Journal of Applied Pharmaceutical Science

Available online at http://www.japsonline.com

Thai Kratom Extracts Ameliorate MAFLD through Multi-Target Mechanism in FFA-induced HepG2 Cells

Phisit Pouyfung^{1,2,3}, Jonah Bawa Adokwe⁴, Supabhorn Yimthiang^{1,2}, Ruixue Ma⁵, Tanaporn Khamphaya^{1,2}

 ¹Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand.
²Excellence Center for Public Health Research, Walailak University, Nakhon Si Thammarat 80160, Thailand.
³Biomass and oil palm center of excellence, Walailak University, Nakhon Si Thammarat, 80160 Thailand
⁴Environmental Safety Technology and Health, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand.
⁵Department of Digestive Diseases, Xiangya Hospital of Central South University, Changsha, China.

Doi: http://doi.org/10.7324/JAPS.2025.240171

SUPPLEMENTARY MATERIAL

Supplementary Method

Ethanol-Induced Lipid Accumulation

To investigate the impact of test compounds on ethanol-induced lipid accumulation, HepG2 cells

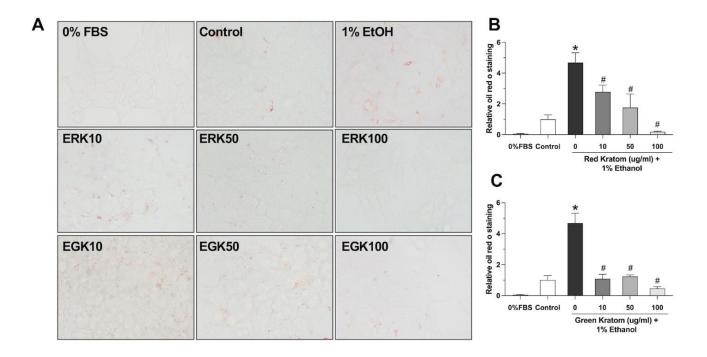
(4x10⁵ cells/well) were plated onto coverslips 24 hours before co-treatment with 1% ethanol

(EtOH) and either red or green kratom extracts (10, 50, 100 μ g/mL). Following the 24-h co-

treatment, cells were stained with Oil Red O and lipid droplet formation was assessed via imaging using a standard protocol.

Supplementary Table S1: List of antibodies for Western blot analysis.

Name	Р-	Function	Supplier	Cat
	Site			no.


ACC		Catalyzation of the first step in fatty acid	Cell Signaling	3662
			Danvers, USA	
FAS		Biosynthesis of fatty acids or metabolism	CST.	3189
Phospho-AMPK	Ser4	Regulates energy balance & metabolism	CST	5759
•	7			
АМРК		Regulator of lipid metabolism	CST	2532
Phospho-	Thr1	Mediates stress, inflammation responses	CST	9211
p38MAPK	80			
P38MAPK		Molecule stress and inflammatory protein	CST	9212
Phospho-IRS-1	Ser3	A key mediator of insulin signaling	CST	2381
	02			
IRS-1		Mediator of insulin on glucose uptake	CST	2382
Phospho-AKT	Ser4	Promotes growth and survival	CST.	9275
	73			S
AKT		Regulates growth, survival, metabolism	CST.	9272
Phospho-GSK3a	Ser6	Inhibits glycogen synthase activity	CST	9331
	41			
GSK3a		Regulates glycogen metabolism, signaling	CST	9338
Phospho-GS	Ser8	Activates glycogen synthase activity	CST	3891
	45			
Glycogen		Synthesizes glycogen from glucose	CST	3893
synthase				

Supplementary Table S2: Human primer sequences used for qPCR.

Gen	Access	Primer Forward (5'-3')	Reverse Primer (5'–3')
e	number		

TLR	NM_13855	CCCTGAGGCATTTAGGCAGCTA	AGGTAGAGAGGTGGCTTAGGC
4	4		
c-	NM_00222	CCTTGAAAGCTCAGAACTCGGAG	TGCTGCGTTAGCATGAGTTGGC
JUN	8		
CC	NM_00298	AGAATCACCAGCAGCAAGTGTCC	TCCTGAACCCACTTCTGCTTGG
L2	2		
CC	NM_00298	AGCAGGAACCAAGCTTAGGCTG	GGTGTCTTGTCCAGATGCTGCA
L21	9		

Supplementary Figure

Supplementary Fig. S1 Kratom extracts mitigate ethanol-induced lipid accumulation in HepG2 cells. (A) Representative Oil Red O-stained images showing lipid accumulation induced by 1%

ethanol (EtOH) and the effects of co-treatment with varying concentrations of red kratom extract (ERK) or green kratom extract (EGK) in HepG2 cells. Quantification of Oil Red O staining intensity after treatment with red kratom extract (B) or green kratom extract (C). Data are presented as mean \pm SEM of three independent experiments (n=3). Statistical significance was determined using one-way ANOVA followed by Turkey's post-hoc test: **p* < 0.05 compared to the ethanol-treated group. A 0% FBS (fetal bovine serum) control was included to assess the effect of serum starvation on lipid accumulation.