Fabrication, biodistribution, and toxicological evaluation of mesoporous silica nanoparticles based on preclinical studies intended for cancer therapy: A review

Muhammad Esa Sunisa Kaewpaiboon Teerapol Srichana   

Open Access   

Published:  Apr 29, 2025

DOI: 10.7324/JAPS.2025.220858
Abstract

Effective delivery of anticancer drugs to tumor sites remains a substantial challenge in cancer treatment. A significant effort has been devoted to delivering anticancer drugs to the intended targets without causing harm to normal body cells. The need to enhance the efficacy and selectivity of chemotherapeutic drugs while minimizing adverse effects on healthy tissues has resulted in increased attention. A mesoporous silica nanoparticle (MSNP) platform is promising due to low toxicity, controlled release profiles, excellent drug loading capacity, and surface modification for targeting. The literature has outlined the synthesis, fabrication, drug loading and release profile, pharmacokinetics, biodistribution, toxicology, and potential outcomes of employing MSNP for anticancer drug delivery. However, the information is dispersed. This review aims to provide a comprehensive examination of the current research on MSNP for efficient drug delivery in cancer therapy based on over 150 preclinical studies up to March 2025. The review highlights the importance of MSNPs in addressing major challenges in targeted drug delivery for cancer therapy and offers a clear summary of the current state of research. This article will serve as an updated and valuable reference for researchers working on MSNP for anticancer drug delivery.


Keyword:     Chemotherapeutic drugs mesoporous silica nanoparticle (MSNP) targeted anticancer drug delivery preclinical research biodistribution toxicology


Citation:

Esa M, Kaewpaiboon S, Srichana T. Fabrication, biodistribution, and toxicological evaluation of mesoporous silica nanoparticles based on preclinical studies intended for cancer therapy: A review. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.220858

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Batool S, Sohail S, ud Din F, Alamri AH, Alqahtani AS, Alshahrani MA, et al. A detailed insight of the tumor targeting using nanocarrier drug delivery system. Drug Deliv. 2023;30:2183815. https://doi.org/10.1080/10717544.2023.2183815

2. Ulldemolins A, Seras-Franzoso J, Andrade F, Rafael D, Abasolo I, Gener P, et al. Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. Cancer Drug Resist. 2021;4:44. https://doi.org/10.20517/cdr.2020.59

3. Parveen N, Sheikh A, Abourehab MA, Karwasra R, Singh S, Kesharwani P. Self-nanoemulsifying drug delivery system for pancreatic cancer. Euro Poly J. 2023;190:111993. https://doi.org/10.1016/j.eurpolymj.2023.111993

4. Woodring RN, Gurysh EG, Bachelder EM, Ainslie KM. Drug delivery systems for localized cancer combination therapy. ACS Appl Bio Mat. 2023;6:934-950. https://doi.org/10.1021/acsabm.2c00973

5. Wang C, Xiao J, Hu X, Liu Q, Zheng Y, Kang Z, et al. Liquid core nanoparticle with high deformability enables efficient penetration across biological barriers. Adv Healthcare Mat. 2023;12:2201889. https://doi.org/10.1002/adhm.202201889

6. Dhar R, Gorai S, Devi A, Jha SK, Rahman MA, Alexiou A, et al. Exosome: a megastar of future cancer personalized and precision medicine. Clin Transl Discovery 2023;3:e208. https://doi.org/10.1002/ctd2.208

7. Ezike TC, Okpala US, Onoja UL, Nwike PC, Ezeako EC, Okpara JO, et al. Advances in drug delivery systems, challenges and future directions. Heliyon. 2023;9:e17488. https://doi.org/10.1016/j.heliyon.2023.e17488

8. Moholkar DN, Kandimalla R, Gupta RC, Aqil F. Advances in lipid-based carriers for cancer therapeutics: liposomes, exosomes and hybrid exosomes. Cancer Lett. 2023;565:216220. https://doi.org/10.1016/j.canlet.2023.216220

9. Radhakrishnan D, Patel V, Mohanan S, Ramadass K, Karakoti A, Vinu A. Folic acid functionalised mesoporous core-shell silica nanoparticles loaded with carboplatin for lung cancer therapy. Microporous Mesoporous Mater 2023;360:112708. https://doi.org/10.1016/j.micromeso.2023.112708

10. Dumontel B, Conejo-Rodríguez V, Vallet-Regí M, Manzano M. Natural biopolymers as smart coating materials of Mesoporous Silica nanoparticles for drug delivery. Pharmaceutics. 2023;15:447. https://doi.org/10.3390/pharmaceutics15020447

11. Kolimi P, Narala S, Youssef AAA, Nyavanandi D, Dudhipala N. A systemic review on development of mesoporous nanoparticles as a vehicle for transdermal drug delivery. Nanotheranostics. 2023;7:70. https://doi.org/10.7150/ntno.77395

12. Sutrisno L, Ariga K. Pore-engineered nanoarchitectonics for cancer therapy. NPG Asia Mater. 2023;15:21. https://doi.org/10.1038/s41427-023-00469-w

13. Sarkar S, Ekbal Kabir M, Kalita J, Manna P. Mesoporous Silica nanoparticles: drug delivery vehicles for antidiabetic molecules. ChemBioChem. 2023;24(7):e202200672. https://doi.org/10.1002/cbic.202200672

14. Almomen A, Alhowyan A. A comprehensive study on folate-targeted mesoporous silica nanoparticles loaded with 5-fluorouracil for the enhanced treatment ofgynecological cancers. J Funct Biomat. 2024;15:74. https://doi.org/10.3390/jfb15030074

15. Tripathi AD, Labh Y, Katiyar S, Singh AK, Chaturvedi VK, Mishra A. Folate-mediated targeting and controlled release: PLGA-encapsulated mesoporous silica nanoparticles delivering capecitabine to pancreatic tumor. ACS Appl Bio Mater. 2024;7(12):7838-51. https://doi.org/10.1021/acsabm.4c00019

16. Li Y, Phan VG, Pan Z, Xuan X, Yang HY, Luu CH, et al. Integrated and hyaluronic acid-coated mesoporous silica nanoparticles conjugated with cisplatin and chlorin e6 for combined chemo and photodynamic cancer therapy. Euro Poly J. 2024;220:113426. https://doi.org/10.1016/j.eurpolymj.2024.113426

17. Ebrahimipour SY, Mirzaei M, Zamani K, Mohamadi M, Bahraman AG, Ramezanpour S. Characterization and in-vitro release of coumarin from folic acid-conjugated mesoporous silica for targeted cancer therapy. J Mol Struct. 2025; 1330:141502. https://doi.org/10.1016/j.molstruc.2025.141502

18. Alallam B, Abdkadir E, Hayati A, Keong YY, Lim V. Alginate coated mesoporous silica nanoparticles as oral delivery carrier of curcumin and quercetin to colon cancer: preparation, optimization, characterization, and anticancer activity. Drug Deliv Translat Res 2025;15:1-42. https://doi.org/10.1007/s13346-024-01777-6

19. Zahedi P, Ebrahimnejad P, Seyedabadi M, Babaei A. Optimized mesoporous silica nanoparticles for delivery of curcumin and quercetin: enhanced skin permeation and cytotoxicity against A375 melanoma cells. J Cluster Sci. 2025;36:50. https://doi.org/10.1007/s10876-025-02769-3

20. Heydari SR, Ghahremani MH, Atyabi F, Bafkary R, Jaafari MR, Dinarvand R. Aptamer-modified chitosan-capped mesoporous silica nanoparticles for co-delivery of cytarabine and daunorubicin in leukemia. Int J Pharm. 2023;32:123495. https://doi.org/10.1016/j.ijpharm.2023.123495

21. Salari-Goharizi F, Mahani M, Sepehrian H, Yoosefian M, Khakbaz F. Multifunctional nanocarriers: enhanced doxorubicin release from CQD-tagged SBA-15 silica nanoparticles. J Cluster Sci. 2025:1-12. https://doi.org/10.1007/s10934-025-01752-7

22. Ostrowska S, Szukowska M, Kim S, Kim Y, Wawrzyniak D, Mrówczy?ski R. Doxorubicin and Sorafenib release from mesoporous silica nanoparticles coated with polydopamineinfluence of mechanical and chemical stimuli on the process. Front Coat Dyes Interface Eng. 2025;3:1531144. https://doi.org/10.3389/frcdi.2025.1531144

23. Hsu TI, Chen YP, Zhang RL, Chen ZA, Wu CH, Chang WC, et al. Overcoming the blood-brain tumor barrier with docetaxel-loaded mesoporous silica nanoparticles for treatment of temozolomide-resistant glioblastoma. ACS Appl Mater Interfaces. 2024;16:21722- 35. https://doi.org/10.1021/acsami.4c04289

24. Viswanathan TM, Chitradevi K, Zochedh A, Vijayabhaskar R, Sukumaran S, Kunjiappan S, et al. Guanidine-curcumin complex-loaded amine-functionalised hollow mesoporous silica nanoparticles for breast cancer therapy. Cancers. 2022;14:3490. https://doi.org/10.3390/cancers14143490

25. Liu X, Situ A, Kang Y, Villabroza KR, Liao Y, Chang CH, et al. Irinotecan delivery by lipid-coated mesoporous silica nanoparticles shows improved efficacy and safety over liposomes for pancreatic cancer. ACS nano. 2016;10:2702-15. https://doi.org/10.1021/acsnano.5b07781

26. Wang X, Xu T, Song H, Zhou L, Li X, Li G, et al. Fe3O4-viral-like mesoporous silica nanoparticle (Fe3O4-vMSN)-sustained release of lenvatinib for targeted treatment of hepatocellular carcinoma. Current Cancer Drug Targets. 2025;25:NA. https://doi.org/10.2174/0115680096329105241031093859

27. Jafarpour N, Nikpassand M, Faramarzi M. Conjugation of folic acid onto poly (acrylic acid-co-allylamine)-grafted mesoporous silica nanoparticles for controlled methotrexate delivery. J Drug Deliv Sci Technol. 2024;96:105667. https://doi.org/10.1016/j.jddst.2024.105667

28. Liu Y, Yu S, Jiang X, Wu Q, Shen W, Zou Z, et al. Functional paclitaxel-manganese-doped mesoporous silica nanoparticles for orthotopic brain glioma targeted therapy. Mater Design. 2024;238:112715. https://doi.org/10.1016/j.matdes.2024.112715

29. Shahbaz S, Esmaeili M, Nasab MHF, Imani Z, Bafkary R, Amini M, et al. PEGylated mesoporous silica core-shell redox-responsive nanoparticles for delivering paclitaxel to breast cancer cells. Int J Pharm 2024;655:124024. https://doi.org/10.1016/j.ijpharm.2024.124024

30. Kneževi? NŽ, Mr?anovi? J, Borišev I, Milenkovi? S, Jana?kovi? ?, Cunin F, et al. Hydroxylated fullerene-capped, vinblastine-loaded folic acid-functionalized mesoporous silica nanoparticles for targeted anticancer therapy. RSC Adv. 2016;6:7061-5. https://doi.org/10.1039/C5RA22937E

31. Zhao H, Li Y, Chen J, Zhang J, Yang Q, Cui J, et al. Environmental stimulus-responsive mesoporous silica nanoparticles as anticancer drug delivery platforms. Colloids Surfaces B: Biointerfaces. 2024;234:113758. https://doi.org/10.1016/j.colsurfb.2024.113758

32. Li T, Shi S, Goel S, Shen X, Xie X, Chen Z, et al. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomater. 2019;89:1-13. https://doi.org/10.1016/j.actbio.2019.02.031

33. Dutta Gupta Y, Mackeyev Y, Krishnan S, Bhandary S. Mesoporous silica nanotechnology: promising advances in augmenting cancer theranostics. Cancer Nanotechnol. 2024;15:9. https://doi.org/10.1186/s12645-024-00250-w

34. Asefa T, Tao Z. Biocompatibility of mesoporous silica nanoparticles. Chem Res Toxicol. 2012;25:2265-84. https://doi.org/10.1021/tx300166u

35. Farjadian F, Roointan A, Mohammadi-Samani S, Hosseini M. Mesoporous silica nanoparticles: synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chem Eng J. 2019;359:684-705. https://doi.org/10.1016/j.cej.2018.11.156

36. Huang Y, Li P, Zhao R, Zhao L, Liu J, Peng S, et al. Silica nanoparticles: biomedical applications and toxicity. Biomed Pharmacother. 2022;151:113053. https://doi.org/10.1016/j.biopha.2022.113053

37. Ghobadi M, Salehi S, Ardestani MTS, Mousavi-Khattat M, Shakeran Z, Khosravi A, et al. Amine-functionalized mesoporous silica nanoparticles decorated by silver nanoparticles for delivery of doxorubicin in breast and cervical cancer cells. Euro J Pharm Biopharm. 2024;201:114349. https://doi.org/10.1016/j.ejpb.2024.114349

38. Liao T, Liu C, Wu X, Liu J, Yu W, Xu Z, et al. Degradable mesoporous silica nanoparticle/peptide-based "Trojan Horse"-like drug delivery system for seep intratumoral penetration and cancer therapy. ACS Appl Nano Mater. 2024;7:9518-31. https://doi.org/10.1021/acsanm.4c00992

39. Wu H, Ding X, Chen Y, Cai Y, Yang Z, Jin J. EGFR-targeted humanized single chain antibody fragment functionalized silica nanoparticles for precision therapy of cancer. Int J Biol Macromol. 2023;253:127538. https://doi.org/10.1016/j.ijbiomac.2023.127538

40. Bhartiya P, Chawla R, Dutta PK. Folate receptor targeted chitosan and polydopamine coated mesoporous silica nanoparticles for photothermal therapy and drug delivery. J Macromol Sci Part A. 2022;59:810-7. https://doi.org/10.1080/10601325.2022.2135443

41. Akram Z, Daood U, Aati S, Ngo H, Fawzy AS. Formulation of pH-sensitive chlorhexidine-loaded/mesoporous silica nanoparticles modified experimental dentin adhesive. Mater Sci Eng C. 2021;122:111894. https://doi.org/10.1016/j.msec.2021.111894

42. Feng H, Li M, Xing Z, Ouyang XK, Ling J. Efficient delivery of fucoxanthin using metal-polyphenol network-coated magnetic mesoporous silica. J Drug Deliv Sci Technol. 2022;77:103842. https://doi.org/10.1016/j.jddst.2022.103842

43. Slapak EJ, El Mandili M, Ten Brink MS, Kros A, Bijlsma MF, Spek CA. CAPN2-responsive mesoporous silica nanoparticles: a promising nanocarrier for targeted therapy of pancreatic cancer. Cancer Lett. 2024;590:216845. https://doi.org/10.1016/j.canlet.2024.216845

44. Sreeharsha N, Philip M, Krishna SS, Viswanad V, Sahu RK, Shiroorkar PN, et al. Multifunctional mesoporous silica nanoparticles for oral drug delivery. Coatings. 2022;12:358. https://doi.org/10.3390/coatings12030358

45. Priyan SR, Kumar GS, Surendhiran S, Shkir M. Size-controlled synthesis of mesoporous silica nanoparticles using rice husk by microwave-assisted sol-gel method. Int J Appl Ceramic Technol. 2023;20(5):2807-16. https://doi.org/10.1111/ijac.14444

46. Khaliq NU, Lee J, Kim J, Kim Y, Yu S, Kim J, et al. Mesoporous silica nanoparticles as a gene delivery platform for cancer therapy. Pharmaceutics. 2023;15:1432. https://doi.org/10.3390/pharmaceutics15051432

47. Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10:118. https://doi.org/10.3390/pharmaceutics10030118

48. Soundharraj P, Dhinasekaran D, Rakkesh Rajendran A, Prakasarao A, Ganesan S. Investigation on the drug loading efficacy of protoporphyrin functionalized silica precursors (Tetraethyl orthosilicate: TEOS and Biomass silica) for enhanced delivery of 5-fluorouracil. Chem Select. 2023;8:e202204498. https://doi.org/10.1002/slct.202204498

49. Rajput S, Vadia N, Mahajan M. Role of mesoporous silica nanoparticles as drug carriers: evaluation of diverse mesoporous material nanoparticles as potential host for various applications. Adv Funct Porous Mater From Macro to Nano Scale Lengths. 2022:205- 34. https://doi.org/10.1007/978-3-030-85397-6_7

50. Semeykina V, Zharov I. Medium controlled aggregative growth as a key step in mesoporous silica nanoparticle formation. J Colloid Interface Sci 2022;615:236-47. https://doi.org/10.1016/j.jcis.2022.01.166

51. Pal N, Lee JH, Cho EB. Recent trends in morphology-controlled synthesis and application of mesoporous silica nanoparticles. Nanomaterials. 2020;10:2122. https://doi.org/10.3390/nano10112122

52. Kaur A, Bajaj B, Kaushik A, Saini A, Sud D. A review on template assisted synthesis of multi-functional metal oxide nanostructures: status and prospects. Mater Sci Eng B. 2022;286:116005. https://doi.org/10.1016/j.mseb.2022.116005

53. Hwang J, Lee JH, Chun J. Facile approach for the synthesis of spherical mesoporous silica nanoparticles from sodium silicate. Mater Lett. 2021;283:128765. https://doi.org/10.1016/j.matlet.2020.128765

54. Lv X, Zhang L, Xing F, Lin H. Controlled synthesis of monodispersed mesoporous silica nanoparticles: particle size tuning and formation mechanism investigation. Microporous Mesoporous Mater. 2016;225:238-44. https://doi.org/10.1016/j.micromeso.2015.12.024

55. Zhou C, Yan C, Zhao J, Wang H, Zhou Q, Luo W. Rapid synthesis of morphology-controlled mesoporous silica nanoparticles from silica fume. J Taiwan Inst Chem Eng. 2016;62:307-12. https://doi.org/10.1016/j.jtice.2016.01.031

56. Abburi A, Ali M, Moriya PV. Synthesis of mesoporous silica nanoparticles from waste hexafluorosilicic acid of fertilizer industry. J Mater Res Technol. 2020;9:8074-80. https://doi.org/10.1016/j.jmrt.2020.05.055

57. Mohamad DF, Osman NS, Nazri MKHM, Mazlan AA, Hanafi MF, Esa YAM, et al. Synthesis of mesoporous silica nanoparticle from banana peel ash for removal of phenol and methyl orange in aqueous solution. Mater Today Proc. 2019;19:1119-25. https://doi.org/10.1016/j.matpr.2019.11.004

58. Li H, Wu X, Yang B, Li J, Xu L, Liu H, et al. Evaluation of biomimetically synthesized mesoporous silica nanoparticles as drug carriers: structure, wettability, degradation, biocompatibility and brain distribution. Mat Sci Eng C. 2019;94:453-64. https://doi.org/10.1016/j.msec.2018.09.053

59. Li Q, Zhou Y. Brief history, preparation method, and biological application of mesoporous silica molecular sieves: a narrative review. Molecules. 2023;28:2013. https://doi.org/10.3390/molecules28052013

60. Gurung S, Gucci F, Cairns G, Chianella I, Leighton GJ. Hollow silica nano and micro spheres with polystyrene templating: a mini-review. Materials. 2022;15:8578. https://doi.org/10.3390/ma15238578

61. Munir T, Mahmood A, Peter N, Rafaqat N, Imran M, Ali HE. Structural, morphological and optical properties at various concentration of Ag doped SiO2-NPs via sol gel method for antibacterial and anticancer activities. Surf Interfaces. 2023;38:102759. https://doi.org/10.1016/j.surfin.2023.102759

62. Porrang S, Rahemi N, Davaran S, Mahdavi M, Hassanzadeh B. Synthesis of temperature/pH dual-responsive mesoporous silica nanoparticles by surface modification and radical polymerization for anti-cancer drug delivery. Colloids Surf A: Physicochem Eng Aspects. 2021;623:126719. https://doi.org/10.1016/j.colsurfa.2021.126719

63. Choudante PC, Mamilla J, Kongari L, Díaz-García D, Prashar S, Gómez-Ruiz S, et al. Functionalized tin-loaded mesoporous silica nanoparticles for targeted therapy of triple-negative breast cancer: evaluation of cytogenetic toxicity. J Drug Deliv Sci Technol. 2024;94:105502. https://doi.org/10.1016/j.jddst.2024.105502

64. Sun T, Li C, Li X, Song H, Su B, You H, et al. Pharmaceutical Nanotechnology. In Nanomedicine. Springer; 2023. pp 179-283. https://doi.org/10.1007/978-981-16-8984-0_10

65. Xiang L, Li Q, Li C, Yang Q, Xu F, Mai Y. Block copolymer self-assembly directed synthesis of porous materials with ordered bicontinuous structures and their potential applications. Adv Mater. 2023;35:2207684. https://doi.org/10.1002/adma.202207684

66. Florensa M, Llenas M, Medina-Gutiérrez E, Sandoval S, Tobías- Rossell G. Key parameters for the rational design, synthesis, and functionalization of biocompatible mesoporous silica nanoparticles. Pharmaceutics. 2022;14:2703. https://doi.org/10.3390/pharmaceutics14122703

67. Zhang L, Jin L, Liu B, He J. Templated growth of crystalline mesoporous materials: from soft/hard templates to colloidal templates. Front Chem. 2019;7:22. https://doi.org/10.3389/fchem.2019.00022

68. Jin L, Liu B, Louis ME, Li G, He J. Highly crystalline mesoporous titania loaded with monodispersed gold nanoparticles: controllable metal-support interaction in porous materials. ACS Appl Mater Interfaces. 2020;12:9617-27. https://doi.org/10.1021/acsami.9b20231

69. Mohanan S, Sathish C, Ramadass K, Liang M, Vinu A. Design and synthesis of cabazitaxel loaded core-shell mesoporous silica nanoparticles with different morphologies for prostate cancer therapy. Small. 2024;20:2303269. https://doi.org/10.1002/smll.202303269

70. AlMohaimadi KM, Albishri HM, Thumayri KA, AlSuhaimi AO, Mehdar YT, Hussein BH. Facile hydrothermal assisted basic catalyzed sol gel synthesis for mesoporous silica nanoparticle from alkali silicate solutions using dual structural templates. Gels. 2024;10:839. https://doi.org/10.3390/gels10120839

71. Shakeran Z, Keyhanfar M, Varshosaz J, Sutherland DS. Biodegradable nanocarriers based on chitosan-modified mesoporous silica nanoparticles for delivery of methotrexate for application in breast cancer treatment. Mater Sci Eng C. 2021;118:111526. https://doi.org/10.1016/j.msec.2020.111526

72. Bilal M, Iqbal HM, Adil SF, Shaik MR, Abdelgawad A, Hatshan MR, et al. Surface-coated magnetic nanostructured materials for robust bio-catalysis and biomedical applications-a review. J Adv Res. 2022;38:157-77. https://doi.org/10.1016/j.jare.2021.09.013

73. Marques A, Costa P, Velho S, Amaral M. Functionalizing nanoparticles with cancer-targeting antibodies: a comparison of strategies. J Controlled Release. 2020;320:180-200. https://doi.org/10.1016/j.jconrel.2020.01.035

74. Xu X, Li H, Li K, Zeng Q, Liu Y, Zeng Y, et al. A photo-triggered conjugation approach for attaching RGD ligands to biodegradable mesoporous silica nanoparticles for the tumor fluorescent imaging. Nanomedicine Nanotechnol Biol Med. 2019;19:136-44. https://doi.org/10.1016/j.nano.2019.04.005

75. Alfhaid LHK. Recent advance in functionalized mesoporous silica nanoparticles with stimuli-responsive polymer brush for controlled drug delivery. Soft Mater. 2022;20:364-78. https://doi.org/10.1080/1539445X.2022.2028831

76. Li QL, Sun Y, Sun YL, Wen J, Zhou Y, Bing QM, et al. Mesoporous silica nanoparticles coated by layer-by-layer self-assembly using cucurbit [7] uril for in vitro and in vivo anticancer drug release. Chem Mater. 2014;26:6418-31. https://doi.org/10.1021/cm503304p

77. Wei Y, Gao L, Wang L, Shi L, Wei E, Zhou B, et al. Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy. Drug Deliv. 2017;24:681-91. https://doi.org/10.1080/10717544.2017.1309475

78. Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem Rev. 2017;117:1105- 318. https://doi.org/10.1021/acs.chemrev.6b00314

79. Huang R, Shen YW, Guan YY, Jiang YX, Wu Y, Rahman K, et al. Mesoporous silica nanoparticles: facile surface functionalization and versatile biomedical applications in oncology. Acta Biomater. 2020;116:1-15. https://doi.org/10.1016/j.actbio.2020.09.009

80. Abu-Dief AM, Alsehli M, Al-Enizi A, Nafady A. Recent advances in mesoporous silica nanoparticles for targeted drug delivery applications. Curr Drug Deliv. 2022;19:436-50. https://doi.org/10.2174/1567201818666210708123007

81. Lu J, Luo B, Chen Z, Yuan Y, Kuang Y, Wan L, et al. Host-guest fabrication of dual-responsive hyaluronic acid/mesoporous silica nanoparticle based drug delivery system for targeted cancer therapy. Int J Biol Macromol. 2020;146:363-73. https://doi.org/10.1016/j.ijbiomac.2019.12.265

82. Noreen S, Maqbool A, Maqbool I, Shafique A, Khan MM, Junejo Y, et al. Multifunctional mesoporous silica-based nanocomposites: synthesis and biomedical applications. Mater Chem Phy. 2022;285:126132. https://doi.org/10.1016/j.matchemphys.2022.126132

83. Varache M, Bezverkhyy I, Weber G, Saviot L, Chassagnon R, Baras F, et al. Loading of cisplatin into mesoporous silica nanoparticles: effect of surface functionalization. Langmuir. 2019;35:8984-95. https://doi.org/10.1021/acs.langmuir.9b00954

84. Wani A, Muthuswamy E, Savithra GHL, Mao G, Brock S, Oupický D. Surface functionalization of mesoporous silica nanoparticles controls loading and release behavior of mitoxantrone. Pharm Res. 2012;29:2407-18. https://doi.org/10.1007/s11095-012-0766-9

85. Chang B, Guo J, Liu C, Qian J, Yang W. Surface functionalization of magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem. 2010;20:9941-7. https://doi.org/10.1039/c0jm01237h

86. She X, Chen L, Li C, He C, He L, Kong L. Functionalization of hollow mesoporous silica nanoparticles for improved 5-FU loading. J Nanomater. 2015;16:108. https://doi.org/10.1155/2015/872035

87. Bahrami Z, Badiei A, Atyabi F, Darabi HR, Mehravi B. Piperazine and its carboxylic acid derivatives-functionalized mesoporous silica as nanocarriers for gemcitabine: adsorption and release study. Mater Sci Eng C. 2015;49:66-74. https://doi.org/10.1016/j.msec.2014.12.069

88. Niroumand U, Firouzabadi N, Goshtasbi G, Hassani B, Ghasemiyeh P, Mohammadi-Samani S. The effect of size, morphology and surface properties of mesoporous silica nanoparticles on pharmacokinetic aspects and potential toxicity concerns. Front Mater. 2023;10:1189463. https://doi.org/10.3389/fmats.2023.1189463

89. Yang B, Zhou S, Zeng J, Zhang L, Zhang R, Liang K, et al. Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Res. 2020;13:1013-9. https://doi.org/10.1007/s12274-020-2736-6

90. Yang G, Li Z, Wu F, Chen M, Wang R, Zhu H, et al. Improving solubility and bioavailability of breviscapine with mesoporous silica nanoparticles prepared using ultrasound-assisted solution-enhanced dispersion by supercritical fluids method. Int J Nanomedicine. 2020;15:1661-75. https://doi.org/10.2147/IJN.S238337

91. Gisbert-Garzarán M, Manzano M, Vallet-Regí M. Mesoporous silica nanoparticles for the treatment of complex bone diseases: bone cancer, bone infection and osteoporosis. Pharmaceutics. 2020;12:83. https://doi.org/10.3390/pharmaceutics12010083

92. Peng S, Yuan X, Lin W, Cai C, Zhang L. pH-responsive controlled release of mesoporous silica nanoparticles capped with Schiff base copolymer gatekeepers: experiment and molecular dynamics simulation. Colloids Surf B Biointerfaces. 2019;176:394-403. https://doi.org/10.1016/j.colsurfb.2019.01.024

93. Guo F, Li G, Zhou H, Ma S, Guo L, Liu X. Temperature and H2O2-operated nano-valves on mesoporous silica nanoparticles for controlled drug release and kinetics. Colloids Surf B Biointerf. 2020;187:110643. https://doi.org/10.1016/j.colsurfb.2019.110643

94. Huang P, Lian D, Ma H, Gao N, Zhao L, Luan P, et al. New advances in gated materials of mesoporous silica for drug controlled release. Chinese Chem Lett. 2021;32:3696-704. https://doi.org/10.1016/j.cclet.2021.06.034

95. Kankala RK, Han YH, Na J, Lee CH, Sun Z, Wang SB, et al. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv Mater. 2020;32:1907035. https://doi.org/10.1002/adma.201907035

96. Lu H, Zhao Q, Wang X, Mao Y, Chen C, Gao Y, et al. Multi-stimuli responsive mesoporous silica-coated carbon nanoparticles for chemo-photothermal therapy of tumor. Colloids Surf B Biointerfaces. 2020;190:110941. https://doi.org/10.1016/j.colsurfb.2020.110941

97. Li T, Shen X, Geng Y, Chen Z, Li L, Li S, et al. Folate-functionalized magnetic-mesoporous silica nanoparticles for drug/gene codelivery to potentiate the antitumor efficacy. ACS Appl Mater Interfaces. 2016;8:13748-58. https://doi.org/10.1021/acsami.6b02963

98. Wang T, Wang M, Ding C, Fu J. Mono-benzimidazole functionalized β-cyclodextrins as supramolecular nanovalves for pH-triggered release of p-coumaric acid. Chem Commun. 2014;50:12469-72. https://doi.org/10.1039/C4CC05677A

99. Du L, Song H, Liao S. A biocompatible drug delivery nanovalve system on the surface of mesoporous nanoparticles. Microporous Mesoporous Mater. 2012;147:200-4. https://doi.org/10.1016/j.micromeso.2011.06.020

100. Chen H, Kuang Y, Liu R, Chen Z, Jiang B, Sun Z, et al. Dual-pH-sensitive mesoporous silica nanoparticle-based drug delivery system for tumor-triggered intracellular drug release. J Mater Sci. 2018;53:10653-65. https://doi.org/10.1007/s10853-018-2363-8

101. Eskandari P, Bigdeli B, Porgham Daryasari M, Baharifar H, Bazri B, Shourian M, et al. Gold-capped mesoporous silica nanoparticles as an excellent enzyme-responsive nanocarrier for controlled doxorubicin delivery. J Drug Targeting. 2019;27:1084-93. https://doi.org/10.1080/1061186X.2019.1599379

102. Mondragón L, Mas N, Ferragud V, de la Torre C, Agostini A, Martínez-Máñez R, et al. Enzyme-responsive intracellular-controlled release using silica mesoporous nanoparticles capped with ε-Poly-L-lysine. Chem-A Eur J. 2014;20:5271-81. https://doi.org/10.1002/chem.201400148

103. Saroj S, Rajput SJ. Etoposide encapsulated functionalized mesoporous silica nanoparticles: Synthesis, characterization and effect of functionalization on dissolution kinetics in simulated and biorelevant media. J Drug Deliv Sci Technol. 2018;44:27-40. https://doi.org/10.1016/j.jddst.2017.11.020

104. Thi TTH, Nguyen TNQ, Hoang DT, Nguyen DH. Functionalized mesoporous silica nanoparticles and biomedical applications. Mater Sci Eng C. 2019;99:631-56. https://doi.org/10.1016/j.msec.2019.01.129

105. Kim EC, Ou W, Dai Phung C, Nguyen TT, Pham TT, Poudel K, et al. Targeting and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for alleviating aorta atherosclerosis. Biomaterials. 2021;269:120677. https://doi.org/10.1016/j.biomaterials.2021.120677

106. Shadmani N, Makvandi P, Parsa M, Azadi A, Nedaei K, Mozafari N, et al. Enhancing methotrexate delivery in the brain by mesoporous silica nanoparticles functionalized with cell-penetrating peptide using in vivo and ex vivo monitoring. Mol Pharm. 2023;20:1531- 48. https://doi.org/10.1021/acs.molpharmaceut.2c00755

107. Sakhtianchi R, Darvishi B, Mirzaie Z, Dorkoosh F, Shanehsazzadeh S, Dinarvand R. Pegylated magnetic mesoporous silica nanoparticles decorated with AS1411 Aptamer as a targeting delivery system for cytotoxic agents. Pharm Dev Technol. 2019;24:1063-75. https://doi.org/10.1080/10837450.2019.1569678

108. Chen C, Tang W, Jiang D, Yang G, Wang X, Zhou L, et al. Hyaluronic acid conjugated polydopamine functionalized mesoporous silica nanoparticles for synergistic targeted chemo-photothermal therapy. Nanoscale. 2019;11:11012-24. https://doi.org/10.1039/C9NR01385G

109. Rosenholm JM, Sahlgren C, Lindén M. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles- opportunities & challenges. Nanoscale. 2010;2:1870-83. https://doi.org/10.1039/c0nr00156b

110. Liu Y, Dai R, Wei Q, Li W, Zhu G, Chi H, et al. Dual-functionalized janus mesoporous silica nanoparticles with active targeting and charge reversal for synergistic tumor-targeting therapy. ACS Appl Mater Interfaces. 2019;11:44582-92. https://doi.org/10.1021/acsami.9b15434

111. Barui S, Cauda V. Multimodal decorations of mesoporous silica nanoparticles for improved cancer therapy. Pharmaceutics. 2020;12:527. https://doi.org/10.3390/pharmaceutics12060527

112. Chen L, She X, Wang T, He L, Shigdar S, Duan W, et al. Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles. Nanoscale. 2015;7:14080-92. https://doi.org/10.1039/C5NR03527A

113. Liu K, Wang ZQ, Wang S-J, Liu P, Qin Y-H, Ma Y, et al. Hyaluronic acid-tagged silica nanoparticles in colon cancer therapy: therapeutic efficacy evaluation. Int J Nanomedicine. 2015;10:6445-54. https://doi.org/10.2147/IJN.S89476

114. Radhakrishnan K, Tripathy J, Datey A, Chakravortty D, Raichur AM. Mesoporous silica-chondroitin sulphate hybrid nanoparticles for targeted and bio-responsive drug delivery. New J Chem. 2015;39:1754-60. https://doi.org/10.1039/C4NJ01430H

115. Xie X, Li F, Zhang H, Lu Y, Lian S, Lin H, et al. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci. 2016;83:28-35. https://doi.org/10.1016/j.ejps.2015.12.014

116. Chen X, Sun H, Hu J, Han X, Liu H, Hu Y. Transferrin gated mesoporous silica nanoparticles for redox-responsive and targeted drug delivery. Colloids Surf B Biointerfaces. 2017;152:77-84. https://doi.org/10.1016/j.colsurfb.2017.01.010

117. Khosravian P, Shafiee Ardestani M, Khoobi M, Ostad SN, Dorkoosh FA, Akbari Javar H, et al. Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel. OncoTargets Ther. 2016;9:7315-30. https://doi.org/10.2147/OTT.S113815

118. Quan G, Pan X, Wang Z, Wu Q, Li G, Dian L, et al. Lactosaminated mesoporous silica nanoparticles for asialoglycoprotein receptor targeted anticancer drug delivery. J Nanobiotechnol. 2015;13:1- 12. https://doi.org/10.1186/s12951-015-0068-6

119. Sarkar A, Ghosh S, Chowdhury S, Pandey B, Sil PC. Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochim Biophys Acta (BBA)-Gen Subjects. 2016;1860:2065-75. https://doi.org/10.1016/j.bbagen.2016.07.001

120. Murugan C, Rayappan K, Thangam R, Bhanumathi R, Shanthi K, Vivek R, et al. Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: an improved nanomedicine strategy. Sci Rep. 2016;6:34053. https://doi.org/10.1038/srep34053

121. Goel S, Chen F, Hong H, Valdovinos HF, Hernandez R, Shi S, et al. VEGF121-conjugated mesoporous silica nanoparticle: a tumor targeted drug delivery system. ACS Appl Mater Interfaces. 2014;6:21677-85. https://doi.org/10.1021/am506849p

122. Rivero-Buceta E, Vidaurre-Agut C, Vera-Donoso CsD, Benlloch JM, Moreno-Manzano V, Botella P. PSMA-targeted mesoporous silica nanoparticles for selective intracellular delivery of docetaxel in prostate cancer cells. ACS Omega. 2019;4:1281-91. https://doi.org/10.1021/acsomega.8b02909

123. Kumar B, Kulanthaivel S, Mondal A, Mishra S, Banerjee B, Bhaumik A, et al. Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Colloids Surf B Biointerfaces. 2017;150:352-61. https://doi.org/10.1016/j.colsurfb.2016.10.049

124. Cui Y, Xu Q, Chow PKH, Wang D, Wang CH. Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials. 2013;34:8511- 20. https://doi.org/10.1016/j.biomaterials.2013.07.075

125. Mo J, He L, Ma B, Chen T. Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood- brain barrier. ACS Appl Mater Interfaces. 2016;8:6811-25. https://doi.org/10.1021/acsami.5b11730

126. Chi X, Zhang R, Zhao T, Gong X, Wei R, Yin Z, et al. Targeted arsenite-loaded magnetic multifunctional nanoparticles for treatment of hepatocellular carcinoma. Nanotechnology. 2019;30:175101. https://doi.org/10.1088/1361-6528/aaff9e

127. Liu CM, Chen GB, Chen HH, Zhang JB, Li HZ, Sheng MX, et al. Cancer cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gatekeeper for cancer treatment. Colloids Surf B Biointerfaces. 2019;175:477-86. https://doi.org/10.1016/j.colsurfb.2018.12.038

128. Tan J, Yang N, Zhong L, Tan J, Hu Z, Zhao Q, et al. A new theranostic system based on endoglin aptamer conjugated fluorescent silica nanoparticles. Theranostics. 2017;7:4862. https://doi.org/10.7150/thno.19101

129. Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev. 2022;51:5365-451. https://doi.org/10.1039/D1CS00659B

130. Garrido-Cano I, Candela-Noguera V, Herrera G, Cejalvo JM, Lluch A, Marcos MD, et al. Biocompatibility and internalization assessment of bare and functionalised mesoporous silica nanoparticles. Microporous Mesoporous Mater. 2021;310:110593. https://doi.org/10.1016/j.micromeso.2020.110593

131. Taleghani AS, Nakhjiri AT, Khakzad MJ, Rezayat SM, Ebrahimnejad P, Heydarinasab A, et al. Mesoporous silica nanoparticles as a versatile nanocarrier for cancer treatment: a review. J Mol Liquids. 2021;328:115417. https://doi.org/10.1016/j.molliq.2021.115417

132. Hosseinpour S, Walsh LJ, Xu C. Biomedical application of mesoporous silica nanoparticles as delivery systems: a biological safety perspective. J Mater Chem B. 2020;8:9863-76. https://doi.org/10.1039/D0TB01868F

133. Ahmadi F, Sodagar-Taleghani A, Ebrahimnejad P, Moghaddam SPH, Ebrahimnejad F, Asare-Addo K, et al. A review on the latest developments of mesoporous silica nanoparticles as a promising platform for diagnosis and treatment of cancer. Int J Pharm. 2022;625:122099. https://doi.org/10.1016/j.ijpharm.2022.122099

134. Zhou S, Zhong Q, Wang Y, Hu P, Zhong W, Huang CB, et al. Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coordination Chem Rev. 2022;452:214309. https://doi.org/10.1016/j.ccr.2021.214309

135. Heidari R, Khosravian P, Mirzaei SA, Elahian F. siRNA delivery using intelligent chitosan-capped mesoporous silica nanoparticles for overcoming multidrug resistance in malignant carcinoma cells. Sci Rep. 2021;11:20531. https://doi.org/10.1038/s41598-021-00085-0

136. Hashemzadeh N, Dolatkhah M, Aghanejad A, Barzegar-Jalali M, Omidi Y, Adibkia K, et al. Folate receptor-mediated delivery of 1-MDT-loaded mesoporous silica magnetic nanoparticles to target breast cancer cells. Nanomedicine. 2021;16:2137-54. https://doi.org/10.2217/nnm-2021-0176

137. Rastegari E, Hsiao YJ, Lai WY, Lai YH, Yang TC, Chen SJ, et al. An update on mesoporous silica nanoparticle applications in nanomedicine. Pharmaceutics. 2021;13:1067. https://doi.org/10.3390/pharmaceutics13071067

138. Zhu J, Zhang Y, Chen X, Zhang Y, Zhang K, Zheng H, et al. Angiopep-2 modified lipid-coated mesoporous silica nanoparticles for glioma targeting therapy overcoming BBB. Biochem Biophys Res Commun. 2021;534:902-7 https://doi.org/10.1016/j.bbrc.2020.10.076

139. To KK, Wu M, Tong CW, Yan W. Drug transporters in the development of multidrug resistance in colorectal cancer. In Drug resistance in colorectal cancer: molecular mechanisms and therapeutic strategies. San Diego, CA: Elsevier; 2020. pp 35-55 https://doi.org/10.1016/B978-0-12-819937-4.00002-9

140. Kankala RK, Liu CG, Chen AZ, Wang SB, Xu PY, Mende LK, et al. Overcoming multidrug resistance through the synergistic effects of hierarchical pH-sensitive, ROS-generating nanoreactors. ACS Biomater Sci Eng. 2017;3:2431-42. https://doi.org/10.1021/acsbiomaterials.7b00569

141. Fang J, Zhang S, Xue X, Zhu X, Song S, Wang B, et al. Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int J Nanomedicine. 2018;13:5113-26. https://doi.org/10.2147/IJN.S170862

142. Zhai Y, Su J, Ran W, Zhang P, Yin Q, Zhang Z, et al. Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics. 2017;7:2575. https://doi.org/10.7150/thno.20118

143. Su J, Sun H, Meng Q, Zhang P, Yin Q, Li Y. Enhanced blood suspensibility and laser-activated tumor-specific drug release of theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes. Theranostics. 2017;7:523. https://doi.org/10.7150/thno.17259

144. Tamarov K, Näkki S, Xu W, Lehto VP. Approaches to improve the biocompatibility and systemic circulation of inorganic porous nanoparticles. J Mater Chem B. 2018;6:3632-49. https://doi.org/10.1039/C8TB00462E

145. Xuan M, Shao J, Dai L, He Q, Li J. Macrophage cell membrane camouflaged mesoporous silica nanocapsules for in vivo cancer therapy. Adv Healthcare Mater. 2015;4:1645-52. https://doi.org/10.1002/adhm.201500129

146. Yue J, Wang Z, Shao D, Chang Z, Hu R, Li L, et al. Cancer cell membrane-modified biodegradable mesoporous silica nanocarriers for berberine therapy of liver cancer. RSC Adv. 2018;8:40288-97. https://doi.org/10.1039/C8RA07574C

147. Babaei M, Abnous K, Taghdisi SM, Taghavi S, Saljooghi AS, Ramezani M, et al. Targeted rod-shaped mesoporous silica nanoparticles for the co-delivery of camptothecin and survivin shRNA in to colon adenocarcinoma in vitro and in vivo. Eur J Pharm Biopharm. 2020;156:84-96. https://doi.org/10.1016/j.ejpb.2020.08.026

148. Zhang J, Shen B, Chen L, Chen L, Meng Y, Feng J. A dual-sensitive mesoporous silica nanoparticle based drug carrier for cancer synergetic therapy. Colloids Surf B Biointerfaces. 2019;175:65-72. https://doi.org/10.1016/j.colsurfb.2018.11.071

149. Sun L, Wang D, Chen Y, Wang L, Huang P, Li Y, et al. Core-shell hierarchical mesostructured silica nanoparticles for gene/ chemo-synergetic stepwise therapy of multidrug-resistant cancer. Biomaterials. 2017;133:219-28. https://doi.org/10.1016/j.biomaterials.2017.04.028

150. Wang C, Wu L, Yuan H, Yu H, Xu J, Chen S, et al. A powerful antitumor "trident": the combination of radio-, immuno-and anti- angiogenesis therapy based on mesoporous silica single coated gold nanoparticles. J Mater Chem B. 2023;11:879-89. https://doi.org/10.1039/D2TB02046G

151. Meng H, Wang M, Liu H, Liu X, Situ A, Wu B, et al. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano. 2015;9:3540-57. https://doi.org/10.1021/acsnano.5b00510

152. Jia L, Li Z, Shen J, Zheng D, Tian X, Guo H, et al. Multifunctional mesoporous silica nanoparticles mediated co-delivery of paclitaxel and tetrandrine for overcoming multidrug resistance. Int J Pharm. 2015;489:318-30. https://doi.org/10.1016/j.ijpharm.2015.05.010

153. Li S, Zhang Y, He XW, Li WY, Zhang YK. Multifunctional mesoporous silica nanoplatform based on silicon nanoparticles for targeted two-photon-excited fluorescence imaging-guided chemo/ photodynamic synergetic therapy in vitro. Talanta. 2020;209:120552. https://doi.org/10.1016/j.talanta.2019.120552

154. Wang J, Zhang Y, Liu L, Cui Z, Liu X, Wang L, et al. Combined chemo/photothermal therapy based on mesoporous silica-Au core-shell nanoparticles for hepatocellular carcinoma treatment. Drug Dev Indus Pharm. 2019:45(9):1487-95. https://doi.org/10.1080/03639045.2019.1629688

155. Pan G, Jia TT, Huang Q-X, Qiu Y-Y, Xu J, Yin P-H, et al. Mesoporous silica nanoparticles (MSNs)-based organic/inorganic hybrid nanocarriers loading 5-Fluorouracil for the treatment of colon cancer with improved anticancer efficacy. Colloids Surf B Biointerfaces. 2017;159:375-85. https://doi.org/10.1016/j.colsurfb.2017.08.013

156. Narayan R, Gadag S, Cheruku SP, Raichur AM, Day CM, Garg S, et al. Chitosan-glucuronic acid conjugate coated mesoporous silica nanoparticles: a smart pH-responsive and receptor-targeted system for colorectal cancer therapy. Carbohydrate Poly. 2021;261:117893. https://doi.org/10.1016/j.carbpol.2021.117893

157. Martínez-Edo G, Fornaguera C, Borrós S, Sánchez-García D. Glycyrrhetinic acid-functionalized mesoporous silica nanoparticles for the co-delivery of DOX/CPT-PEG for targeting HepG2 cells. Pharmaceutics. 2020;12:1048. https://doi.org/10.3390/pharmaceutics12111048

158. Moghadam ME, Sadeghi M, Mansouri-Torshizi H, Saidifar M. High cancer selectivity and improving drug release from mesoporous silica nanoparticles in the presence of human serum albumin in cisplatin, carboplatin, oxaliplatin, and oxalipalladium treatment. Eur J Pharm Sci. 2023;187:106477. https://doi.org/10.1016/j.ejps.2023.106477

159. Busa P, Kankala RK, Deng JP, Liu CL, Lee CH. Conquering cancer multi-drug resistance using curcumin and cisplatin prodrug-encapsulated mesoporous silica nanoparticles for synergistic chemo-and photodynamic therapies. Nanomaterials. 2022;12:3693. https://doi.org/10.3390/nano12203693

160. Zhao P, Qiu L, Zhou S, Li L, Qian Z, Zhang H. Cancer cell membrane camouflaged mesoporous silica nanoparticles combined with immune checkpoint blockade for regulating tumor microenvironment and enhancing antitumor therapy. Int J Nanomedicine. 2021;16:2107-21. https://doi.org/10.2147/IJN.S295565

161. Hao Y, Zheng C, Song Q, Chen H, Nan W, Wang L, et al. Pressure-driven accumulation of Mn-doped mesoporous silica nanoparticles containing 5-aza-2-deoxycytidine and docetaxel at tumours with a dry cupping device. J Drug Targeting. 2021;29:900-9. https://doi.org/10.1080/1061186X.2021.1892117

162. Wang D, Huang J, Wang X, Yu Y, Zhang H, Chen Y, et al. The eradication of breast cancer cells and stem cells by 8-hydroxyquinoline-loaded hyaluronan modified mesoporous silica nanoparticle-supported lipid bilayers containing docetaxel. Biomaterials. 2013;34:7662-73. https://doi.org/10.1016/j.biomaterials.2013.06.042

163. Yan J, Xu X, Zhou J, Liu C, Zhang L, Wang D, et al. Fabrication of a pH/redox-triggered mesoporous silica-based nanoparticle with microfluidics for anticancer drugs doxorubicin and paclitaxel codelivery. ACS Appl Bio Mater. 2020;3:1216-25. https://doi.org/10.1021/acsabm.9b01111

164. Saini K, Bandyopadhyaya R. Transferrin-conjugated polymer-coated mesoporous silica nanoparticles loaded with gemcitabine for killing pancreatic cancer cells. ACS Appl Nano Mater. 2019;3:229-40. https://doi.org/10.1021/acsanm.9b01921

165. Brezoiu AM, Prelipcean AM, Lincu D, Deaconu M, Vasile E, Tatia R, et al. Nanoplatforms for irinotecan delivery based on mesoporous silica modified with a natural polysaccharide. Materials. 2022;15:7003. https://doi.org/10.3390/ma15197003

166. Nie Z, Wang D, Wang S, Wang L. Facile construction of irinotecan loaded mesoporous nano-formulation with surface-initiated polymerization to improve stimuli-responsive drug delivery for breast cancer therapy. Heliyon. 2023;9:e15087. https://doi.org/10.1016/j.heliyon.2023.e15087

167. Zhang K, Gao J, Li S, Ma T, Deng L, Kong Y. Construction of a pH-responsive drug delivery platform based on the hybrid of mesoporous silica and chitosan. J Saudi Chem Soc. 2021;25:101174. https://doi.org/10.1016/j.jscs.2020.11.007

168. Salve R, Kumar P, Chaudhari BP, Gajbhiye V. Aptamer tethered bio-responsive mesoporous silica nanoparticles for efficient targeted delivery of paclitaxel to treat ovarian cancer cells. J Pharm Sci. 2023;112:1450-9. https://doi.org/10.1016/j.xphs.2023.01.011

169. Slapak EJ, El Mandili M, Brink MST, Kros A, Bijlsma MF, Spek CA. Preclinical assessment of ADAM9-responsive mesoporous silica nanoparticles for the treatment of pancreatic cancer. Int J Mol Sci. 2023;24:10704. https://doi.org/10.3390/ijms241310704

170. Liu M, Fu M, Yang X, Jia G, Shi X, Ji J, et al. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surf B Biointerfaces. 2020;196:111284. https://doi.org/10.1016/j.colsurfb.2020.111284

171. Gautam M, Thapa RK, Poudel BK, Gupta B, Ruttala HB, Nguyen HT, et al. Aerosol technique-based carbon-encapsulated hollow mesoporous silica nanoparticles for synergistic chemo-photothermal therapy. Acta Biomaterialia. 2019;88:448-61. https://doi.org/10.1016/j.actbio.2019.02.029

172. Setia A, Mehata AK, Malik AK, Viswanadh MK, Muthu MS. Theranostic magnetic nanoparticles: synthesis, properties, toxicity, and emerging trends for biomedical applications. J Drug Deliv Sci Technol. 2023;81:104295. https://doi.org/10.1016/j.jddst.2023.104295

173. Li X, Zhang X, Zhao Y, Sun L. Fabrication of biodegradable Mn-doped mesoporous silica nanoparticles for pH/redox dual response drug delivery. J Inorgan Biochem. 2020;202:110887. https://doi.org/10.1016/j.jinorgbio.2019.110887

174. Yu J, Dan N, Eslami SM, Lu X. State of the art of silica nanoparticles: an overview on biodistribution and preclinical toxicity studies. AAPS J. 2024;26:35. https://doi.org/10.1208/s12248-024-00906-w

175. Barguilla I, Candela-Noguera V, Oliver P, Annangi B, Díez P, Aznar E, et al. Toxicological profiling and long-term effects of bare, PEGylated-and galacto-oligosaccharide-functionalized mesoporous silica nanoparticles. Int J Mol Sci. 2023;24:16158. https://doi.org/10.3390/ijms242216158

176. Li Z, Zhang Y, Feng N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opinion Drug Deliv. 2019;16:219-37. https://doi.org/10.1080/17425247.2019.1575806

177. Thapa R, Ali H, Afzal O, Bhat AA, Almalki WH, Alzarea SI, et al. Unlocking the potential of mesoporous silica nanoparticles in breast cancer treatment. J Nanoparticle Res. 2023;25:169. https://doi.org/10.1007/s11051-023-05813-3

178. Rani R, Malik P, Dhania S, Mukherjee TK. Recent advances in mesoporous silica nanoparticle-mediated drug delivery for breast cancer treatment. Pharmaceutics. 2023;15:227. https://doi.org/10.3390/pharmaceutics15010227

179. Bhavsar D, Patel V, Sawant K. Systematic investigation of in vitro and in vivo safety, toxicity and degradation of mesoporous silica nanoparticles synthesized using commercial sodium silicate. Microporous Mesoporous Mater. 2019;284:343-52. https://doi.org/10.1016/j.micromeso.2019.04.050

180. Huang X, Li L, Liu T, Hao N, Liu H, Chen D, et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano. 2011;5:5390-9. https://doi.org/10.1021/nn200365a

181. He Q, Shi J. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J Mater Chem. 2011;21:5845-55. https://doi.org/10.1039/c0jm03851b

182. Gisbert-Garzaran M, Lozano D, Matsumoto K, Komatsu A, Manzano M, Tamanoi F, et al. Designing mesoporous silica nanoparticles to overcome biological barriers by incorporating targeting and endosomal escape. ACS Appl Mater Interfaces. 2021;13:9656-66. https://doi.org/10.1021/acsami.0c21507

183. Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6:1794- 805. https://doi.org/10.1002/smll.201000538

184. Deng YD, Zhang XD, Yang XS, Huang ZL, Wei X, Yang XF, et al. Subacute toxicity of mesoporous silica nanoparticles to the intestinal tract and the underlying mechanism. J Hazardous Mater. 2021;409:124502. https://doi.org/10.1016/j.jhazmat.2020.124502

185. Mohammadpour R, Cheney DL, Grunberger JW, Yazdimamaghani M, Jedrzkiewicz J, Isaacson KJ, et al. One-year chronic toxicity evaluation of single dose intravenously administered silica nanoparticles in mice and their Ex vivo human hemocompatibility. J Controlled Release. 2020;324:471-81. https://doi.org/10.1016/j.jconrel.2020.05.027

186. Zhang X, Luan J, Chen W, Fan J, Nan Y, Wang Y, et al. Mesoporous silica nanoparticles induced hepatotoxicity via NLRP3 inflammasome activation and caspase-1-dependent pyroptosis. Nanoscale. 2018;10:9141-52. https://doi.org/10.1039/C8NR00554K

187. Mahmoud AM, Desouky EM, Hozayen WG, Bin-Jumah M, El- Nahass ES, Soliman HA, et al. Mesoporous silica nanoparticles trigger liver and kidney injury and fibrosis via altering TLR4/NF- κB, JAK2/STAT3 and Nrf2/HO-1 signaling in rats. Biomolecules. 2019;9:528. https://doi.org/10.3390/biom9100528

188. Ahmadi A, Sokunbi M, Patel T, Chang MW, Ahmad Z, Singh N. Influence of critical parameters on cytotoxicity induced by mesoporous silica nanoparticles. Nanomaterials. 2022;12:2016. https://doi.org/10.3390/nano12122016

189. Xu W, Zhou M, Guo Z, Lin S, Li M, Kang Q, et al. Impact of macroporous silica nanoparticles at sub-50nm on bio-behaviors and biosafety in drug-resistant cancer models. Colloids Surfaces B: Biointerfaces. 2021;206:111912. https://doi.org/10.1016/j.colsurfb.2021.111912

190. Moodley T, Singh M. Polymeric mesoporous silica nanoparticles for enhanced delivery of 5-fluorouracil in vitro. Pharmaceutics. 2019;11:288. https://doi.org/10.3390/pharmaceutics11060288

191. Li X, Sun W, Zhang Z, Kang Y, Fan J, Peng X. Red light-triggered polyethylene glycol deshielding from photolabile cyanine-modified mesoporous silica nanoparticles for on-demand drug release. ACS Appl Bio Mater. 2020;3:8084-93. https://doi.org/10.1021/acsabm.0c01160

192. Hudson SP, Padera RF, Langer R, Kohane DS. The biocompatibility of mesoporous silicates. Biomaterials. 2008;29:4045-55. https://doi.org/10.1016/j.biomaterials.2008.07.007

193. Liu T, Li L, Teng X, Huang X, Liu H, Chen D, et al. Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. Biomaterials. 2011;32:1657-68. https://doi.org/10.1016/j.biomaterials.2010.10.035

194. Abdo GG, Zagho MM, Khalil A. Recent advances in stimuli-responsive drug release and targeting concepts using mesoporous silica nanoparticles. Emerg Mater. 2020;3:407-25. https://doi.org/10.1007/s42247-020-00109-x

195. Yan T, He J, Liu R, Liu Z, Cheng J. Chitosan capped pH-responsive hollow mesoporous silica nanoparticles for targeted chemo-photo combination therapy. Carbohydrate Poly. 2020;231:115706. https://doi.org/10.1016/j.carbpol.2019.115706

196. Ghaferi M, Asadollahzadeh MJ, Akbarzadeh A, Ebrahimi Shahmabadi H, Alavi SE. Enhanced efficacy of PEGylated liposomal cisplatin: in vitro and in vivo evaluation. Int J Mol Sci. 2020;21:559. https://doi.org/10.3390/ijms21020559

197. Gao Y, Gao D, Shen J, Wang Q. A review of mesoporous silica nanoparticle delivery systems in chemo-based combination cancer therapies. Front Chem. 2020;8:598722. https://doi.org/10.3389/fchem.2020.598722

198. Lohiya G, Katti DS. Carboxylated chitosan-mediated improved efficacy of mesoporous silica nanoparticle-based targeted drug delivery system for breast cancer therapy. Carbohydrate Poly. 2022;277:118822. https://doi.org/10.1016/j.carbpol.2021.118822

199. Cordeiro R, Carvalho A, Durães L, Faneca H. Triantennary GalNAc-functionalized multi-responsive mesoporous silica nanoparticles for drug delivery targeted at asialoglycoprotein receptor. Int J Mol Sci. 2022;23:6243. https://doi.org/10.3390/ijms23116243

200. Ong C, Cha BG, Kim J. Mesoporous silica nanoparticles doped with gold nanoparticles for combined cancer immunotherapy and photothermal therapy. ACS Appl Bio Mater. 2019;2:3630-8. https://doi.org/10.1021/acsabm.9b00483

201. Zhu Y, Xu J, Wang Y, Chen C, Gu H, Chai Y, et al. Silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes with an enhanced antibacterial activity for killing drug-resistant bacteria. Nano Res. 2020;13:389-400. https://doi.org/10.1007/s12274-020-2621-3

202. Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, et al. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano. 2011;5:4131-44. https://doi.org/10.1021/nn200809t

203. Sivamaruthi BS, Thangaleela S, Kesika P, Suganthy N, Chaiyasut C. Mesoporous silica-based nanoplatforms are theranostic agents for the treatment of inflammatory disorders. Pharmaceutics. 2023;15:439. https://doi.org/10.3390/pharmaceutics15020439

204. Li J, Sun R, Xu H, Wang G. Integrative metabolomics, proteomics and transcriptomics analysis reveals liver toxicity of mesoporous silica nanoparticles. Front Pharmacol. 2022;13:835359. https://doi.org/10.3389/fphar.2022.835359

205. Lérida-Viso A, Estepa-Fernández A, García-Fernández A, Martí- Centelles V, Martínez-Máñez R. Biosafety of mesoporous silica nanoparticles; towards clinical translation. Adv Drug Deliv Rev. 2023;201:115049. https://doi.org/10.1016/j.addr.2023.115049

206. Bukara K, Schueller L, Rosier J, Martens MA, Daems T, Verheyden L, et al. Ordered mesoporous silica to enhance the bioavailability of poorly water-soluble drugs: proof of concept in man. Eur J Pharm Biopharm. 2016;108:220-5. https://doi.org/10.1016/j.ejpb.2016.08.020

207. Meola TR, Abuhelwa AY, Joyce P, Clifton P, Prestidge CA. A safety, tolerability, and pharmacokinetic study of a novel simvastatin silica-lipid hybrid formulation in healthy male participants. Drug Deliv Transl Res. 2021;11:1261-72. https://doi.org/10.1007/s13346-020-00853-x

208. Tan A, Eskandar NG, Rao S, Prestidge CA. First in man bioavailability and tolerability studies of a silica-lipid hybrid (Lipoceramic) formulation: a Phase I study with ibuprofen. Drug Deliv Transl Res. 2014;4:212-21. https://doi.org/10.1007/s13346-013-0172-9

209. Barenholz YC. Doxil®-The first FDA-approved nano-drug: Lessons learned. J Controlled Release. 2012;160:117-34. https://doi.org/10.1016/j.jconrel.2012.03.020

210. Cho H, Jeon SI, Ahn CH, Shim MK, Kim K. Emerging albumin-binding anticancer drugs for tumor-targeted drug delivery: current understandings and clinical translation. Pharmaceutics. 2022;14:728. https://doi.org/10.3390/pharmaceutics14040728

211. Lim SM, Kim TH, Jiang HH, Park CW, Lee S, Chen X, et al. Improved biological half-life and anti-tumor activity of TNF-related apoptosis-inducing ligand (TRAIL) using PEG-exposed nanoparticles. Biomaterials. 2011;32:3538-46. https://doi.org/10.1016/j.biomaterials.2011.01.054

212. He Q, Zhang Z, Gao F, Li Y, Shi J. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small. 2011;7:271-80. https://doi.org/10.1002/smll.201001459

213. Rodríguez F, Caruana P, De la Fuente N, Español P, Gamez M, Balart J, et al. Nano-based approved pharmaceuticals for cancer treatment: present and future challenges. Biomolecules. 2022;12:784. https://doi.org/10.3390/biom12060784

Article Metrics
14 Views 13 Downloads 27 Total

Year

Month

Related Search

By author names