Berberine-enriched copper oxide nano formulation synthesized using Solanum torvum: A strategic advancement in lung cancer therapy and wound healing

Manju Bargavi Sakthivel Prabhavathy Devi Narayanan Dass Tharani Munusamy Nalini Devarajan Pavithra Amritkumar Suresh Malchi Naresh Kumar Kodiganti Karunanidhi Kannappan   

Open Access   

Published:  Apr 16, 2025

DOI: 10.7324/JAPS.2025.237203
Abstract

This study aimed to synthesize a Berberine conjugated with Copper Oxide Nano Formulation (BBR-CuONPs) by using Solanum torvum for lung cancer therapy. The BBR-CuONPs were evaluated for their anticancer activity by assessing cell movement and proliferation in non-small cell lung cancer cell lines (A549). Berberine chloride and copper sulfate were utilized to prepare the BBR-CuONPs, while S. torvum extract acted as a reducing agent for green synthesis. The characterization of the BBR-CuONPs was carried out using UV-visible spectrophotometry, Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The UV-visible spectra confirmed the synthesis of BBR-CuONPs, showing characteristic absorption peaks. FTIR analysis revealed functional groups indicative of interactions between CuONPs and berberine, suggesting their potential synergistic effects. TEM images showed the nanoparticles had an average size ranging from 10 to 50 nm. The anti-cancer activity (MTT assay) demonstrated a dose-dependent inhibition of cell viability, with a calculated IC50 value of 32.35 ± 2 μg, indicating that it has an effective cytotoxic activity with controlled and sustained drug release for a longer time than compared with berberine and copper oxide nanoparticles alone. The BBR-CuONPs, in normal human embryonic kidney (HEK) cells, were observed that higher cell viability at 10 μg/ml (98%) and less cytotoxicity effect at 100 μg/ml (2%) inhibition even in higher concentration. The wound healing assay confirmed the suppression of A549 cell migration, with 10 μg/ml (24–48 hours) at lower concentrations of the nano formulation showing stronger inhibition. This study suggests that the BBR- CuONPs derived from S. torvum exhibit promising anticancer and wound-healing properties, supporting further in vivo investigation into their therapeutic potential.


Keyword:     Berberine Solanum torvum copper oxide nano formulation anti-cancer activity Lung cancer cell A549 cell lines


Citation:

Sakthivel MB, Devi NP, Munusamy T, Devarajan N, Amritkumar P, Malchi S, Kumar KN, Karunanidhi K. Berberine-enriched copper oxide nano formulation synthesized using Solanum torvum: A strategic advancement in lung cancer therapy and wound healing. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.237203

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. https://www.iarc.who.int/cancer-type/lung-cancer/

2. Zhu X, Yu Z, Feng L, Deng L, Fang Z, Liu Z, et al. Chitosan-based nanoparticle co-delivery of docetaxel and curcumin ameliorates anti-tumor chemoimmunotherapy in lung cancer. Carbohydr Polym. 2021;268:118237.

3. Kozower BD, Larner JM, Detterbeck FC, Jones DR. Special treatment issues in non-small cell lung cancer: diagnosis and management of lung cancer: American College of chest physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e369S–99. doi: https://doi.org/10.1378/chest.12-2362

4. Ko EC, Raben D, Formenti SC. The integration of radiotherapy with immunotherapy for the treatment of non-small cell lung cancer. Clin Cancer Res. 2018;24(23):5792–806. doi: https://doi.org/10.1158/1078-0432.CCR-17-3620

5. Horikoshi S, Serpone N. Introduction to nanoparticles. In: Horikoshi S, Serpone N, editors. Microwaves in nanoparticle synthesis: fundamentals and applications. Weinheim, Germany: Wiley-VCH Verlag GmbH and Co. KGaA; 2023. pp. 1–24. doi: https://doi.org/10.1002/9783527648122.ch1

6. Almeida JP, Lin AY, Langsner RJ, Eckels P, Foster AE, Drezek RA. In vivo immune cell distribution of gold nanoparticles in naive and tumor-bearing mice. Small. 2024;10(5):812–9. doi: https://doi.org/10.1002/smll.201301998

7. Chow EK, Ho D. Cancer nanomedicine: from drug delivery to imaging. Sci Transl Med. 2013;5(216):216rv4. doi: https://doi.org/10.1126/scitranslmed.3005872

8. Baetke SC, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol. 2015;88:20150207. doi: https://doi.org/10.1259/bjr.20150207

9. Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev. 2013;65(13–14):1866–79. doi: https://doi.org/10.1016/j.addr.2013.09.019

10. Sharma A, Goyal AK, Rath G. Recent advances in metal nanoparticles in cancer therapy. J Drug Target. 2019;27(8):709–24. doi: https://doi.org/10.1080/1061186X.2019.1598611

11. Danhier F. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2016;244(Pt A):108–21. doi: https://doi.org/10.1016/j.jconrel.2016.11.020

12. In B, Nieva J. Tumor microenvironment acidity enhances the membrane insertion of a pH-sensitive peptide designed to target acidic tissues. J Mol Biol. 2015;427(6):1244–58. doi: https://doi.org/10.1016/j.jmb.2015.02.006

13. Prabhu RH, Patravale VB, Joshi MD. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine. 2015;10:1001–18. doi: https://doi.org/10.2147/IJN.S56932

14. Bazak R, Houri M, El Achy S, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: a comprehensive review of the literature. Mol Clin Oncol. 2015;2(6):904–8. doi: https://doi.org/10.3892/mco.2015.670

15. Wakelee H, Kelly K, Edelman MJ. 50 years of progress in the systemic therapy of non-small cell lung cancer. Am Soc Clin Oncol Educ Book. 2014;(34):177–89. doi: https://doi.org/10.14694/EdBook_AM.2014.34.177

16. Nagasaka M, Zaki M, Kim H, Raza SN, Yoo G, Lin HS, et al. PD1/ PD-L1 inhibition as a potential radiosensitizer in head and neck squamous cell carcinoma: a case report. J Immunother Cancer. 2016;4:83. doi: https://doi.org/10.1186/s40425-016-0187-0

17. Gurley KE, Moser R, Gu Y, Hasty P, Kemp CJ. DNA-PK suppresses a p53-independent apoptotic response to DNA damage. EMBO Rep. 2009;10(1):87–93. doi: https://doi.org/10.1038/embor.2008.214

https://doi.org/10.1038/embor.2008.214

18. Bohlman S, Manfredi JJ. p53-independent effects of Mdm2. Subcell Biochem. 2014;85:235–46. doi: https://doi.org/10.1007/978-94-017-9211-0_13

19. Fariq A, Khan T, Yasmin A. Microbial synthesis of nanoparticles and their potential applications in biomedicine. J Appl Biomed. 2017;15(4):241–8. doi: https://doi.org/10.1016/j.jab.2017.03.004

20. Singh KR, Nayak V, Singh J, Singh AK, Singh RP. Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Adv. 2021;11(40):24722–46. doi: https://doi.org/10.1039/D1RA04273D

21. Mariadoss AV, Saravanakumar K, Sathiyaseelan A, Venkatachalam K, Wang MH. Folic acid functionalized starch encapsulated green synthesized copper oxide nanoparticles for targeted drug delivery in breast cancer therapy. Int J Biol Macromol. 2020 Dec 1;164:2073– 84. doi: https://doi.org/10.1016/j.ijbiomac.2020.08.036

22. Chavali MS, Nikolova MP. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci. 2019;1:607. doi: https://doi.org/10.1007/s42452-019-0592-3

23. Mobeen Amanulla M, Bashir S, Jehangir T, et al. Copper oxide nanoparticles for photothermal therapy: a study in vitro. J Nanomater. 2018;2018:7582309.

24. Abraham A, Karthikeyan S, Radhakrishnan R. Antimicrobial potential of copper oxide nanoparticles: a review. J Biomed Mater Res B Appl Biomater. 2021;109(5):742–51. doi: https://doi.org/10.1002/jbm.b.34755.

25. Manimaran A, Rajendran R, Aravinthan A, et al. Synthesis and characterization of copper oxide nanoparticles mediated by actinomycetes and their biological applications. J Nanomater. 2020;2020:7398291.

26. Bukhari SI, Hamed MM, Al-Agamy MH, Gazwi HS, Radwan HH, Youssif AM. Biosynthesis of copper oxide nanoparticles using streptomyces MHM38 and its biological applications. J Nanomater. 2021;2021(1):6693302. doi: https://doi.org/10.1155/2021/6693302

27. Mali, SB. Copper nanoparticles—potential for cancer therapy. J Maxillofac Oral Surg2024. doi: https://doi.org/10.1007/s12663-024-02374-3

28. Ezealisiji KM, Obinna-Echem A, Chijioke-Osuji UC. Green synthesis of zinc oxide nanoparticles using Solanum torvum (L) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles–hydrogel composite in Wistar albino rats. Int Nano Lett. 2019;9:99–107. doi: https://doi.org/10.1007/s40089-019-0267- 4

29. D’Incalci M, Steward WP, Gescher AJ. Use of cancer chemopreventive phytochemicals as antineoplastic agents. Lancet Oncol. 2005;6(11):899–904. doi: https://doi.org/10.1016/S1470-2045(05)70425-3

30. Sarker SD, Nahar L. Chemistry for pharmacy students: general, organic and natural product chemistry. Hoboken, UK: John Wiley and Sons; 2007. pp. 283–359. doi: https://doi.org/10.1002/9781118687529.ch6

31. Amjad M, Iqbal I, Rees D, Iqbal Q, Nawaz A, Ahmed T. Effect of packing materials and different storage regimes on shelf life of green hot pepper fruits. Acta Hortic. 2010;8:227–34. doi: https://doi.org/10.17660/ActaHortic.2010.876.30

32. Chah KF, Muko KN, Oboegbulem SI. Antimicrobial activity of methanolic extract of Solanum torvum fruit. Fitoterapia. 2000;71(2):187–9. doi: https://doi.org/10.1016/S0367-326X(99)00139-2

33. Lee B, Sur B, Shim I, Lee H, Hahm DH. Phellodendron amurense and its major alkaloid compound, berberine ameliorates scopolamine-induced neuronal impairment and memory dysfunction in rats. Korean J Physiol Pharmacol. 2012;16(2):79–89. doi: https://doi.org/10.4196/kjpp.2012.16.2.79

https://doi.org/10.4196/kjpp.2012.16.2.79

34. Imenshahidi M, Hosseinzadeh H. Berberis vulgaris and berberine: an update review. Phytother Res. 2016;30(11):1745–64. doi: https://doi.org/10.1002/ptr.5693

35. Kumar A. Current knowledge and pharmacological profile of berberine: an update. Eur J Pharmacol. 2015;761:288–97. doi: https://doi.org/10.1016/j.ejphar.2015.05.068

36. Chen Q, Qin R, Fang Y, Li H. Berberine sensitizes human ovarian cancer cells to cisplatin through miR-93/PTEN/Akt signaling pathway. Cell Physiol Biochem. 2015;36(3):956–65. doi: https://doi.org/10.1159/000430270

37. Li L, Wang X, Sharvan R, Gao J, Qu S. Berberine could inhibit thyroid carcinoma cells by inducing mitochondrial apoptosis, G0/ G1 cell cycle arrest and suppressing migration via PI3K-AKT and MAPK signaling pathways. Biomed Pharmacother. 2017;95:1225– 31. doi: https://doi.org/10.1016/j.biopha.2017.09.010

38. Milata V, Svedova A, Barbierikova Z, Holubkova E, Cipakova I, Cholujova D, et al. Synthesis and anticancer activity of novel 9-O-substituted berberine derivatives. Int J Mol Sci. 2019;20(9):2169. doi: https://doi.org/10.3390/ijms20092169

39. Yang X, Huang N. Berberine induces selective apoptosis through the AMPK-mediated mitochondrial/caspase pathway in hepatocellular carcinoma. Mol Med Rep. 2013;8(2):505–10. doi: https://doi.org/10.3892/mmr.2013.1506

40. Li W, Jiang T, Gao L, Chen G, Gao Q. Berberine stimulates the intrinsic apoptotic pathway and caspase activation in tumor cells. J Cell Biochem. 2018;119(5):4514–21. doi: https://doi.org/10.1002/jcb.26537

41. Ma J, Zhao D, Lu H, Huang W, Yu D. Apoptosis Signal-Regulating Kinase 1 (ASK1) activation is involved in silver nanoparticles induced apoptosis of A549 lung cancer cell line. J Biomed Nanotechnol. 2017;13(3):349–54. doi: https://doi.org/10.1166/jbn.2017.2359

42. Matsuzawa A, Nishitoh H, Tobiume K, Takeda K, Ichijo H. Physiological roles of ASK1-mediated signal transduction in oxidative stress- and endoplasmic reticulum stress-induced apoptosis: advanced findings from ASK1 knockout mice. Antioxid Redox Signal. 2002;4(3):415–25. doi: https://doi.org/10.1089/15230860260196218

43. Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K, et al. ASK1 is required for sustained activations of JNK/ p38 MAP kinases and apoptosis. EMBO Rep. 2001;2(3):222–8. doi: https://doi.org/10.1093/embo-reports/kve046

44. Zheng F, Tang Q, Wu J, Zhao S, Liang Z, Li L, et al. P38α MAPK-mediated induction and interaction of FOXO3a and p53 contribute to the inhibited growth and induced apoptosis of human lung adenocarcinoma cells by berberine. J Exp Clin Cancer Res. 2014;33:36. https://doi.org/10.1186/1756-9966-33-36

45. Hyun MS, Hur JM, Mun YJ, Kim D, Woo WH. Berberine induces apoptosis in HepG2 cells through an Akt-ASK1-ROS-p38MAPKs-linked cascade. J Cell Biochem. 2010;109:329–38. https://doi.org/10.1002/jcb.22384

46. Hur JM, Hyun MS, Lim SY, Lee WY, Kim D. The combination of berberine and irradiation enhances anti-cancer effects via activation of the p38 MAPK pathway and ROS generation in human hepatoma cells. J Cell Biochem. 2009;107:955–64. https://doi.org/10.1002/jcb.22198

47. Zhao L, Zhang S, Wang X, Li J, Zhou Y, Hua Y, et al. Protective effects of berberine on doxorubicin-induced hepatotoxicity in mice. Biol Pharm Bull. 2012;35(5):796–800. doi: https://doi.org/10.1248/bpb.35.796

48. Domitrovi? R, Jakovac H, Blagojevi? G. Hepatoprotective activity of berberine is mediated by inhibition of TNF-α, COX-2, and iNOS expression in CCl4-intoxicated mice. Toxicology. 2011;280(1–2):33– 43. doi: https://doi.org/10.1016/j.tox.2010.11.004

49. Chen J, Li W, Cui K, Ji K, Xu S, Xu Y. Artemisitene suppresses tumorigenesis by inducing DNA damage through deregulating c-Myc-topoisomerase pathway. Oncogene. 2018;37(37):5079–87. doi: https://doi.org/10.1038/s41388-018-0331-z

50. Fan FL, Dart AM. Anti-inflammatory treatment in patients after percutaneous coronary intervention: another potential use for berberine? Clin Exp Pharmacol Physiol. 2012;39(5):404–5. https://doi.org/10.1111/j.1440-1681.2012.05695.x

51. Djebbi MA, Elabed A, Bouaziz Z, Sadiki M, Elabed S, Namour P, Jaffrezic-Renault N, Amara AB. Delivery system for berberine chloride based on the nanocarrier ZnAl-layered double hydroxide: physicochemical characterization, release behavior and evaluation of anti-bacterial potential. Int J Pharm. 2016;515(1–2):422–30. https://doi.org/10.1016/j.ijpharm.2016.09.089

52. Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today. 2014;9(2):223–43. doi: https://doi.org/10.1016/j.nantod.2014.04.008

53. Onoue S, Yamada S, Chan HK. Nanodrugs: pharmacokinetics and safety. Int J Nanomed. 2014;9(1):1025–37. doi: https://doi.org/10.2147/IJN.S38378

54. Lee, K.J, An JH, Chun JR, Chung KH, Park WY, Shin JS, et al. In vitro analysis of the anti-cancer activity of mitoxantrone loaded on magnetic nanoparticles. J Biomed Nanotechnol. 2013;9:1071–5. doi: https://doi.org/10.1166/jbn.2013.1530

55. Ali I, Naqshbandi MF, Husain M. Cell migration and apoptosis in human lung cancer cells by clove (Syzygium aromaticum) dried flower buds extract. J Taibah Univers Sci. 2019a;13:1163–74. doi: https://doi.org/10.1080/16583655.2019.1691480

56. https://sdgs.un.org/goals

57. Hsu CY, Pallathadka H, Gupta J, Ma H, Al-Shukri HHK, Kareem AK, et al. Berberine and berberine nano formulations in cancer therapy: focusing on lung cancer. Phytother Res. 2024;38(8):4336– 50. doi: https://doi.org/10.1002/ptr.8255

58. Wu C, Dong B, Huang L, Liu Y, Ye G, Li S, et al. SPTBN2, a new biomarker of lung adenocarcinoma. Front Oncol. 2021;11:754290. https://doi.org/10.3389/fonc.2021.754290

59. Hanif A, Ibrahim AH, Ismail S, Al-Rawi SS, Ahmad JN, Hameed M, et al. Cytotoxicity against A549 human lung cancer cell line via the mitochondrial membrane potential and nuclear condensation effects of Nepeta paulsenii Briq., a perennial herb. Molecules. 2023;28(6):2812. Available from: https://doi.org/10.3390/molecules28062812

60. Karki R, Kim SB, Kim DW. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation. Exp Cell Res. 2013;319(20):3238–50. doi: https://doi.org/10.1016/j.yexcr.2013.07.016

61. Maiuthed A, Chanvorachote P. Cisplatin at sub-toxic levels mediates integrin switch in lung cancer cells. Anticancer Res. 2014;34(12):7111–8.

62. Alao II, Oyekunle IP, Iwuozor KO, Emenike EC. Green synthesis of copper nanoparticles and investigation of its antimicrobial properties. Adv J Chem. B. 2022;4(1):39–52. https://doi.org/10.22034/ajcb

63. Tavade S, Patil K, Kurangi B, Suryawanshi S. Development and validation of UV-spectrophotometric method for estimation of berberine hydrochloride in marketed formulation and poly lactic co-glycolic acid nanoparticles. Indian J Pharm Educ Res. 2022;56(3):873–8. doi: https://doi.org/10.5530/ijper.56.3.120

64. Nasrollahzadeh M, Maham M, Rostami-Vartooni A, Bagherzadeh M, Sajadi SM. Barberry fruit extract assisted in situ green synthesis of Cu nanoparticles supported on a reduced graphene oxide– Fe3O4nanocomposite as a magnetically separable and reusable catalyst for the O-arylation of phenols with aryl halides under ligand-free conditions. RSC Adv. 2015;5(95):75909–18. doi: https://doi.org/10.1039/c5ra10037b

65. Younis FA, Saleh SR, El-Rahman SSA, Newairy AA, El-Demellawy MA, Ghareeb DA. Preparation, physicochemical characterization, and bioactivity evaluation of berberine-entrapped albumin nanoparticles. Sci Rep. 2022;12:17431. doi: https://doi.org/10.1038/s41598-022-21568-8

66. Aljedaani RO, Kosa SA, Abdel Salam M. Ecofriendly green synthesis of copper (II) oxide nanoparticles using Corchorus olitorius leaves (Molokhaia) extract and their application for the environmental remediation of direct violet dye via advanced oxidation process. Molecules. 2023;28(1):16. doi: https://doi.org/10.3390/molecules28010016

67. Lakhotiya G, Bajaj S, Nayak AK, Pradhan D, Tekade P, Rana A. Enhanced catalytic activity without the use of an external light source using microwave-synthesized CuO nanopetals. Beilstein J Nanotechnol. 2017;8:1167–73. doi: https://doi.org/10.3762/bjnano.8.118

68. Rajivgandhi GN, Ramachandran G, Kannan MR, Velanganni AAJ, Siddiqi MZ, Alharbi NS, et al. Photocatalytic degradation and anti-cancer activity of biologically synthesized Ag NPs for inhibiting MCF-7 breast cancer cells. J Photochem Photobiol B. 2020;203:111748.

69. Tian Y, Zhao L, Wang Y, Zhang H, Xu D, Zhao X, et al. Berberine inhibits androgen synthesis by interaction with aldo-keto reductase 1C3 in 22Rv1 prostate cancer cells. Asian J Androl. 2016;18(6):607– 12. doi: https://doi.org/10.4103/1008-682X.169997

70. Wang J, Qi Q, Feng Z, Zhang X, Huang B, Chen A, et al. Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ ULK1 pathway. Oncotarget. 2016;7(43):66944–58. doi: https://doi.org/10.18632/oncotarget.11396

71. Eo HJ, Park JH, Park GH, Lee MH, Lee JR, Kim MK, et al. Berberine-induced cell cycle arrest and apoptosis in human cancer cells. J Med Food. 2015;18(1):37–45. doi: https://doi.org/10.1089/jmf.2014.0085

72. Mirhadi E, Rezaee M, Malaekeh-Nikouei B. Nano strategies for berberine delivery, a natural alkaloid of Berberis. Biomed Pharmacother. 2018;104:465–73. doi: https://doi.org/10.1016/j.biopha.2018.05.067

73. Siddiqui MA, Alhadlaq HA, Ahmad J, Al-Khedhairy AA, Musarrat J, Ahamed M. Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS One. 2013 Aug 5;8(8):e69534. doi: https://doi.org/10.1371/journal. pone.0069534

74. Da Violante G, Zerrouk N, Richard I, Provot G, Chaumeil JC, Arnaud P. Evaluation of the cytotoxicity effect of dimethyl sulfoxide (DMSO) on Caco2/TC7 colon tumor cell cultures. Biol Pharm Bull. 2002 Dec;25(12):1600–3. doi: https://doi.org/10.1248/bpb.25.1600.

75. Zhou W, Zi L, Cen Y, You C, Tian M. Copper sulfide nanoparticles-incorporated hyaluronic acid injectable hydrogel with enhanced angiogenesis to promote wound healing. Front Bioeng Biotechnol. 2020;8:417. https://doi.org/10.3389/fbioe.2020.00417

76. Alarifi S, Ali D, Verma A, Alakhtani S, Ali BA. Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. Int J Toxicol. 2016;32:296–307. https://doi.org/10.1177/1091581813487563

77. Wu Z, Zhang W, Kang YJ. Copper affects the binding of HIF-1alpha to the critical motifs of its target genes. Metallomics. 2019;11:429– 38. https://doi.org/10.1039/C8MT00280K

78. Brillet G, Deray G, Jacquiaud C, Mignot L, Bunker D, Meillet D, et al. Long-term renal effect of cisplatin in man. Am J Nephrol. 1994 Oct 28;14(2):81–4. https://doi.org/10.1159/000168693

79. Kraatz HB, Metzler-Nolte N, editors. Bioinorganic chemistry. Weinheim, Germany: Wiley-VCH; 2006. p. 443.

80. Bhanumathi R, Vimala K, Shanthi K, Thangaraj R, Kannan S. Bioformulation of silver nanoparticles as berberine carrier cum anticancer agent against breast cancer. N J Chem. 2017;41:14466– 77. doi: https://doi.org/10.1039/C7NJ02531A

81. Taebpour M, Arasteh F, Akhlaghi M, Haghirosadat BF, Oroojalian F, Tofighi D. Fabrication and characterization of PLGA polymeric nanoparticles containing Berberine and its cytotoxicity on breast cancer cell (MCF-7). Nanomed Res J. 2021;6(4):259–68. doi: https://doi.org/10.22034/nmrj.2021.04.009

82. Bhattacharya T, Maishu SP, Akter R, Rahman MH, Akhtar MF, Saleem A, et al. A review on natural sources derived protein nanoparticles as anticancer agents. Curr Top Med Chem. 2021;21:1014–26.

83. Piret JP, Jacques D, Audinot JN, Mejia J, Boilan E, Noël F, et al. Copper (II) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response. Nanoscale. 2012;4:7168–84. doi: https://doi.org/10.1039/c2nr31804g

84. Timofeeva SV, Kit OI, Filippova SY, Sitkovskaya AO, Mezhevova IV, Gnennaya NV, et al. Effect of berberine on cancer cell motility in glioma, lung cancer, and prostate cancer cell cultures. J Clin Oncol. 2022;40:e15079.

85. Chiu CF, Fu RH, Hsu SH, Yu YH, Yang SF, Tsao TCY, et al. Delivery capacity and anticancer ability of the berberine-loaded gold nanoparticles to promote the apoptosis effect in breast cancer. Cancers. 2021;13(21):5317. doi: https://doi.org/10.3390/cancers13215317

86. Mishra R, Aher A. Lipid-based berberine loaded lyophilized nano micelles with enhanced antioxidant effect: design and characterization. J Appl Pharm Sci. 2024;14(06):126–34. doi: https://doi.org/10.7324/JAPS.2024.154408.K

87. Shen F, Zheng YS, Dong L, Cao Z, Cao J. Enhanced tumor suppression in colorectal cancer via berberine-loaded PEG-PLGA nanoparticles. Front Pharmacol. 2024 Nov 1;15:1500731. Available from: https://doi.org/10.3389/fphar.2024.1500731

Article Metrics
15 Views 2 Downloads 17 Total

Year

Month

Related Search

By author names