Effect of polyphenolic extracts from leaves of Mediterranean forage crops on enzymes involved in the oxidative stress, and useful for alternative cancer treatments

Rosario Rullo Rosarita Nasso Antonio D’Errico Elisa Biazzi Aldo Tava Nicola Landi Antimo Di Maro Mariorosario Masullo Emmanuele De Vendittis Rosaria Arcone   

Open Access   

Published:  Apr 20, 2025

DOI: 10.7324/JAPS.2025.235772
Abstract

In this investigation, we report the ability of polyphenolic extracts from leaves of Lotus ornithopodioides, Hedysarum coronarium, Medicago sativa, and Cichorium intybus to affect the activity of key enzymes involved in the cellular redox balance, such as catalase (CAT) and xanthine oxidase (XO). The tested extracts presented a different polyphenol composition; in fact, while L. ornithopodioides and H. coronarium extracts mainly contained condensed tannins (HcCT and LoCT, respectively), M. sativa, and C. intybus extracts were richer in flavonoids (CiF and MsF, respectively). These condensed tannins (CTs) or flavonoids-containing extracts, had a similar although moderate inhibition strength towards CAT (IC50 28–53 μM) with mixed inhibition mechanisms. On the other hand, among the four extracts, MsF caused a clear dose-dependent reduction of the XO activity (IC50 15 μM), followed at a distance by CiF (IC50 83 μM). Interestingly, both flavonoid-containing extracts displayed a competitive inhibition mechanism. Vice versa, those containing CT resulted almost ineffective in the inhibition of XO activity. Finally, we evaluated the effects exerted by these plant extracts on the viability of human gastric cancer cells. Using MKN-28 and AGS as a cellular model for this investigation, we found that, among the four extracts, MsF was endowed with the highest cytotoxicity, thus suggesting its putative use in anticancer treatments.


Keyword:     Forage crops polyphenols flavonoids condensed tannins catalase xanthine oxidase gastric cancer cells


Citation:

Rullo R, Nasso R, D’errico A, Biazzi E, Tava A, Landi N, Di Maro A, Masullo M, De Vendittis E, Arcone R. Effect of polyphenolic extracts from leaves of Mediterranean forage crops on enzymes involved in the oxidative stress, and useful for alternative cancer treatments. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.235772

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Hussain G, Huang J, Rasul A, Anwar H, Imran A, Maqbool J, et al. Putative roles of plant-derived tannins in neurodegenerative and neuropsychiatry disorders: an updated review. Molecules. 2019;24(12):2213. doi: https://doi.org/10.3390/molecules24122213

2. Melo LFM, Aquino-Martins VGQ, Silva APD, Oliveira Rocha HA, Scortecci KC. Biological and pharmacological aspects of tannins and potential biotechnological applications. Food Chem. 2023;414:135645. doi: https://doi.org/10.1016/j.foodchem.2023.135645

3. Maiuolo J, Costanzo P, Masullo M, D’Errico A, Nasso R, Bonacci S, et al. Hydroxytyrosol-donepezil hybrids play a protective role in an in vitro induced Alzheimer’s disease model and in neuronal differentiated human SH-SY5Y Neuroblastoma Cells. Int J Mol Sci. 2023;24(17):13461. doi: https://doi.org/10.3390/ijms241713461

4. Tava A, Biazzi E, Ronga D, Pecetti L, Avato P. Biologically active compounds from forage plants. Phytochem. Rev. 2022;21,471–501. doi: https://doi.org/10.1007/s11101-021-09779-9

5. Usman M, Khan WR, Yousaf N, Akram S, Murtaza G, Kudus KA, et al. Exploring the phytochemicals and anti-cancer potential of the members of Fabaceae family: a comprehensive review. Molecules. 2022;27(12):3863. doi: https://doi.org/10.3390/molecules27123863

6. Bora KS, Sharma A. Phytochemical and pharmacological potential of Medicago sativa: a review. Pharm Biol. 2011;49(2):211–20. doi: https://doi.org/10.3109/13880209.2010.504732

7. Raeeszadeh M, Mortazavi P, Atashin-Sadafi R. The antioxidant, anti-inflammatory, pathological, and behavioural effects of Medicago sativa L. (Alfalfa) extract on brain injury caused by nicotine in male rats. Evid Based Complement Alternat Med. 2021;2021:6694629. doi: https://doi.org/10.1155/2021/6694629

8. Bora KS, Sharma A. Evaluation of antioxidant and cerebroprotective effect of Medicago sativa Linn. against ischemia and reperfusion insult. Evid Based Complement Alternat Med. 2011;2011:792167. doi: https://doi.org/10.1093/ecam/neq019

9. Burlando B, Pastorino G, Salis A, Damonte G, Clericuzio M, Cornara L. The bioactivity of Hedysarum coronarium extracts on skin enzymes and cells correlates with phenolic content. Pharm Biol. 2017;55(1):1984–91. doi: https://doi.org/10.1080/13880209.2017.1346691

10. Tava A, Biazzi E, Ronga D, Mella M, Doria F, D’Addabbo T, et al. Chemical identification of specialized metabolites from sulla (Hedysarum coronarium L.) collected in Southern Italy. Molecules. 2021;26(15):4606. doi: https://doi.org/10.3390/molecules26154606

11. Rolnik A, Olas B. The plants of the Asteraceae family as agents in the protection of human health. Int J Mol Sci. 2021;22(6):3009. doi: https://doi.org/10.3390/ijms22063009

12. Perovi? J, Tumbas Šaponjac V, Koji? J, Krulj J, Moreno DA, García-Viguera C, et al. Chicory (Cichorium intybus L.) as a food ingredient–nutritional composition, bioactivity, safety, and health claims: a review. Food Chem. 2021;336:127676. doi: https://doi.org/10.1016/j.foodchem.2020.127676

https://doi.org/10.1016/j.foodchem.2020.127676

13. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13. doi: https://doi.org/10.1042/BJ20081386

14. Averill-Bates D. Reactive oxygen species and cell signaling. Review. Biochim Biophys Acta Mol Cell Res. 2024;1871(2):119573. doi: https://doi.org/10.1016/j.bbamcr.2023.119573

https://doi.org/10.1016/j.bbamcr.2023.119573

15. Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023;97:2499–574. doi: https://doi.org/10.1007/s00204-023-03562- 9

16. Glorieux C, Liu S, Trachootham D, Huang P. Targeting ROS in cancer: rationale and strategies. Nat Rev Drug Discov. 2024 Aug;23(8):583– 606. doi: https://doi.org/10.1038/s41573-024-00979-4

https://doi.org/10.1038/s41573-024-00979-4

17. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine, 5th ed. New York, NY: Oxford University Press; 2015. doi: https://doi.org/10.1093/acprof:oso/9780198717478.001.0001

18. Kirkman HN, Gaetani GF. Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem Sci. 2007;32(1):44–50. doi: https://doi.org/10.1016/j.tibs.2006.11.003

19. Galasso M, Gambino S, Romanelli MG, Donadelli M, Scupoli MT. Browsing the oldest antioxidant enzyme: catalase and its multiple regulation in cancer. Free Radic Biol Med. 2021;172:264–72. doi: https://doi.org/10.1016/j.freeradbiomed.2021.06.010

20. Mileo AM, Miccadei S. Polyphenols as modulator of oxidative stress in cancer disease: new therapeutic strategies. Oxid Med Cell Longev. 2016;2016:6475624. doi: https://doi.org/10.1155/2016/6475624

21. Bolat E, Sar?ta? S, Duman H, Eker F, Akda?çi E, Karav S, et al. Polyphenols: secondary metabolites with a biological impression. Nutrients. 2024;16(15):2550. doi: https://doi.org/10.3390/nu16152550

22. Ilango S, Sahoo DK, Paital B, Kathirvel K, Gabriel JI, Subramaniam K, et al. A review on Annona muricata and its anticancer activity. Cancers 2022;14(18):4539. doi: https://doi.org/10.3390/cancers14184539

23. Piluzza G, Bullitta S. The dynamics of phenolic concentration in some pasture species and implications for animal husbandry. J Sci Food Agric. 2010;90(9):1452–9. doi: https://doi.org/10.1002/jsfa.3963

24. Tibe O, Meagher LP, Fraser K, Harding DR. Condensed tannins and flavonoids from the forage legume sulla (Hedysarum coronarium). J Agric Food Chem. 2011;59(17):9402–9. doi: https://doi.org/10.1021/jf201475

25. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult. 1965;16:144. doi: https://doi.org/10.5344/ajev.1965.16.3.144

26. Kim DO, Chun OK, Kim YJ, Moon HY, Lee CY. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J Agric Food Chem. 2003;51:6509–15. doi: https://doi.org/10.1021/jf0343074

27. Porter LJ, Hrstich LN, Chan BC. The conversion of procyanidins and prodelphinidins to cyanidins and delphynidins. Phytochemistry. 1986;25:223–30. doi: https://doi.org/10.1016/S0031-9422(00)94533-3

28. Rullo R, Cerchia C, Nasso R, Romanelli V, De Vendittis E, Masullo M, et al. Novel reversible inhibitors of xanthine oxidase targeting the active site of the enzyme. Antioxidants (Basel). 2023;12(4):825. doi: https://doi.org/10.3390/antiox12040825

29. Arcone R, Palma M, Pagliara V, Graziani G, Masullo M, Nardone G. Green tea polyphenols affect invasiveness of human gastric MKN-28 cells by inhibition of LPS or TNF-α induced Matrix Metalloproteinase-9/2. Biochimie Open. 2016;3:56–63. doi: https://doi.org/10.1016/j.biopen.2016.10.002

https://doi.org/10.1016/j.biopen.2016.10.002

30. Carrese B, Cavallini C, Sanità G, Armanetti P, Silvestri B, Calì G, et al. Controlled release of doxorubicin for targeted chemo-photothermal therapy in breast cancer HS578T cells using albumin modified hybrid nanocarriers. Int J Mol Sci. 2021;22(20):11228. doi: https://doi.org/10.3390/ijms222011228

31. Piluzza G, Sulas S, Bullitta S. Tannins in forage plants and their role in animal husbandry and environmental sustainability: a review. Grass Forage Sci. 2013;69:32–48. doi: https://doi.org/10.1111/gfs.12053

32. Serafini M, Peluso I, Raguzzini A. Flavonoids as anti-inflammatory agents. Proc Nutr Soc. 2010;69:273–8. doi: https://doi.org/10.1017/S002966511000162X

33. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. doi: https://doi.org/10.1016/j.foodchem.2022.132531

34. Hamer M, Steptoe A. Influence of specific nutrients on progression of atherosclerosis, vascular function, haemostasis and inflammation in coronary heart disease patients: a systematic review. Br J Nutr. 2006;95(5):849–59. doi: https://doi.org/10.1079/bjn20061741

35. Serafini M, Villano D, Spera G, Pellegrini N. Redox molecules and cancer prevention: the importance of understanding the role of the antioxidant network. Nutr Cancer. 2006;56(2):232–40. doi: https://doi.org/10.1207/s15327914nc5602_15

36. Yao LH, Jiang YM, Shi J, Tomás-Barberán FA, Datta N, Singanusong R, et al. Flavonoids in food and their health benefits. Plant Foods Hum Nutr. 2004;59(3):113–22. doi: https://doi.org/10.1007/s11130- 004-0049-7

37. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. SciWorld J. 2013;2013:162750. doi: https://doi.org/10.1155/2013/162750

38. Smeriglio A, Barreca D, Bellocco E, Trombetta D. Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol. 2017;174(11):1244–62. doi: https://doi.org/10.1111/bph.13630

39. Barry TN, McNabb WC. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br J Nutr. 1999;81(4):263–72.

40. Nguyen MT, Awale S, Tezuka Y, Ueda JY, Tran Ql, Kadota S. Xanthine oxidase inhibitors from the flowers of Chrysanthemum sinense. Planta Med. 2006;72(1):46–51. doi: https://doi.org/10.1055/s-2005-873181

41. Vitale RM, Antenucci L, Gavagnin M, Raimo G, Amodeo P. Structure-activity relationships of fraxamoside as an unusual xanthine oxidase inhibitor. J Enzyme Inhib Med Chem. 2017;32(1):345–54. doi: https://doi.org/10.1080/14756366.2016.1252758

42. Šmelcerovi? A, Tomovi? K, Šmelcerovi? Ž, Petronijevi? Ž, Koci? G, Tomaši? T, et al. Xanthine oxidase inhibitors beyond allopurinol and febuxostat; an overview and selection of potential leads based on in silico calculated physico-chemical properties, predicted pharmacokinetics and toxicity. Eur J Med Chem. 2017;135:491–516. doi: https://doi.org/10.1016/j.ejmech.2017.04.031

43. Orhan IE, Deniz FSS. Natural products and extracts as xantine oxidase inhibitors—a hope for gout disease? Curr Pharm Des. 2021;27(2):143–58. doi: https://doi.org/10.2174/1381612826666200728144605

44. El-Tantawy WH. Natural products for the management of hyperuricaemia and gout: a review. Arch Physiol Biochem. 2021;127(1):61–72. doi: https://doi.org/10.1080/13813455.2019.16 10779

45. Pagliara V, Nasso R, Di Donato P, Finore I, Poli A, Masullo M, et al. Lemon peel polyphenol extract reduces interleukin-6-induced cell migration, invasiveness, and matrix metalloproteinase-9/2 expression in human gastric adenocarcinoma MKN-28 and AGS cell lines. Biomolecules. 2019;9(12):833. doi: https://doi.org/10.3390/biom9120833

46. Arcone R, D’Errico A, Nasso R, Rullo R, Poli A, Di Donato P, et al. Inhibition of enzymes involved in neurodegenerative disorders and Aβ1-40 aggregation by Citrus limon peel polyphenol extract. Molecules. 2023;28(17):6332. doi: https://doi.org/10.3390/molecules28176332

Article Metrics
75 Views 46 Downloads 121 Total

Year

Month

Related Search

By author names