects of aspirin. Oncotarget. 2016;7(13):16349–61. doi: https://doi.org/10.18632/oncotarget.7648
47. Och A, Och M, Nowak R, Podgórska D, Podgórski R. Berberine, a herbal metabolite in the metabolic syndrome: the risk factors, course, and consequences of the disease. Molecules. 2022;27(4):1351. doi: https://doi.org/10.3390/molecules27041351
48. Xu Z, Sheng Y, Zeng G, Zeng Z, Li B, Jiang L, et al. Metabonomic study on the plasma of high-fat diet-induced dyslipidemia rats treated with Ge Gen Qin Lian decoction by ultrahigh-performance liquid chromatography-mass spectrometry. Evid Based Complement Alternat Med. 2021;2021:6692456. doi: https://doi.org/10.1155/2021/6692456
49. Xu H, Lyu X, Guo X, Yang H, Duan L, Zhu H, et al. Distinct AMPK-mediated FAS/HSL pathway is implicated in the alleviating effect of nuciferine on obesity and hepatic steatosis in HFD-fed mice. Nutrients. 2022;14(9):1898. doi: https://doi.org/10.3390/nu14091898
50. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin resistant mice. Cell Metab. 2011;13(4):376–88. doi: https://doi.org/10.1016/j.cmet.2011.03.009
51. Schmitz-Peiffer C, Whitehead JP. IRS-1 regulation in health and disease. IUBMB Life. 2003;55(7):367–74. doi: https://doi.org/10.1080/1521654031000138569
52. Zhang Z, Liu H, Liu J. Akt activation: a potential strategy to ameliorate insulin resistance. Diabetes Res Clin Pract. 2019;156:107092.
53. Takai M, Nakagawa T, Tanabe A, Terai Y, Ohmichi M, Asahi M. Crosstalk between PI3K and Ras pathways via protein phosphatase 2A in human ovarian clear cell carcinoma. Cancer Biol Ther. 2015;16(2):325–35. doi: https://doi.org/10.1080/15384047.2014.10 02362
54. Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36(6):320–8.
55. Kazyken D, Magnuson B, Bodur C, Acosta-Jaquez HA, Zhang D, Tong X, et al. AMPK directly activates mTORC2 to promote cell survival during acute energetic stress. Sci Signal. 2019;12(585):eaav3249. doi: https://doi.org/10.1126/scisignal.aav3249
56. Siddle K. Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol. 2011;47(1):R1–10. doi: https://doi.org/10.1530/jme-11-0022
57. Waters C, Pyne S, Pyne NJ. The role of G-protein coupled receptors and associated proteins in receptor tyrosine kinase signal transduction. Semin Cell Dev Biol. 2004;15(3):309–23. doi: https://doi.org/10.1016/j.semcdb.2003.12.020
58. Ma RH, Ni ZJ, Thakur K, Zhang F, Zhang YY, Zhang JG, et al. Natural compounds play therapeutic roles in various human pathologies via regulating endoplasmic reticulum pathway. Med Drug Discov. 2020;8:100065.
59. Mao YP, Song YM, Pan SW, Li N, Wang WX, Feng BB, et al. Effect of codonopsis radix and polygonati rhizoma on the regulation of the IRS1/PI3K/AKT signaling pathway in type 2 diabetic mice. Front Endocrinol (Lausanne). 2022;13:1068555. doi: https://doi.org/10.3389/fendo.2022.1068555
60. ?widerska E, Strycharz J, Wróblewski A, Szemraj J, Drzewoski J, ?liwi?ska A. Role of PI3K/AKT pathway in insulin-mediated glucose uptake. Blood Glucose Levels. 2018. doi: https://doi.org/10.5772/intechopen.80402
61. Chao HW, Chao SW, Lin H, Ku HC, Cheng CF. Homeostasis of glucose and lipid in non-alcoholic fatty liver disease. Int J Mol Sci. 2019;20(2):298.
62. Lu B, Bridges D, Yang Y, Fisher K, Cheng A, Chang L, et al. Metabolic crosstalk: molecular links between glycogen and lipid metabolism in obesity. Diabetes. 2014;63(9):2935–48. doi: https://doi.org/10.2337/db13-1531
63. Wang L, Li J, Di LJ. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev. 2022;42(2):946–82. doi: https://doi.org/10.1002/med.21867
64. Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol Ther. 2015;148:114– 31.
65. Córdova-Gallardo J, Keaveny AP, Qi X, Méndez-Sánchez N. Metabolic associated fatty liver disease and acute-on-chronic liver failure: common themes for common problems. Eur J Gastroenterol Hepatol. 2021;33(1S):e84–93. doi: https://doi.org/10.1097/meg.0000000000002335
66. Bachu AK, Singal P, Griffin B, Harbaugh L, Prasad S, Jain L, et al. Kratom use and mental health: a systematic literature review and case example. J Addict Dis. 2024;42(4):301–12. doi: https://doi.org/10.1080/10550887.2023.2273192
67. Hytti M, Piippo N, Salminen A, Honkakoski P, Kaarniranta K, Kauppinen A. Quercetin alleviates 4-hydroxynonenal-induced cytotoxicity and inflammation in ARPE-19 cells. Exp Eye Res. 2015;132:208–15.
68. Cheng SC, Wu YH, Huang WC, Pang JHS, Huang TH, Cheng CY. Anti-inflammatory property of quercetin through downregulation of ICAM-1 and MMP-9 in TNF-α-activated retinal pigment epithelial cells. Cytokine. 2019;116:48–60. doi: https://doi.org/10.1016/j.cyto.2019.01.001
69. Papadopoli D, Pollak M, Topisirovic I. The role of GSK3 in metabolic pathway perturbations in cancer. Biochim Biophys Acta Mol Cell Res. 2021;1868(5):119059. doi: https://doi.org/10.1016/j.bbamcr.2021.119059
70. Hsu CC, Peng D, Cai Z, Lin HK. AMPK signaling and its targeting in cancer progression and treatment. Semin Cancer Biol. 2022;85:52– 68. doi: https://doi.org/10.1016/j.semcancer.2021.04.006
71. Foretz M, Even PC, Viollet B. AMPK activation reduces hepatic lipid content by increasing fat oxidation in vivo. Int J Mol Sci. 2018;19(9):2826.
72. Argyrou C, Moris D, Vernadakis S. Hepatocellular carcinoma development in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Is it going to be the “plague” of the 21st century? A literature review focusing on pathogenesis, prevention and treatment. J BUON. 2017;22(1):6–20.
73. Shao G, Liu Y, Lu L, Zhang G, Zhou W, Wu T, et al. The pathogenesis of HCC driven by NASH and the preventive and therapeutic effects of natural products. Front Pharmacol. 2022;13:944088. doi: https://doi.org/10.3389/fphar.2022.944088
74. Limcharoen T, Pouyfung P, Ngamdokmai N, Prasopthum A, Ahmad AR, Wisdawati W, et al. Inhibition of α-glucosidase and pancreatic lipase properties of Mitragyna speciosa (Korth.) Havil. (Kratom) leaves. Nutrients. 2022;14(19):3909. doi: https://doi.org/10.3390/nu14193909
75. Leong Bin Abdullah MFI, Singh D. The adverse cardiovascular effects and cardiotoxicity of kratom (Mitragyna speciosa Korth.): a comprehensive review. Front Pharmacol. 2021;12:726003. doi: https://doi.org/10.3389/fphar.2021.726003
Year
Month