Effective delivery of anticancer drugs to tumor sites remains a substantial challenge in cancer treatment. A significant effort has been devoted to delivering anticancer drugs to the intended targets without causing harm to normal body cells. The need to enhance the efficacy and selectivity of chemotherapeutic drugs while minimizing adverse effects on healthy tissues has resulted in increased attention. A mesoporous silica nanoparticle (MSNP) platform is promising due to low toxicity, controlled release profiles, excellent drug loading capacity, and surface modification for targeting. The literature has outlined the synthesis, fabrication, drug loading and release profile, pharmacokinetics, biodistribution, toxicology, and potential outcomes of employing MSNP for anticancer drug delivery. However, the information is dispersed. This review aims to provide a comprehensive examination of the current research on MSNP for efficient drug delivery in cancer therapy based on over 150 preclinical studies up to March 2025. The review highlights the importance of MSNPs in addressing major challenges in targeted drug delivery for cancer therapy and offers a clear summary of the current state of research. This article will serve as an updated and valuable reference for researchers working on MSNP for anticancer drug delivery.
Esa M, Kaewpaiboon S, Srichana T. Fabrication, biodistribution, and toxicological evaluation of mesoporous silica nanoparticles based on preclinical studies intended for cancer therapy: A review. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.220858
1. Batool S, Sohail S, ud Din F, Alamri AH, Alqahtani AS, Alshahrani MA, et al. A detailed insight of the tumor targeting using nanocarrier drug delivery system. Drug Deliv. 2023;30:2183815. https://doi.org/10.1080/10717544.2023.2183815 | |
2. Ulldemolins A, Seras-Franzoso J, Andrade F, Rafael D, Abasolo I, Gener P, et al. Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. Cancer Drug Resist. 2021;4:44. https://doi.org/10.20517/cdr.2020.59 | |
3. Parveen N, Sheikh A, Abourehab MA, Karwasra R, Singh S, Kesharwani P. Self-nanoemulsifying drug delivery system for pancreatic cancer. Euro Poly J. 2023;190:111993. https://doi.org/10.1016/j.eurpolymj.2023.111993 | |
4. Woodring RN, Gurysh EG, Bachelder EM, Ainslie KM. Drug delivery systems for localized cancer combination therapy. ACS Appl Bio Mat. 2023;6:934-950. https://doi.org/10.1021/acsabm.2c00973 | |
5. Wang C, Xiao J, Hu X, Liu Q, Zheng Y, Kang Z, et al. Liquid core nanoparticle with high deformability enables efficient penetration across biological barriers. Adv Healthcare Mat. 2023;12:2201889. https://doi.org/10.1002/adhm.202201889 | |
6. Dhar R, Gorai S, Devi A, Jha SK, Rahman MA, Alexiou A, et al. Exosome: a megastar of future cancer personalized and precision medicine. Clin Transl Discovery 2023;3:e208. https://doi.org/10.1002/ctd2.208 | |
7. Ezike TC, Okpala US, Onoja UL, Nwike PC, Ezeako EC, Okpara JO, et al. Advances in drug delivery systems, challenges and future directions. Heliyon. 2023;9:e17488. https://doi.org/10.1016/j.heliyon.2023.e17488 | |
8. Moholkar DN, Kandimalla R, Gupta RC, Aqil F. Advances in lipid-based carriers for cancer therapeutics: liposomes, exosomes and hybrid exosomes. Cancer Lett. 2023;565:216220. https://doi.org/10.1016/j.canlet.2023.216220 | |
9. Radhakrishnan D, Patel V, Mohanan S, Ramadass K, Karakoti A, Vinu A. Folic acid functionalised mesoporous core-shell silica nanoparticles loaded with carboplatin for lung cancer therapy. Microporous Mesoporous Mater 2023;360:112708. https://doi.org/10.1016/j.micromeso.2023.112708 | |
10. Dumontel B, Conejo-Rodríguez V, Vallet-Regí M, Manzano M. Natural biopolymers as smart coating materials of Mesoporous Silica nanoparticles for drug delivery. Pharmaceutics. 2023;15:447. https://doi.org/10.3390/pharmaceutics15020447 | |
11. Kolimi P, Narala S, Youssef AAA, Nyavanandi D, Dudhipala N. A systemic review on development of mesoporous nanoparticles as a vehicle for transdermal drug delivery. Nanotheranostics. 2023;7:70. https://doi.org/10.7150/ntno.77395 | |
12. Sutrisno L, Ariga K. Pore-engineered nanoarchitectonics for cancer therapy. NPG Asia Mater. 2023;15:21. https://doi.org/10.1038/s41427-023-00469-w | |
13. Sarkar S, Ekbal Kabir M, Kalita J, Manna P. Mesoporous Silica nanoparticles: drug delivery vehicles for antidiabetic molecules. ChemBioChem. 2023;24(7):e202200672. https://doi.org/10.1002/cbic.202200672 | |
14. Almomen A, Alhowyan A. A comprehensive study on folate-targeted mesoporous silica nanoparticles loaded with 5-fluorouracil for the enhanced treatment ofgynecological cancers. J Funct Biomat. 2024;15:74. https://doi.org/10.3390/jfb15030074 | |
15. Tripathi AD, Labh Y, Katiyar S, Singh AK, Chaturvedi VK, Mishra A. Folate-mediated targeting and controlled release: PLGA-encapsulated mesoporous silica nanoparticles delivering capecitabine to pancreatic tumor. ACS Appl Bio Mater. 2024;7(12):7838-51. https://doi.org/10.1021/acsabm.4c00019 | |
16. Li Y, Phan VG, Pan Z, Xuan X, Yang HY, Luu CH, et al. Integrated and hyaluronic acid-coated mesoporous silica nanoparticles conjugated with cisplatin and chlorin e6 for combined chemo and photodynamic cancer therapy. Euro Poly J. 2024;220:113426. https://doi.org/10.1016/j.eurpolymj.2024.113426 | |
17. Ebrahimipour SY, Mirzaei M, Zamani K, Mohamadi M, Bahraman AG, Ramezanpour S. Characterization and in-vitro release of coumarin from folic acid-conjugated mesoporous silica for targeted cancer therapy. J Mol Struct. 2025; 1330:141502. https://doi.org/10.1016/j.molstruc.2025.141502 | |
18. Alallam B, Abdkadir E, Hayati A, Keong YY, Lim V. Alginate coated mesoporous silica nanoparticles as oral delivery carrier of curcumin and quercetin to colon cancer: preparation, optimization, characterization, and anticancer activity. Drug Deliv Translat Res 2025;15:1-42. https://doi.org/10.1007/s13346-024-01777-6 | |
19. Zahedi P, Ebrahimnejad P, Seyedabadi M, Babaei A. Optimized mesoporous silica nanoparticles for delivery of curcumin and quercetin: enhanced skin permeation and cytotoxicity against A375 melanoma cells. J Cluster Sci. 2025;36:50. https://doi.org/10.1007/s10876-025-02769-3 | |
20. Heydari SR, Ghahremani MH, Atyabi F, Bafkary R, Jaafari MR, Dinarvand R. Aptamer-modified chitosan-capped mesoporous silica nanoparticles for co-delivery of cytarabine and daunorubicin in leukemia. Int J Pharm. 2023;32:123495. https://doi.org/10.1016/j.ijpharm.2023.123495 | |
21. Salari-Goharizi F, Mahani M, Sepehrian H, Yoosefian M, Khakbaz F. Multifunctional nanocarriers: enhanced doxorubicin release from CQD-tagged SBA-15 silica nanoparticles. J Cluster Sci. 2025:1-12. https://doi.org/10.1007/s10934-025-01752-7 | |
22. Ostrowska S, Szukowska M, Kim S, Kim Y, Wawrzyniak D, Mrówczy?ski R. Doxorubicin and Sorafenib release from mesoporous silica nanoparticles coated with polydopamineinfluence of mechanical and chemical stimuli on the process. Front Coat Dyes Interface Eng. 2025;3:1531144. https://doi.org/10.3389/frcdi.2025.1531144 | |
23. Hsu TI, Chen YP, Zhang RL, Chen ZA, Wu CH, Chang WC, et al. Overcoming the blood-brain tumor barrier with docetaxel-loaded mesoporous silica nanoparticles for treatment of temozolomide-resistant glioblastoma. ACS Appl Mater Interfaces. 2024;16:21722- 35. https://doi.org/10.1021/acsami.4c04289 | |
24. Viswanathan TM, Chitradevi K, Zochedh A, Vijayabhaskar R, Sukumaran S, Kunjiappan S, et al. Guanidine-curcumin complex-loaded amine-functionalised hollow mesoporous silica nanoparticles for breast cancer therapy. Cancers. 2022;14:3490. https://doi.org/10.3390/cancers14143490 | |
25. Liu X, Situ A, Kang Y, Villabroza KR, Liao Y, Chang CH, et al. Irinotecan delivery by lipid-coated mesoporous silica nanoparticles shows improved efficacy and safety over liposomes for pancreatic cancer. ACS nano. 2016;10:2702-15. https://doi.org/10.1021/acsnano.5b07781 | |
26. Wang X, Xu T, Song H, Zhou L, Li X, Li G, et al. Fe3O4-viral-like mesoporous silica nanoparticle (Fe3O4-vMSN)-sustained release of lenvatinib for targeted treatment of hepatocellular carcinoma. Current Cancer Drug Targets. 2025;25:NA. https://doi.org/10.2174/0115680096329105241031093859 | |
27. Jafarpour N, Nikpassand M, Faramarzi M. Conjugation of folic acid onto poly (acrylic acid-co-allylamine)-grafted mesoporous silica nanoparticles for controlled methotrexate delivery. J Drug Deliv Sci Technol. 2024;96:105667. https://doi.org/10.1016/j.jddst.2024.105667 | |
28. Liu Y, Yu S, Jiang X, Wu Q, Shen W, Zou Z, et al. Functional paclitaxel-manganese-doped mesoporous silica nanoparticles for orthotopic brain glioma targeted therapy. Mater Design. 2024;238:112715. https://doi.org/10.1016/j.matdes.2024.112715 | |
29. Shahbaz S, Esmaeili M, Nasab MHF, Imani Z, Bafkary R, Amini M, et al. PEGylated mesoporous silica core-shell redox-responsive nanoparticles for delivering paclitaxel to breast cancer cells. Int J Pharm 2024;655:124024. https://doi.org/10.1016/j.ijpharm.2024.124024 | |
30. Kneževi? NŽ, Mr?anovi? J, Borišev I, Milenkovi? S, Jana?kovi? ?, Cunin F, et al. Hydroxylated fullerene-capped, vinblastine-loaded folic acid-functionalized mesoporous silica nanoparticles for targeted anticancer therapy. RSC Adv. 2016;6:7061-5. https://doi.org/10.1039/C5RA22937E | |
31. Zhao H, Li Y, Chen J, Zhang J, Yang Q, Cui J, et al. Environmental stimulus-responsive mesoporous silica nanoparticles as anticancer drug delivery platforms. Colloids Surfaces B: Biointerfaces. 2024;234:113758. https://doi.org/10.1016/j.colsurfb.2024.113758 | |
32. Li T, Shi S, Goel S, Shen X, Xie X, Chen Z, et al. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomater. 2019;89:1-13. https://doi.org/10.1016/j.actbio.2019.02.031 | |
33. Dutta Gupta Y, Mackeyev Y, Krishnan S, Bhandary S. Mesoporous silica nanotechnology: promising advances in augmenting cancer theranostics. Cancer Nanotechnol. 2024;15:9. https://doi.org/10.1186/s12645-024-00250-w | |
34. Asefa T, Tao Z. Biocompatibility of mesoporous silica nanoparticles. Chem Res Toxicol. 2012;25:2265-84. https://doi.org/10.1021/tx300166u | |
35. Farjadian F, Roointan A, Mohammadi-Samani S, Hosseini M. Mesoporous silica nanoparticles: synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chem Eng J. 2019;359:684-705. https://doi.org/10.1016/j.cej.2018.11.156 | |
36. Huang Y, Li P, Zhao R, Zhao L, Liu J, Peng S, et al. Silica nanoparticles: biomedical applications and toxicity. Biomed Pharmacother. 2022;151:113053. https://doi.org/10.1016/j.biopha.2022.113053 | |
37. Ghobadi M, Salehi S, Ardestani MTS, Mousavi-Khattat M, Shakeran Z, Khosravi A, et al. Amine-functionalized mesoporous silica nanoparticles decorated by silver nanoparticles for delivery of doxorubicin in breast and cervical cancer cells. Euro J Pharm Biopharm. 2024;201:114349. https://doi.org/10.1016/j.ejpb.2024.114349 | |
38. Liao T, Liu C, Wu X, Liu J, Yu W, Xu Z, et al. Degradable mesoporous silica nanoparticle/peptide-based "Trojan Horse"-like drug delivery system for seep intratumoral penetration and cancer therapy. ACS Appl Nano Mater. 2024;7:9518-31. https://doi.org/10.1021/acsanm.4c00992 | |
39. Wu H, Ding X, Chen Y, Cai Y, Yang Z, Jin J. EGFR-targeted humanized single chain antibody fragment functionalized silica nanoparticles for precision therapy of cancer. Int J Biol Macromol. 2023;253:127538. https://doi.org/10.1016/j.ijbiomac.2023.127538 | |
40. Bhartiya P, Chawla R, Dutta PK. Folate receptor targeted chitosan and polydopamine coated mesoporous silica nanoparticles for photothermal therapy and drug delivery. J Macromol Sci Part A. 2022;59:810-7. https://doi.org/10.1080/10601325.2022.2135443 | |
41. Akram Z, Daood U, Aati S, Ngo H, Fawzy AS. Formulation of pH-sensitive chlorhexidine-loaded/mesoporous silica nanoparticles modified experimental dentin adhesive. Mater Sci Eng C. 2021;122:111894. https://doi.org/10.1016/j.msec.2021.111894 | |
42. Feng H, Li M, Xing Z, Ouyang XK, Ling J. Efficient delivery of fucoxanthin using metal-polyphenol network-coated magnetic mesoporous silica. J Drug Deliv Sci Technol. 2022;77:103842. https://doi.org/10.1016/j.jddst.2022.103842 | |
43. Slapak EJ, El Mandili M, Ten Brink MS, Kros A, Bijlsma MF, Spek CA. CAPN2-responsive mesoporous silica nanoparticles: a promising nanocarrier for targeted therapy of pancreatic cancer. Cancer Lett. 2024;590:216845. https://doi.org/10.1016/j.canlet.2024.216845 | |
44. Sreeharsha N, Philip M, Krishna SS, Viswanad V, Sahu RK, Shiroorkar PN, et al. Multifunctional mesoporous silica nanoparticles for oral drug delivery. Coatings. 2022;12:358. https://doi.org/10.3390/coatings12030358 | |
45. Priyan SR, Kumar GS, Surendhiran S, Shkir M. Size-controlled synthesis of mesoporous silica nanoparticles using rice husk by microwave-assisted sol-gel method. Int J Appl Ceramic Technol. 2023;20(5):2807-16. https://doi.org/10.1111/ijac.14444 | |
46. Khaliq NU, Lee J, Kim J, Kim Y, Yu S, Kim J, et al. Mesoporous silica nanoparticles as a gene delivery platform for cancer therapy. Pharmaceutics. 2023;15:1432. https://doi.org/10.3390/pharmaceutics15051432 | |
47. Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10:118. https://doi.org/10.3390/pharmaceutics10030118 | |
48. Soundharraj P, Dhinasekaran D, Rakkesh Rajendran A, Prakasarao A, Ganesan S. Investigation on the drug loading efficacy of protoporphyrin functionalized silica precursors (Tetraethyl orthosilicate: TEOS and Biomass silica) for enhanced delivery of 5-fluorouracil. Chem Select. 2023;8:e202204498. https://doi.org/10.1002/slct.202204498 | |
49. Rajput S, Vadia N, Mahajan M. Role of mesoporous silica nanoparticles as drug carriers: evaluation of diverse mesoporous material nanoparticles as potential host for various applications. Adv Funct Porous Mater From Macro to Nano Scale Lengths. 2022:205- 34. https://doi.org/10.1007/978-3-030-85397-6_7 | |
50. Semeykina V, Zharov I. Medium controlled aggregative growth as a key step in mesoporous silica nanoparticle formation. J Colloid Interface Sci 2022;615:236-47. https://doi.org/10.1016/j.jcis.2022.01.166 | |
51. Pal N, Lee JH, Cho EB. Recent trends in morphology-controlled synthesis and application of mesoporous silica nanoparticles. Nanomaterials. 2020;10:2122. https://doi.org/10.3390/nano10112122 | |
52. Kaur A, Bajaj B, Kaushik A, Saini A, Sud D. A review on template assisted synthesis of multi-functional metal oxide nanostructures: status and prospects. Mater Sci Eng B. 2022;286:116005. https://doi.org/10.1016/j.mseb.2022.116005 | |
53. Hwang J, Lee JH, Chun J. Facile approach for the synthesis of spherical mesoporous silica nanoparticles from sodium silicate. Mater Lett. 2021;283:128765. https://doi.org/10.1016/j.matlet.2020.128765 | |
54. Lv X, Zhang L, Xing F, Lin H. Controlled synthesis of monodispersed mesoporous silica nanoparticles: particle size tuning and formation mechanism investigation. Microporous Mesoporous Mater. 2016;225:238-44. https://doi.org/10.1016/j.micromeso.2015.12.024 | |
55. Zhou C, Yan C, Zhao J, Wang H, Zhou Q, Luo W. Rapid synthesis of morphology-controlled mesoporous silica nanoparticles from silica fume. J Taiwan Inst Chem Eng. 2016;62:307-12. https://doi.org/10.1016/j.jtice.2016.01.031 | |
56. Abburi A, Ali M, Moriya PV. Synthesis of mesoporous silica nanoparticles from waste hexafluorosilicic acid of fertilizer industry. J Mater Res Technol. 2020;9:8074-80. https://doi.org/10.1016/j.jmrt.2020.05.055 | |
57. Mohamad DF, Osman NS, Nazri MKHM, Mazlan AA, Hanafi MF, Esa YAM, et al. Synthesis of mesoporous silica nanoparticle from banana peel ash for removal of phenol and methyl orange in aqueous solution. Mater Today Proc. 2019;19:1119-25. https://doi.org/10.1016/j.matpr.2019.11.004 | |
58. Li H, Wu X, Yang B, Li J, Xu L, Liu H, et al. Evaluation of biomimetically synthesized mesoporous silica nanoparticles as drug carriers: structure, wettability, degradation, biocompatibility and brain distribution. Mat Sci Eng C. 2019;94:453-64. https://doi.org/10.1016/j.msec.2018.09.053 | |
59. Li Q, Zhou Y. Brief history, preparation method, and biological application of mesoporous silica molecular sieves: a narrative review. Molecules. 2023;28:2013. https://doi.org/10.3390/molecules28052013 | |
60. Gurung S, Gucci F, Cairns G, Chianella I, Leighton GJ. Hollow silica nano and micro spheres with polystyrene templating: a mini-review. Materials. 2022;15:8578. https://doi.org/10.3390/ma15238578 | |
61. Munir T, Mahmood A, Peter N, Rafaqat N, Imran M, Ali HE. Structural, morphological and optical properties at various concentration of Ag doped SiO2-NPs via sol gel method for antibacterial and anticancer activities. Surf Interfaces. 2023;38:102759. https://doi.org/10.1016/j.surfin.2023.102759 | |
62. Porrang S, Rahemi N, Davaran S, Mahdavi M, Hassanzadeh B. Synthesis of temperature/pH dual-responsive mesoporous silica nanoparticles by surface modification and radical polymerization for anti-cancer drug delivery. Colloids Surf A: Physicochem Eng Aspects. 2021;623:126719. https://doi.org/10.1016/j.colsurfa.2021.126719 | |
63. Choudante PC, Mamilla J, Kongari L, Díaz-García D, Prashar S, Gómez-Ruiz S, et al. Functionalized tin-loaded mesoporous silica nanoparticles for targeted therapy of triple-negative breast cancer: evaluation of cytogenetic toxicity. J Drug Deliv Sci Technol. 2024;94:105502. https://doi.org/10.1016/j.jddst.2024.105502 | |
64. Sun T, Li C, Li X, Song H, Su B, You H, et al. Pharmaceutical Nanotechnology. In Nanomedicine. Springer; 2023. pp 179-283. https://doi.org/10.1007/978-981-16-8984-0_10 | |
65. Xiang L, Li Q, Li C, Yang Q, Xu F, Mai Y. Block copolymer self-assembly directed synthesis of porous materials with ordered bicontinuous structures and their potential applications. Adv Mater. 2023;35:2207684. https://doi.org/10.1002/adma.202207684 | |
66. Florensa M, Llenas M, Medina-Gutiérrez E, Sandoval S, Tobías- Rossell G. Key parameters for the rational design, synthesis, and functionalization of biocompatible mesoporous silica nanoparticles. Pharmaceutics. 2022;14:2703. https://doi.org/10.3390/pharmaceutics14122703 | |
67. Zhang L, Jin L, Liu B, He J. Templated growth of crystalline mesoporous materials: from soft/hard templates to colloidal templates. Front Chem. 2019;7:22. https://doi.org/10.3389/fchem.2019.00022 | |
68. Jin L, Liu B, Louis ME, Li G, He J. Highly crystalline mesoporous titania loaded with monodispersed gold nanoparticles: controllable metal-support interaction in porous materials. ACS Appl Mater Interfaces. 2020;12:9617-27. https://doi.org/10.1021/acsami.9b20231 | |
69. Mohanan S, Sathish C, Ramadass K, Liang M, Vinu A. Design and synthesis of cabazitaxel loaded core-shell mesoporous silica nanoparticles with different morphologies for prostate cancer therapy. Small. 2024;20:2303269. https://doi.org/10.1002/smll.202303269 | |
70. AlMohaimadi KM, Albishri HM, Thumayri KA, AlSuhaimi AO, Mehdar YT, Hussein BH. Facile hydrothermal assisted basic catalyzed sol gel synthesis for mesoporous silica nanoparticle from alkali silicate solutions using dual structural templates. Gels. 2024;10:839. https://doi.org/10.3390/gels10120839 | |
71. Shakeran Z, Keyhanfar M, Varshosaz J, Sutherland DS. Biodegradable nanocarriers based on chitosan-modified mesoporous silica nanoparticles for delivery of methotrexate for application in breast cancer treatment. Mater Sci Eng C. 2021;118:111526. https://doi.org/10.1016/j.msec.2020.111526 | |
72. Bilal M, Iqbal HM, Adil SF, Shaik MR, Abdelgawad A, Hatshan MR, et al. Surface-coated magnetic nanostructured materials for robust bio-catalysis and biomedical applications-a review. J Adv Res. 2022;38:157-77. https://doi.org/10.1016/j.jare.2021.09.013 | |
73. Marques A, Costa P, Velho S, Amaral M. Functionalizing nanoparticles with cancer-targeting antibodies: a comparison of strategies. J Controlled Release. 2020;320:180-200. https://doi.org/10.1016/j.jconrel.2020.01.035 | |
74. Xu X, Li H, Li K, Zeng Q, Liu Y, Zeng Y, et al. A photo-triggered conjugation approach for attaching RGD ligands to biodegradable mesoporous silica nanoparticles for the tumor fluorescent imaging. Nanomedicine Nanotechnol Biol Med. 2019;19:136-44. https://doi.org/10.1016/j.nano.2019.04.005 | |
75. Alfhaid LHK. Recent advance in functionalized mesoporous silica nanoparticles with stimuli-responsive polymer brush for controlled drug delivery. Soft Mater. 2022;20:364-78. https://doi.org/10.1080/1539445X.2022.2028831 | |
76. Li QL, Sun Y, Sun YL, Wen J, Zhou Y, Bing QM, et al. Mesoporous silica nanoparticles coated by layer-by-layer self-assembly using cucurbit [7] uril for in vitro and in vivo anticancer drug release. Chem Mater. 2014;26:6418-31. https://doi.org/10.1021/cm503304p | |
77. Wei Y, Gao L, Wang L, Shi L, Wei E, Zhou B, et al. Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy. Drug Deliv. 2017;24:681-91. https://doi.org/10.1080/10717544.2017.1309475 | |
78. Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem Rev. 2017;117:1105- 318. https://doi.org/10.1021/acs.chemrev.6b00314 | |
79. Huang R, Shen YW, Guan YY, Jiang YX, Wu Y, Rahman K, et al. Mesoporous silica nanoparticles: facile surface functionalization and versatile biomedical applications in oncology. Acta Biomater. 2020;116:1-15. https://doi.org/10.1016/j.actbio.2020.09.009 | |
80. Abu-Dief AM, Alsehli M, Al-Enizi A, Nafady A. Recent advances in mesoporous silica nanoparticles for targeted drug delivery applications. Curr Drug Deliv. 2022;19:436-50. https://doi.org/10.2174/1567201818666210708123007 | |
81. Lu J, Luo B, Chen Z, Yuan Y, Kuang Y, Wan L, et al. Host-guest fabrication of dual-responsive hyaluronic acid/mesoporous silica nanoparticle based drug delivery system for targeted cancer therapy. Int J Biol Macromol. 2020;146:363-73. https://doi.org/10.1016/j.ijbiomac.2019.12.265 | |
82. Noreen S, Maqbool A, Maqbool I, Shafique A, Khan MM, Junejo Y, et al. Multifunctional mesoporous silica-based nanocomposites: synthesis and biomedical applications. Mater Chem Phy. 2022;285:126132. https://doi.org/10.1016/j.matchemphys.2022.126132 | |
83. Varache M, Bezverkhyy I, Weber G, Saviot L, Chassagnon R, Baras F, et al. Loading of cisplatin into mesoporous silica nanoparticles: effect of surface functionalization. Langmuir. 2019;35:8984-95. https://doi.org/10.1021/acs.langmuir.9b00954 | |
84. Wani A, Muthuswamy E, Savithra GHL, Mao G, Brock S, Oupický D. Surface functionalization of mesoporous silica nanoparticles controls loading and release behavior of mitoxantrone. Pharm Res. 2012;29:2407-18. https://doi.org/10.1007/s11095-012-0766-9 | |
85. Chang B, Guo J, Liu C, Qian J, Yang W. Surface functionalization of magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem. 2010;20:9941-7. https://doi.org/10.1039/c0jm01237h | |
86. She X, Chen L, Li C, He C, He L, Kong L. Functionalization of hollow mesoporous silica nanoparticles for improved 5-FU loading. J Nanomater. 2015;16:108. https://doi.org/10.1155/2015/872035 | |
87. Bahrami Z, Badiei A, Atyabi F, Darabi HR, Mehravi B. Piperazine and its carboxylic acid derivatives-functionalized mesoporous silica as nanocarriers for gemcitabine: adsorption and release study. Mater Sci Eng C. 2015;49:66-74. https://doi.org/10.1016/j.msec.2014.12.069 | |
88. Niroumand U, Firouzabadi N, Goshtasbi G, Hassani B, Ghasemiyeh P, Mohammadi-Samani S. The effect of size, morphology and surface properties of mesoporous silica nanoparticles on pharmacokinetic aspects and potential toxicity concerns. Front Mater. 2023;10:1189463. https://doi.org/10.3389/fmats.2023.1189463 | |
89. Yang B, Zhou S, Zeng J, Zhang L, Zhang R, Liang K, et al. Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Res. 2020;13:1013-9. https://doi.org/10.1007/s12274-020-2736-6 | |
90. Yang G, Li Z, Wu F, Chen M, Wang R, Zhu H, et al. Improving solubility and bioavailability of breviscapine with mesoporous silica nanoparticles prepared using ultrasound-assisted solution-enhanced dispersion by supercritical fluids method. Int J Nanomedicine. 2020;15:1661-75. https://doi.org/10.2147/IJN.S238337 | |
91. Gisbert-Garzarán M, Manzano M, Vallet-Regí M. Mesoporous silica nanoparticles for the treatment of complex bone diseases: bone cancer, bone infection and osteoporosis. Pharmaceutics. 2020;12:83. https://doi.org/10.3390/pharmaceutics12010083 | |
92. Peng S, Yuan X, Lin W, Cai C, Zhang L. pH-responsive controlled release of mesoporous silica nanoparticles capped with Schiff base copolymer gatekeepers: experiment and molecular dynamics simulation. Colloids Surf B Biointerfaces. 2019;176:394-403. https://doi.org/10.1016/j.colsurfb.2019.01.024 | |
93. Guo F, Li G, Zhou H, Ma S, Guo L, Liu X. Temperature and H2O2-operated nano-valves on mesoporous silica nanoparticles for controlled drug release and kinetics. Colloids Surf B Biointerf. 2020;187:110643. https://doi.org/10.1016/j.colsurfb.2019.110643 | |
94. Huang P, Lian D, Ma H, Gao N, Zhao L, Luan P, et al. New advances in gated materials of mesoporous silica for drug controlled release. Chinese Chem Lett. 2021;32:3696-704. https://doi.org/10.1016/j.cclet.2021.06.034 | |
95. Kankala RK, Han YH, Na J, Lee CH, Sun Z, Wang SB, et al. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv Mater. 2020;32:1907035. https://doi.org/10.1002/adma.201907035 | |
96. Lu H, Zhao Q, Wang X, Mao Y, Chen C, Gao Y, et al. Multi-stimuli responsive mesoporous silica-coated carbon nanoparticles for chemo-photothermal therapy of tumor. Colloids Surf B Biointerfaces. 2020;190:110941. https://doi.org/10.1016/j.colsurfb.2020.110941 | |
97. Li T, Shen X, Geng Y, Chen Z, Li L, Li S, et al. Folate-functionalized magnetic-mesoporous silica nanoparticles for drug/gene codelivery to potentiate the antitumor efficacy. ACS Appl Mater Interfaces. 2016;8:13748-58. https://doi.org/10.1021/acsami.6b02963 | |
98. Wang T, Wang M, Ding C, Fu J. Mono-benzimidazole functionalized β-cyclodextrins as supramolecular nanovalves for pH-triggered release of p-coumaric acid. Chem Commun. 2014;50:12469-72. https://doi.org/10.1039/C4CC05677A | |
99. Du L, Song H, Liao S. A biocompatible drug delivery nanovalve system on the surface of mesoporous nanoparticles. Microporous Mesoporous Mater. 2012;147:200-4. https://doi.org/10.1016/j.micromeso.2011.06.020 | |
100. Chen H, Kuang Y, Liu R, Chen Z, Jiang B, Sun Z, et al. Dual-pH-sensitive mesoporous silica nanoparticle-based drug delivery system for tumor-triggered intracellular drug release. J Mater Sci. 2018;53:10653-65. https://doi.org/10.1007/s10853-018-2363-8 | |
101. Eskandari P, Bigdeli B, Porgham Daryasari M, Baharifar H, Bazri B, Shourian M, et al. Gold-capped mesoporous silica nanoparticles as an excellent enzyme-responsive nanocarrier for controlled doxorubicin delivery. J Drug Targeting. 2019;27:1084-93. https://doi.org/10.1080/1061186X.2019.1599379 | |
102. Mondragón L, Mas N, Ferragud V, de la Torre C, Agostini A, Martínez-Máñez R, et al. Enzyme-responsive intracellular-controlled release using silica mesoporous nanoparticles capped with ε-Poly-L-lysine. Chem-A Eur J. 2014;20:5271-81. https://doi.org/10.1002/chem.201400148 | |
103. Saroj S, Rajput SJ. Etoposide encapsulated functionalized mesoporous silica nanoparticles: Synthesis, characterization and effect of functionalization on dissolution kinetics in simulated and biorelevant media. J Drug Deliv Sci Technol. 2018;44:27-40. https://doi.org/10.1016/j.jddst.2017.11.020 | |
104. Thi TTH, Nguyen TNQ, Hoang DT, Nguyen DH. Functionalized mesoporous silica nanoparticles and biomedical applications. Mater Sci Eng C. 2019;99:631-56. https://doi.org/10.1016/j.msec.2019.01.129 | |
105. Kim EC, Ou W, Dai Phung C, Nguyen TT, Pham TT, Poudel K, et al. Targeting and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for alleviating aorta atherosclerosis. Biomaterials. 2021;269:120677. https://doi.org/10.1016/j.biomaterials.2021.120677 | |
106. Shadmani N, Makvandi P, Parsa M, Azadi A, Nedaei K, Mozafari N, et al. Enhancing methotrexate delivery in the brain by mesoporous silica nanoparticles functionalized with cell-penetrating peptide using in vivo and ex vivo monitoring. Mol Pharm. 2023;20:1531- 48. https://doi.org/10.1021/acs.molpharmaceut.2c00755 | |
107. Sakhtianchi R, Darvishi B, Mirzaie Z, Dorkoosh F, Shanehsazzadeh S, Dinarvand R. Pegylated magnetic mesoporous silica nanoparticles decorated with AS1411 Aptamer as a targeting delivery system for cytotoxic agents. Pharm Dev Technol. 2019;24:1063-75. https://doi.org/10.1080/10837450.2019.1569678 | |
108. Chen C, Tang W, Jiang D, Yang G, Wang X, Zhou L, et al. Hyaluronic acid conjugated polydopamine functionalized mesoporous silica nanoparticles for synergistic targeted chemo-photothermal therapy. Nanoscale. 2019;11:11012-24. https://doi.org/10.1039/C9NR01385G | |
109. Rosenholm JM, Sahlgren C, Lindén M. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles- opportunities & challenges. Nanoscale. 2010;2:1870-83. https://doi.org/10.1039/c0nr00156b | |
110. Liu Y, Dai R, Wei Q, Li W, Zhu G, Chi H, et al. Dual-functionalized janus mesoporous silica nanoparticles with active targeting and charge reversal for synergistic tumor-targeting therapy. ACS Appl Mater Interfaces. 2019;11:44582-92. https://doi.org/10.1021/acsami.9b15434 | |
111. Barui S, Cauda V. Multimodal decorations of mesoporous silica nanoparticles for improved cancer therapy. Pharmaceutics. 2020;12:527. https://doi.org/10.3390/pharmaceutics12060527 | |
112. Chen L, She X, Wang T, He L, Shigdar S, Duan W, et al. Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles. Nanoscale. 2015;7:14080-92. https://doi.org/10.1039/C5NR03527A | |
113. Liu K, Wang ZQ, Wang S-J, Liu P, Qin Y-H, Ma Y, et al. Hyaluronic acid-tagged silica nanoparticles in colon cancer therapy: therapeutic efficacy evaluation. Int J Nanomedicine. 2015;10:6445-54. https://doi.org/10.2147/IJN.S89476 | |
114. Radhakrishnan K, Tripathy J, Datey A, Chakravortty D, Raichur AM. Mesoporous silica-chondroitin sulphate hybrid nanoparticles for targeted and bio-responsive drug delivery. New J Chem. 2015;39:1754-60. https://doi.org/10.1039/C4NJ01430H | |
115. Xie X, Li F, Zhang H, Lu Y, Lian S, Lin H, et al. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci. 2016;83:28-35. https://doi.org/10.1016/j.ejps.2015.12.014 | |
116. Chen X, Sun H, Hu J, Han X, Liu H, Hu Y. Transferrin gated mesoporous silica nanoparticles for redox-responsive and targeted drug delivery. Colloids Surf B Biointerfaces. 2017;152:77-84. https://doi.org/10.1016/j.colsurfb.2017.01.010 | |
117. Khosravian P, Shafiee Ardestani M, Khoobi M, Ostad SN, Dorkoosh FA, Akbari Javar H, et al. Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel. OncoTargets Ther. 2016;9:7315-30. https://doi.org/10.2147/OTT.S113815 | |
118. Quan G, Pan X, Wang Z, Wu Q, Li G, Dian L, et al. Lactosaminated mesoporous silica nanoparticles for asialoglycoprotein receptor targeted anticancer drug delivery. J Nanobiotechnol. 2015;13:1- 12. https://doi.org/10.1186/s12951-015-0068-6 | |
119. Sarkar A, Ghosh S, Chowdhury S, Pandey B, Sil PC. Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochim Biophys Acta (BBA)-Gen Subjects. 2016;1860:2065-75. https://doi.org/10.1016/j.bbagen.2016.07.001 | |
120. Murugan C, Rayappan K, Thangam R, Bhanumathi R, Shanthi K, Vivek R, et al. Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: an improved nanomedicine strategy. Sci Rep. 2016;6:34053. https://doi.org/10.1038/srep34053 | |
121. Goel S, Chen F, Hong H, Valdovinos HF, Hernandez R, Shi S, et al. VEGF121-conjugated mesoporous silica nanoparticle: a tumor targeted drug delivery system. ACS Appl Mater Interfaces. 2014;6:21677-85. https://doi.org/10.1021/am506849p | |
122. Rivero-Buceta E, Vidaurre-Agut C, Vera-Donoso CsD, Benlloch JM, Moreno-Manzano V, Botella P. PSMA-targeted mesoporous silica nanoparticles for selective intracellular delivery of docetaxel in prostate cancer cells. ACS Omega. 2019;4:1281-91. https://doi.org/10.1021/acsomega.8b02909 | |
123. Kumar B, Kulanthaivel S, Mondal A, Mishra S, Banerjee B, Bhaumik A, et al. Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Colloids Surf B Biointerfaces. 2017;150:352-61. https://doi.org/10.1016/j.colsurfb.2016.10.049 | |
124. Cui Y, Xu Q, Chow PKH, Wang D, Wang CH. Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials. 2013;34:8511- 20. https://doi.org/10.1016/j.biomaterials.2013.07.075 | |
125. Mo J, He L, Ma B, Chen T. Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood- brain barrier. ACS Appl Mater Interfaces. 2016;8:6811-25. https://doi.org/10.1021/acsami.5b11730 | |
126. Chi X, Zhang R, Zhao T, Gong X, Wei R, Yin Z, et al. Targeted arsenite-loaded magnetic multifunctional nanoparticles for treatment of hepatocellular carcinoma. Nanotechnology. 2019;30:175101. https://doi.org/10.1088/1361-6528/aaff9e | |
127. Liu CM, Chen GB, Chen HH, Zhang JB, Li HZ, Sheng MX, et al. Cancer cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gatekeeper for cancer treatment. Colloids Surf B Biointerfaces. 2019;175:477-86. https://doi.org/10.1016/j.colsurfb.2018.12.038 | |
128. Tan J, Yang N, Zhong L, Tan J, Hu Z, Zhao Q, et al. A new theranostic system based on endoglin aptamer conjugated fluorescent silica nanoparticles. Theranostics. 2017;7:4862. https://doi.org/10.7150/thno.19101 | |
129. Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev. 2022;51:5365-451. https://doi.org/10.1039/D1CS00659B | |
130. Garrido-Cano I, Candela-Noguera V, Herrera G, Cejalvo JM, Lluch A, Marcos MD, et al. Biocompatibility and internalization assessment of bare and functionalised mesoporous silica nanoparticles. Microporous Mesoporous Mater. 2021;310:110593. https://doi.org/10.1016/j.micromeso.2020.110593 | |
131. Taleghani AS, Nakhjiri AT, Khakzad MJ, Rezayat SM, Ebrahimnejad P, Heydarinasab A, et al. Mesoporous silica nanoparticles as a versatile nanocarrier for cancer treatment: a review. J Mol Liquids. 2021;328:115417. https://doi.org/10.1016/j.molliq.2021.115417 | |
132. Hosseinpour S, Walsh LJ, Xu C. Biomedical application of mesoporous silica nanoparticles as delivery systems: a biological safety perspective. J Mater Chem B. 2020;8:9863-76. https://doi.org/10.1039/D0TB01868F | |
133. Ahmadi F, Sodagar-Taleghani A, Ebrahimnejad P, Moghaddam SPH, Ebrahimnejad F, Asare-Addo K, et al. A review on the latest developments of mesoporous silica nanoparticles as a promising platform for diagnosis and treatment of cancer. Int J Pharm. 2022;625:122099. https://doi.org/10.1016/j.ijpharm.2022.122099 | |
134. Zhou S, Zhong Q, Wang Y, Hu P, Zhong W, Huang CB, et al. Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coordination Chem Rev. 2022;452:214309. https://doi.org/10.1016/j.ccr.2021.214309 | |
135. Heidari R, Khosravian P, Mirzaei SA, Elahian F. siRNA delivery using intelligent chitosan-capped mesoporous silica nanoparticles for overcoming multidrug resistance in malignant carcinoma cells. Sci Rep. 2021;11:20531. https://doi.org/10.1038/s41598-021-00085-0 | |
136. Hashemzadeh N, Dolatkhah M, Aghanejad A, Barzegar-Jalali M, Omidi Y, Adibkia K, et al. Folate receptor-mediated delivery of 1-MDT-loaded mesoporous silica magnetic nanoparticles to target breast cancer cells. Nanomedicine. 2021;16:2137-54. https://doi.org/10.2217/nnm-2021-0176 | |
137. Rastegari E, Hsiao YJ, Lai WY, Lai YH, Yang TC, Chen SJ, et al. An update on mesoporous silica nanoparticle applications in nanomedicine. Pharmaceutics. 2021;13:1067. https://doi.org/10.3390/pharmaceutics13071067 | |
138. Zhu J, Zhang Y, Chen X, Zhang Y, Zhang K, Zheng H, et al. Angiopep-2 modified lipid-coated mesoporous silica nanoparticles for glioma targeting therapy overcoming BBB. Biochem Biophys Res Commun. 2021;534:902-7 https://doi.org/10.1016/j.bbrc.2020.10.076 | |
139. To KK, Wu M, Tong CW, Yan W. Drug transporters in the development of multidrug resistance in colorectal cancer. In Drug resistance in colorectal cancer: molecular mechanisms and therapeutic strategies. San Diego, CA: Elsevier; 2020. pp 35-55 https://doi.org/10.1016/B978-0-12-819937-4.00002-9 | |
140. Kankala RK, Liu CG, Chen AZ, Wang SB, Xu PY, Mende LK, et al. Overcoming multidrug resistance through the synergistic effects of hierarchical pH-sensitive, ROS-generating nanoreactors. ACS Biomater Sci Eng. 2017;3:2431-42. https://doi.org/10.1021/acsbiomaterials.7b00569 | |
141. Fang J, Zhang S, Xue X, Zhu X, Song S, Wang B, et al. Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int J Nanomedicine. 2018;13:5113-26. https://doi.org/10.2147/IJN.S170862 | |
142. Zhai Y, Su J, Ran W, Zhang P, Yin Q, Zhang Z, et al. Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics. 2017;7:2575. https://doi.org/10.7150/thno.20118 | |
143. Su J, Sun H, Meng Q, Zhang P, Yin Q, Li Y. Enhanced blood suspensibility and laser-activated tumor-specific drug release of theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes. Theranostics. 2017;7:523. https://doi.org/10.7150/thno.17259 | |
144. Tamarov K, Näkki S, Xu W, Lehto VP. Approaches to improve the biocompatibility and systemic circulation of inorganic porous nanoparticles. J Mater Chem B. 2018;6:3632-49. https://doi.org/10.1039/C8TB00462E | |
145. Xuan M, Shao J, Dai L, He Q, Li J. Macrophage cell membrane camouflaged mesoporous silica nanocapsules for in vivo cancer therapy. Adv Healthcare Mater. 2015;4:1645-52. https://doi.org/10.1002/adhm.201500129 | |
146. Yue J, Wang Z, Shao D, Chang Z, Hu R, Li L, et al. Cancer cell membrane-modified biodegradable mesoporous silica nanocarriers for berberine therapy of liver cancer. RSC Adv. 2018;8:40288-97. https://doi.org/10.1039/C8RA07574C | |
147. Babaei M, Abnous K, Taghdisi SM, Taghavi S, Saljooghi AS, Ramezani M, et al. Targeted rod-shaped mesoporous silica nanoparticles for the co-delivery of camptothecin and survivin shRNA in to colon adenocarcinoma in vitro and in vivo. Eur J Pharm Biopharm. 2020;156:84-96. https://doi.org/10.1016/j.ejpb.2020.08.026 | |
148. Zhang J, Shen B, Chen L, Chen L, Meng Y, Feng J. A dual-sensitive mesoporous silica nanoparticle based drug carrier for cancer synergetic therapy. Colloids Surf B Biointerfaces. 2019;175:65-72. https://doi.org/10.1016/j.colsurfb.2018.11.071 | |
149. Sun L, Wang D, Chen Y, Wang L, Huang P, Li Y, et al. Core-shell hierarchical mesostructured silica nanoparticles for gene/ chemo-synergetic stepwise therapy of multidrug-resistant cancer. Biomaterials. 2017;133:219-28. https://doi.org/10.1016/j.biomaterials.2017.04.028 | |
150. Wang C, Wu L, Yuan H, Yu H, Xu J, Chen S, et al. A powerful antitumor "trident": the combination of radio-, immuno-and anti- angiogenesis therapy based on mesoporous silica single coated gold nanoparticles. J Mater Chem B. 2023;11:879-89. https://doi.org/10.1039/D2TB02046G | |
151. Meng H, Wang M, Liu H, Liu X, Situ A, Wu B, et al. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano. 2015;9:3540-57. https://doi.org/10.1021/acsnano.5b00510 | |
152. Jia L, Li Z, Shen J, Zheng D, Tian X, Guo H, et al. Multifunctional mesoporous silica nanoparticles mediated co-delivery of paclitaxel and tetrandrine for overcoming multidrug resistance. Int J Pharm. 2015;489:318-30. https://doi.org/10.1016/j.ijpharm.2015.05.010 | |
153. Li S, Zhang Y, He XW, Li WY, Zhang YK. Multifunctional mesoporous silica nanoplatform based on silicon nanoparticles for targeted two-photon-excited fluorescence imaging-guided chemo/ photodynamic synergetic therapy in vitro. Talanta. 2020;209:120552. https://doi.org/10.1016/j.talanta.2019.120552 | |
154. Wang J, Zhang Y, Liu L, Cui Z, Liu X, Wang L, et al. Combined chemo/photothermal therapy based on mesoporous silica-Au core-shell nanoparticles for hepatocellular carcinoma treatment. Drug Dev Indus Pharm. 2019:45(9):1487-95. https://doi.org/10.1080/03639045.2019.1629688 | |
155. Pan G, Jia TT, Huang Q-X, Qiu Y-Y, Xu J, Yin P-H, et al. Mesoporous silica nanoparticles (MSNs)-based organic/inorganic hybrid nanocarriers loading 5-Fluorouracil for the treatment of colon cancer with improved anticancer efficacy. Colloids Surf B Biointerfaces. 2017;159:375-85. https://doi.org/10.1016/j.colsurfb.2017.08.013 | |
156. Narayan R, Gadag S, Cheruku SP, Raichur AM, Day CM, Garg S, et al. Chitosan-glucuronic acid conjugate coated mesoporous silica nanoparticles: a smart pH-responsive and receptor-targeted system for colorectal cancer therapy. Carbohydrate Poly. 2021;261:117893. https://doi.org/10.1016/j.carbpol.2021.117893 | |
157. Martínez-Edo G, Fornaguera C, Borrós S, Sánchez-García D. Glycyrrhetinic acid-functionalized mesoporous silica nanoparticles for the co-delivery of DOX/CPT-PEG for targeting HepG2 cells. Pharmaceutics. 2020;12:1048. https://doi.org/10.3390/pharmaceutics12111048 | |
158. Moghadam ME, Sadeghi M, Mansouri-Torshizi H, Saidifar M. High cancer selectivity and improving drug release from mesoporous silica nanoparticles in the presence of human serum albumin in cisplatin, carboplatin, oxaliplatin, and oxalipalladium treatment. Eur J Pharm Sci. 2023;187:106477. https://doi.org/10.1016/j.ejps.2023.106477 | |
159. Busa P, Kankala RK, Deng JP, Liu CL, Lee CH. Conquering cancer multi-drug resistance using curcumin and cisplatin prodrug-encapsulated mesoporous silica nanoparticles for synergistic chemo-and photodynamic therapies. Nanomaterials. 2022;12:3693. https://doi.org/10.3390/nano12203693 | |
160. Zhao P, Qiu L, Zhou S, Li L, Qian Z, Zhang H. Cancer cell membrane camouflaged mesoporous silica nanoparticles combined with immune checkpoint blockade for regulating tumor microenvironment and enhancing antitumor therapy. Int J Nanomedicine. 2021;16:2107-21. https://doi.org/10.2147/IJN.S295565 | |
161. Hao Y, Zheng C, Song Q, Chen H, Nan W, Wang L, et al. Pressure-driven accumulation of Mn-doped mesoporous silica nanoparticles containing 5-aza-2-deoxycytidine and docetaxel at tumours with a dry cupping device. J Drug Targeting. 2021;29:900-9. https://doi.org/10.1080/1061186X.2021.1892117 | |
162. Wang D, Huang J, Wang X, Yu Y, Zhang H, Chen Y, et al. The eradication of breast cancer cells and stem cells by 8-hydroxyquinoline-loaded hyaluronan modified mesoporous silica nanoparticle-supported lipid bilayers containing docetaxel. Biomaterials. 2013;34:7662-73. https://doi.org/10.1016/j.biomaterials.2013.06.042 | |
163. Yan J, Xu X, Zhou J, Liu C, Zhang L, Wang D, et al. Fabrication of a pH/redox-triggered mesoporous silica-based nanoparticle with microfluidics for anticancer drugs doxorubicin and paclitaxel codelivery. ACS Appl Bio Mater. 2020;3:1216-25. https://doi.org/10.1021/acsabm.9b01111 | |
164. Saini K, Bandyopadhyaya R. Transferrin-conjugated polymer-coated mesoporous silica nanoparticles loaded with gemcitabine for killing pancreatic cancer cells. ACS Appl Nano Mater. 2019;3:229-40. https://doi.org/10.1021/acsanm.9b01921 | |
165. Brezoiu AM, Prelipcean AM, Lincu D, Deaconu M, Vasile E, Tatia R, et al. Nanoplatforms for irinotecan delivery based on mesoporous silica modified with a natural polysaccharide. Materials. 2022;15:7003. https://doi.org/10.3390/ma15197003 | |
166. Nie Z, Wang D, Wang S, Wang L. Facile construction of irinotecan loaded mesoporous nano-formulation with surface-initiated polymerization to improve stimuli-responsive drug delivery for breast cancer therapy. Heliyon. 2023;9:e15087. https://doi.org/10.1016/j.heliyon.2023.e15087 | |
167. Zhang K, Gao J, Li S, Ma T, Deng L, Kong Y. Construction of a pH-responsive drug delivery platform based on the hybrid of mesoporous silica and chitosan. J Saudi Chem Soc. 2021;25:101174. https://doi.org/10.1016/j.jscs.2020.11.007 | |
168. Salve R, Kumar P, Chaudhari BP, Gajbhiye V. Aptamer tethered bio-responsive mesoporous silica nanoparticles for efficient targeted delivery of paclitaxel to treat ovarian cancer cells. J Pharm Sci. 2023;112:1450-9. https://doi.org/10.1016/j.xphs.2023.01.011 | |
169. Slapak EJ, El Mandili M, Brink MST, Kros A, Bijlsma MF, Spek CA. Preclinical assessment of ADAM9-responsive mesoporous silica nanoparticles for the treatment of pancreatic cancer. Int J Mol Sci. 2023;24:10704. https://doi.org/10.3390/ijms241310704 | |
170. Liu M, Fu M, Yang X, Jia G, Shi X, Ji J, et al. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surf B Biointerfaces. 2020;196:111284. https://doi.org/10.1016/j.colsurfb.2020.111284 | |
171. Gautam M, Thapa RK, Poudel BK, Gupta B, Ruttala HB, Nguyen HT, et al. Aerosol technique-based carbon-encapsulated hollow mesoporous silica nanoparticles for synergistic chemo-photothermal therapy. Acta Biomaterialia. 2019;88:448-61. https://doi.org/10.1016/j.actbio.2019.02.029 | |
172. Setia A, Mehata AK, Malik AK, Viswanadh MK, Muthu MS. Theranostic magnetic nanoparticles: synthesis, properties, toxicity, and emerging trends for biomedical applications. J Drug Deliv Sci Technol. 2023;81:104295. https://doi.org/10.1016/j.jddst.2023.104295 | |
173. Li X, Zhang X, Zhao Y, Sun L. Fabrication of biodegradable Mn-doped mesoporous silica nanoparticles for pH/redox dual response drug delivery. J Inorgan Biochem. 2020;202:110887. https://doi.org/10.1016/j.jinorgbio.2019.110887 | |
174. Yu J, Dan N, Eslami SM, Lu X. State of the art of silica nanoparticles: an overview on biodistribution and preclinical toxicity studies. AAPS J. 2024;26:35. https://doi.org/10.1208/s12248-024-00906-w | |
175. Barguilla I, Candela-Noguera V, Oliver P, Annangi B, Díez P, Aznar E, et al. Toxicological profiling and long-term effects of bare, PEGylated-and galacto-oligosaccharide-functionalized mesoporous silica nanoparticles. Int J Mol Sci. 2023;24:16158. https://doi.org/10.3390/ijms242216158 | |
176. Li Z, Zhang Y, Feng N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opinion Drug Deliv. 2019;16:219-37. https://doi.org/10.1080/17425247.2019.1575806 | |
177. Thapa R, Ali H, Afzal O, Bhat AA, Almalki WH, Alzarea SI, et al. Unlocking the potential of mesoporous silica nanoparticles in breast cancer treatment. J Nanoparticle Res. 2023;25:169. https://doi.org/10.1007/s11051-023-05813-3 | |
178. Rani R, Malik P, Dhania S, Mukherjee TK. Recent advances in mesoporous silica nanoparticle-mediated drug delivery for breast cancer treatment. Pharmaceutics. 2023;15:227. https://doi.org/10.3390/pharmaceutics15010227 | |
179. Bhavsar D, Patel V, Sawant K. Systematic investigation of in vitro and in vivo safety, toxicity and degradation of mesoporous silica nanoparticles synthesized using commercial sodium silicate. Microporous Mesoporous Mater. 2019;284:343-52. https://doi.org/10.1016/j.micromeso.2019.04.050 | |
180. Huang X, Li L, Liu T, Hao N, Liu H, Chen D, et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano. 2011;5:5390-9. https://doi.org/10.1021/nn200365a | |
181. He Q, Shi J. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J Mater Chem. 2011;21:5845-55. https://doi.org/10.1039/c0jm03851b | |
182. Gisbert-Garzaran M, Lozano D, Matsumoto K, Komatsu A, Manzano M, Tamanoi F, et al. Designing mesoporous silica nanoparticles to overcome biological barriers by incorporating targeting and endosomal escape. ACS Appl Mater Interfaces. 2021;13:9656-66. https://doi.org/10.1021/acsami.0c21507 | |
183. Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6:1794- 805. https://doi.org/10.1002/smll.201000538 | |
184. Deng YD, Zhang XD, Yang XS, Huang ZL, Wei X, Yang XF, et al. Subacute toxicity of mesoporous silica nanoparticles to the intestinal tract and the underlying mechanism. J Hazardous Mater. 2021;409:124502. https://doi.org/10.1016/j.jhazmat.2020.124502 | |
185. Mohammadpour R, Cheney DL, Grunberger JW, Yazdimamaghani M, Jedrzkiewicz J, Isaacson KJ, et al. One-year chronic toxicity evaluation of single dose intravenously administered silica nanoparticles in mice and their Ex vivo human hemocompatibility. J Controlled Release. 2020;324:471-81. https://doi.org/10.1016/j.jconrel.2020.05.027 | |
186. Zhang X, Luan J, Chen W, Fan J, Nan Y, Wang Y, et al. Mesoporous silica nanoparticles induced hepatotoxicity via NLRP3 inflammasome activation and caspase-1-dependent pyroptosis. Nanoscale. 2018;10:9141-52. https://doi.org/10.1039/C8NR00554K | |
187. Mahmoud AM, Desouky EM, Hozayen WG, Bin-Jumah M, El- Nahass ES, Soliman HA, et al. Mesoporous silica nanoparticles trigger liver and kidney injury and fibrosis via altering TLR4/NF- κB, JAK2/STAT3 and Nrf2/HO-1 signaling in rats. Biomolecules. 2019;9:528. https://doi.org/10.3390/biom9100528 | |
188. Ahmadi A, Sokunbi M, Patel T, Chang MW, Ahmad Z, Singh N. Influence of critical parameters on cytotoxicity induced by mesoporous silica nanoparticles. Nanomaterials. 2022;12:2016. https://doi.org/10.3390/nano12122016 | |
189. Xu W, Zhou M, Guo Z, Lin S, Li M, Kang Q, et al. Impact of macroporous silica nanoparticles at sub-50nm on bio-behaviors and biosafety in drug-resistant cancer models. Colloids Surfaces B: Biointerfaces. 2021;206:111912. https://doi.org/10.1016/j.colsurfb.2021.111912 | |
190. Moodley T, Singh M. Polymeric mesoporous silica nanoparticles for enhanced delivery of 5-fluorouracil in vitro. Pharmaceutics. 2019;11:288. https://doi.org/10.3390/pharmaceutics11060288 | |
191. Li X, Sun W, Zhang Z, Kang Y, Fan J, Peng X. Red light-triggered polyethylene glycol deshielding from photolabile cyanine-modified mesoporous silica nanoparticles for on-demand drug release. ACS Appl Bio Mater. 2020;3:8084-93. https://doi.org/10.1021/acsabm.0c01160 | |
192. Hudson SP, Padera RF, Langer R, Kohane DS. The biocompatibility of mesoporous silicates. Biomaterials. 2008;29:4045-55. https://doi.org/10.1016/j.biomaterials.2008.07.007 | |
193. Liu T, Li L, Teng X, Huang X, Liu H, Chen D, et al. Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. Biomaterials. 2011;32:1657-68. https://doi.org/10.1016/j.biomaterials.2010.10.035 | |
194. Abdo GG, Zagho MM, Khalil A. Recent advances in stimuli-responsive drug release and targeting concepts using mesoporous silica nanoparticles. Emerg Mater. 2020;3:407-25. https://doi.org/10.1007/s42247-020-00109-x | |
195. Yan T, He J, Liu R, Liu Z, Cheng J. Chitosan capped pH-responsive hollow mesoporous silica nanoparticles for targeted chemo-photo combination therapy. Carbohydrate Poly. 2020;231:115706. https://doi.org/10.1016/j.carbpol.2019.115706 | |
196. Ghaferi M, Asadollahzadeh MJ, Akbarzadeh A, Ebrahimi Shahmabadi H, Alavi SE. Enhanced efficacy of PEGylated liposomal cisplatin: in vitro and in vivo evaluation. Int J Mol Sci. 2020;21:559. https://doi.org/10.3390/ijms21020559 | |
197. Gao Y, Gao D, Shen J, Wang Q. A review of mesoporous silica nanoparticle delivery systems in chemo-based combination cancer therapies. Front Chem. 2020;8:598722. https://doi.org/10.3389/fchem.2020.598722 | |
198. Lohiya G, Katti DS. Carboxylated chitosan-mediated improved efficacy of mesoporous silica nanoparticle-based targeted drug delivery system for breast cancer therapy. Carbohydrate Poly. 2022;277:118822. https://doi.org/10.1016/j.carbpol.2021.118822 | |
199. Cordeiro R, Carvalho A, Durães L, Faneca H. Triantennary GalNAc-functionalized multi-responsive mesoporous silica nanoparticles for drug delivery targeted at asialoglycoprotein receptor. Int J Mol Sci. 2022;23:6243. https://doi.org/10.3390/ijms23116243 | |
200. Ong C, Cha BG, Kim J. Mesoporous silica nanoparticles doped with gold nanoparticles for combined cancer immunotherapy and photothermal therapy. ACS Appl Bio Mater. 2019;2:3630-8. https://doi.org/10.1021/acsabm.9b00483 | |
201. Zhu Y, Xu J, Wang Y, Chen C, Gu H, Chai Y, et al. Silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes with an enhanced antibacterial activity for killing drug-resistant bacteria. Nano Res. 2020;13:389-400. https://doi.org/10.1007/s12274-020-2621-3 | |
202. Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, et al. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano. 2011;5:4131-44. https://doi.org/10.1021/nn200809t | |
203. Sivamaruthi BS, Thangaleela S, Kesika P, Suganthy N, Chaiyasut C. Mesoporous silica-based nanoplatforms are theranostic agents for the treatment of inflammatory disorders. Pharmaceutics. 2023;15:439. https://doi.org/10.3390/pharmaceutics15020439 | |
204. Li J, Sun R, Xu H, Wang G. Integrative metabolomics, proteomics and transcriptomics analysis reveals liver toxicity of mesoporous silica nanoparticles. Front Pharmacol. 2022;13:835359. https://doi.org/10.3389/fphar.2022.835359 | |
205. Lérida-Viso A, Estepa-Fernández A, García-Fernández A, Martí- Centelles V, Martínez-Máñez R. Biosafety of mesoporous silica nanoparticles; towards clinical translation. Adv Drug Deliv Rev. 2023;201:115049. https://doi.org/10.1016/j.addr.2023.115049 | |
206. Bukara K, Schueller L, Rosier J, Martens MA, Daems T, Verheyden L, et al. Ordered mesoporous silica to enhance the bioavailability of poorly water-soluble drugs: proof of concept in man. Eur J Pharm Biopharm. 2016;108:220-5. https://doi.org/10.1016/j.ejpb.2016.08.020 | |
207. Meola TR, Abuhelwa AY, Joyce P, Clifton P, Prestidge CA. A safety, tolerability, and pharmacokinetic study of a novel simvastatin silica-lipid hybrid formulation in healthy male participants. Drug Deliv Transl Res. 2021;11:1261-72. https://doi.org/10.1007/s13346-020-00853-x | |
208. Tan A, Eskandar NG, Rao S, Prestidge CA. First in man bioavailability and tolerability studies of a silica-lipid hybrid (Lipoceramic) formulation: a Phase I study with ibuprofen. Drug Deliv Transl Res. 2014;4:212-21. https://doi.org/10.1007/s13346-013-0172-9 | |
209. Barenholz YC. Doxil®-The first FDA-approved nano-drug: Lessons learned. J Controlled Release. 2012;160:117-34. https://doi.org/10.1016/j.jconrel.2012.03.020 | |
210. Cho H, Jeon SI, Ahn CH, Shim MK, Kim K. Emerging albumin-binding anticancer drugs for tumor-targeted drug delivery: current understandings and clinical translation. Pharmaceutics. 2022;14:728. https://doi.org/10.3390/pharmaceutics14040728 | |
211. Lim SM, Kim TH, Jiang HH, Park CW, Lee S, Chen X, et al. Improved biological half-life and anti-tumor activity of TNF-related apoptosis-inducing ligand (TRAIL) using PEG-exposed nanoparticles. Biomaterials. 2011;32:3538-46. https://doi.org/10.1016/j.biomaterials.2011.01.054 | |
212. He Q, Zhang Z, Gao F, Li Y, Shi J. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small. 2011;7:271-80. https://doi.org/10.1002/smll.201001459 | |
213. Rodríguez F, Caruana P, De la Fuente N, Español P, Gamez M, Balart J, et al. Nano-based approved pharmaceuticals for cancer treatment: present and future challenges. Biomolecules. 2022;12:784. https://doi.org/10.3390/biom12060784 |
Year
Month