α-Mangostin enhances cisplatin activity in drug-resistant breast cancer cells by targeting multidrug resistance-associated protein 2

Chutamas Thepmalee Nittiya Suwannasom Krissana Khoothiam Chonthida Thephinlap Amnart Onsa-ard Aussara Panya   

Open Access   

Published:  Apr 16, 2025

DOI: 10.7324/JAPS.2025.232471
Abstract

Cisplatin resistance presents a significant challenge in breast cancer treatment, often resulting in therapy failure and relapse. The overexpression of multidrug resistance-associated protein (MRP) in breast cancer cells contributes to chemotherapy resistance. Combining cisplatin with other anti-cancer agents has improved its efficacy in overcoming resistance in cancer cells. This study developed cisplatin-resistant breast cancer cell lines, CIS/MCF-7 and CIS/ MDA-MB-231, derived from the MCF-7 and MDA-MB-231 parental lines. These resistant cell lines exhibited altered morphology and significant resistance to cisplatin, with resistance indices of 1.99 and 6.03, respectively. Combining the natural compound α-mangostin (AMG) with 30 μM cisplatin significantly enhanced the cisplatin effect on cell viability in cisplatin-resistant cell lines in a dose-dependent manner. The overexpression of the MRP2 gene in CIS/MDA-MB-231 cells suggests their potential roles in cisplatin resistance. Molecular docking revealed a favorable interaction between AMG and MRP2, suggesting a possible mechanism by which AMG enhances cisplatin activity. Our findings indicate that AMG can improve cisplatin efficacy in chemotherapy-resistant breast cancers, possibly by targeting MRP2 induction.


Keyword:     Cisplatin α-Mangostin (AMG) resistant breast cancer cell line multidrug resistance protein 2 (MRP2)


Citation:

Thepmalee C, Suwannasom N, Khoothiam K, Thephinlap C, Onsa-ard A, Panya A. α-Mangostin enhances cisplatin activity in drug-resistant breast cancer cells by targeting multidrug resistance-associated protein 2. J Appl Pharm Sci. 2025. http://doi.org/10.7324/JAPS.2025.232471

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Brown A, Kumar S, Tchounwou PB. Cisplatin-based chemotherapy of human cancers. J Cancer Sci Ther. 2019;11(4):97. https://pubmed.ncbi.nlm.nih.gov/32148661

2. Hill DP, Harper A, Malcolm J, McAndrews MS, Mockus SM, Patterson SE, et al. Cisplatin-resistant triple-negative breast cancer subtypes: multiple mechanisms of resistance. BMC Cancer. 2019 Nov 4;19(1):1039. doi: https://doi.org/10.1186/s12885-019-6278-9

3. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364-78. doi: https://doi.org/10.1016/j.ejphar.2014.07.025

4. Nedeljkovi? M, Damjanovi? A. Mechanisms of chemotherapy resistance in triple-negative breast cancer—how we can rise to the challenge. Cells. 2019;8(9):957. https://www.mdpi.com/2073-4409/8/9/957

5. Tchounwou PB, Dasari S, Noubissi FK, Ray P, Kumar S. Advances in our understanding of the molecular mechanisms of action of Cisplatin in cancer therapy. J Exp Pharmacol. 2021;13:303–28. doi: https://doi.org/10.2147/JEP.S267383

6. Florea AM, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers. 2011;3(1):1351–71. doi: https://doi.org/10.3390/cancers3011351

7. Murakami M, Ohnuma S, Fukuda M, Chufan EE, Kudoh K, Kanehara K, et al. Synthetic analogs of curcumin modulate the function of multidrug resistance–linked ATP-binding cassette transporter ABCG2. Drug Metab Dispos. 2017;45(11):1166–77. doi: https://doi.org/10.1124/dmd.117.076000

8. Yu S, Zheng J, Zhang Y, Meng D, Wang Y, Xu X, et al. The mechanisms of multidrug resistance of breast cancer and research progress on related reversal agents. Bioorgan Med Chem. 2023;95:117486. doi: https://doi.org/10.1016/j.bmc.2023.117486

9. Ashton MM, Dean OM, Walker AJ, Bortolasci CC, Ng CH, Hopwood M, et al. The therapeutic potential of mangosteen pericarp as an adjunctive therapy for bipolar disorder and schizophrenia. Front Psychiatry. 2019;10:115–15. doi: https://doi.org/10.3389/fpsyt.2019.00115

10. Zhang KJ, Gu QL, Yang K, Ming XJ, Wang JX. Anticarcinogenic effects of α-Mangostin: a review. Planta Med. 2017;83(3-04):188– 202. doi: https://doi.org/10.1055/s-0042-119651

11. Ibrahim MY, Hashim NM, Mariod AA, Mohan S, Abdulla MA, Abdelwahab SI, et al. α-Mangostin from Garcinia mangostana Linn: an updated review of its pharmacological properties. Arabian J Chem. 2016;9(3):317–29. doi: https://doi.org/10.1016/j.arabjc.2014.02.011

12. Lara-Sotelo G, Díaz L, García-Becerra R, Avila E, Prado-Garcia H, Morales-Guadarrama G, et al. α-Mangostin synergizes the antineoplastic effects of 5-fluorouracil allowing a significant dose reduction in breast cancer cells. Processes. 2021;9(3):458. https://www.mdpi.com/2227-9717/9/3/458

13. Laksmiani NPL. Ethanolic extract of mangosteen (Garcinia mangostana) pericarp as sensitivity enhancer of doxorubicin on MCF-7 cells by inhibiting P-glycoprotein. Nusant Biosci. 2019;11(1):49–55. doi: https://doi.org/10.13057/nusbiosci/n110109

14. Pérez -Rojas JM, González-Macías R, González-Cortes J, Jurado R, Pedraza-Chaverri J, García-López P. Synergic effect of α-Mangostin on the cytotoxicity of cisplatin in a cervical cancer model. Oxid Med Cell Longev. 2016;2016:7981397. doi: https://doi.org/10.1155/2016/7981397

15. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:296–303. doi: https://doi.org/10.1093/nar/gky427

16. Wang L, Johnson ZL, Wasserman MR, Levring J, Chen J, Liu S. Characterization of the kinetic cycle of an ABC transporter by single-molecule and cryo-EM analyses. Elife. 2020;9:e56451. doi: https://doi.org/10.7554/eLife.56451

17. Pettersen EF, Goddard TD, Huang C, Couch G, Greenblatt DM, Meng E. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12. doi: https://doi.org/10.1002/(ISSN)1096-987X

18. Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39:W270–W77.

19. Kwok JM, Peck B, Monteiro LJ, Schwenen HD, Millour J, Coombes RC, et al. FOXM1 confers acquired cisplatin resistance in breast cancer cells. Mol Cancer Res. 2010;8(1):24–34. doi: https://doi.org/10.1158/1541-7786.Mcr-09-0432

20. Mi H, Wang X, Wang F, Li L, Zhu M, Wang N, et al. SNHG15 contributes to cisplatin resistance in breast cancer through sponging miR-381. OncoTargets Ther. 2020;13:657–66. doi: https://doi.org/10.2147/OTT.S223321

21. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017;7(3):339–48. doi: https://doi.org/10.15171/apb.2017.041

22. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019;2(2):141–60. doi: https://doi.org/10.20517/cdr.2019.10

https://doi.org/10.20517/cdr.2019.10

23. Wang P, Yang HL, Yang YJ, Wang L, Lee SC. Overcome cancer cell drug resistance using natural products. EvidBased Complement Alternat Med. 2015;2015:767136–36. doi: https://doi.org/10.1155/2015/767136

24. Kars MD, Iseri OD, Gündüz U, Ural AU, Arpaci F, Molnár J. Development of rational in vitro models for drug resistance in breast cancer and modulation of MDR by selected compounds. Anticancer Res. 2006;26(6b):4559–68.

25. Choi HK, Yang JW, Roh SH, Han CY, Kang KW. Induction of multidrug resistance associated protein 2 in tamoxifen-resistant breast cancer cells. Endocr Relat Cancer. 2007;14(2):293–303. doi: https://doi.org/10.1677/erc-06-0016

26. Sprouse AA, Herbert BS. Resveratrol augments paclitaxel treatment in MDA-MB-231 and paclitaxel-resistant MDA-MB-231 breast cancer cells. Anticancer Res. 2014;34(10):5363. http://ar.iiarjournals.org/content/34/10/5363.abstract

27. Beretta GL, Benedetti V, Cossa G, Assaraf YG, Bram E, Gatti L, et al. Increased levels and defective glycosylation of MRPs in ovarian carcinoma cells resistant to oxaliplatin. Biochem Pharmacol. 2010;79(8):1108–17. doi: https://doi.org/10.1016/j.bcp.2009.12.002

28. Wu CP, Hsiao SH, Murakami M, Lu YJ, Li YQ, Huang YH, et al. Alpha-Mangostin reverses multidrug resistance by attenuating the function of the multidrug resistance-linked ABCG2 transporter. Mol Pharm. 2017;14(8):2805–14. doi: https://doi.org/10.1021/acs.molpharmaceut.7b00334

29. Wang TT, Hong YF, Chen ZH, Wu DH, Li Y, Wu XY, et al. Synergistic effects of α-Mangostin and sorafenib in hepatocellular carcinoma: new insights into α-mangostin cytotoxicity. Biochem Biophys Res Commun. 2021;558:14–21. doi: https://doi.org/10.1016/j.bbrc.2021.04.047

30. Chien HJ, Ying TH, Hsieh SC, Lin CL, Yu YL, Kao SH, et al. α-Mangostin attenuates stemness and enhances cisplatin-induced cell death in cervical cancer stem-like cells through induction of mitochondrial-mediated apoptosis. J Cell Physiol. 2020;235(7- 8):5590–601. doi: https://doi.org/10.1002/jcp.29489

31. Ma Y, Yu W, Shrivastava A, Srivastava RK, Shankar S. Inhibition of pancreatic cancer stem cell characteristics by α-Mangostin: molecular mechanisms involving Sonic hedgehog and Nanog. J Cell Mol Med. 2019;23(4):2719–30. doi: https://doi.org/10.1111/jcmm.14178

32. Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. α-Mangostin nanoparticles cytotoxicity and cell death modalities in breast cancer cell lines. Molecules. 2021;26(17):5119. https://www.mdpi.com/1420-3049/26/17/5119

33. van Zanden JJ, de Mul A, Wortelboer HM, Usta M, van Bladeren PJ, Rietjens IM, et al. Reversal of in vitro cellular MRP1 and MRP2 mediated vincristine resistance by the flavonoid myricetin. Biochem Pharmacol. 2005;69(11):1657–65. doi: https://doi.org/10.1016/j.bcp.2005.03.001

34. Limtrakul P, Chearwae W, Shukla S, Phisalphong C, Ambudkar SV. Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin. Mol Cell Biochem. 2007;296(1- 2):85–95. doi: https://doi.org/10.1007/s11010-006-9302-8

35. Wen C, Fu L, Huang J, Dai Y, Wang B, Xu G, et al. Curcumin reverses doxorubicin resistance via inhibition the efflux function of ABCB4 in doxorubicin?resistant breast cancer cells. Mol Med Rep. 2019;19(6):5162–68. doi: https://doi.org/10.3892/mmr.2019.10180

36. To KKW, Wu X, Yin C, Chai S, Yao S, Kadioglu O, et al. Reversal of multidrug resistance by Marsdenia tenacissima and its main active ingredients polyoxypregnanes. J Ethnopharmacol. 2017;203:110–19. doi: https://doi.org/10.1016/j.jep.2017.03.051

37. Louisa M, Soediro TM, Suyatna FD. In vitro modulation of P-glycoprotein, MRP-1 and BCRP expression by mangiferin in doxorubicin-treated MCF-7 cells. Asian Pac J Cancer Prev. 2014;15(4):1639–42. doi: https://doi.org/10.7314/apjcp.2014.15.4.1639

Article Metrics
25 Views 18 Downloads 43 Total

Year

Month

Similar Articles


Warning: mysqli_fetch_array() expects parameter 1 to be mysqli_result, bool given in /home/japsonli/public_html/articlemodule/database.php on line 426
Protective Effect of Adiantum Capillus Against Chemically Induced Oxidative Stress by CisplatinKanchan Gaikwad,Swati Dhande,Y M Joshi,Vilasrao Kadam

Related Search

By author names