Chemistry, pharmacology, uses, safety studies, and clinical studies of glucosyl hesperidin: An overview

Eric Wei Chiang Chan Siu Kuin Wong Hung Tuck Chan   

Open Access   

Published:  Apr 01, 2025

DOI: 10.7324/JAPS.2025.231318
Abstract

Glycosyl hesperidin (GH) or hesperetin rutinoside has been patented in 1997 and 2000, and has been endorsed as a novel food in 2024. A flavanone mostly from Citrus fruits, GH can be synthesized by adding one glucose molecule to hesperidin. Pharmacological properties of GH are diverse with anti-hypertension, antimicrobial, anti-inflammatory, and anti-obesity being the major activities. Food additives, functional food, beverage, health supplement, and cosmetics are some of the uses of GH. Now a commercial product, GH is being sold in Japan, Taiwan, and Korea as a dietary supplement. From 2004 to 2023, a total of 13 clinical studies involving GH were reported in the literature. All conducted in Japan, their area of study included arthritis, triglyceride, blood flow, obesity, lower leg swelling, vasodilation, vascular flexibility, and hepatic function. In the concluding remarks, the prospects and fields for further research of GH are suggested.


Keyword:     G-hesperidin Citrus fruits flavanone hesperidin food supplements


Citation:

Chan EWC, Wong SK, Chan HT. Chemistry, pharmacology, uses, safety studies, and clinical studies of glucosyl hesperidin: An overview. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.231318

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. doi: https://doi.org/10.1017/jns.2016.41

2. Dias MC, Pinto DC, Silva AM. Plant flavonoids: chemical characteristics and biological activity. Molecules. 2021;26(17):5377. doi: https://doi.org/10.3390/molecules26175377

3. Iwashina T. The structure and distribution of the flavonoids in plants. J Plant Res. 2000;113(3):287−99. doi: https://doi.org/10.1007/PL00013940

4. Barreca D, Gattuso G, Bellocco E, Calderaro A, Trombetta D, Smeriglio A, et al. Flavanones: citrus phytochemical with health-promoting properties. BioFactors. 2017;43(4):495−506. doi: https://doi.org/10.1002/biof.1363

5. Khan MK, Dangles O. A comprehensive review on flavanones, the major citrus polyphenols. J Food Compos Anal. 2014;33(1):85−104. doi: https://doi.org/10.1016/j.jfca.2013.11.004

6. Liu S, Lou Y, Li Y, Zhang J, Li P, Yang B, et al. Review of phytochemical and nutritional characteristics and food applications of Citrus L. fruits. Front Nutr. 2022;9:968604. doi: https://doi.org/10.3389/fnut.2022.968604

7. Garg A, Garg S, Zaneveld LJ, Singla A. Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother Res. 2001;15(8):655−69. doi: https://doi.org/10.1002/ptr.1074

8. Pyrzynska K. Hesperidin: a review on extraction methods, stability and biological activities. Nutrients. 2022;14(12):2387. doi: https://doi.org/10.3390/nu14122387

9. Ganeshpurkar A, Saluja A. The pharmacological potential of hesperidin. Indian J Biochem Biophys. 2019;56:287−300.

10. Chan EWC, Ng YK, Tan CY, Alessandro L, Wong SK, Chan HT. Diosmetin and tamarixetin (methylated flavonoids): a review on their chemistry, sources, pharmacology, and anticancer properties. J Appl Pharm Sci. 2021;11(3):22−8. doi: https://doi.org/10.7324/JAPS.2021.11030210.2903/j.efsa.2024.8911

11. Li D, Mitsuhashi S, Ubukata M. Protective effects of hesperidin derivatives and their stereoisomers against advanced glycation end-products formation. Pharm Biol. 2012;50(12):1531−5. doi: https://doi.org/10.3109/13880209.2012.694106

12. Khan A, Ikram M, Hahm JR, Kim MO. Antioxidant and anti-inflammatory effects of citrus flavonoid hesperetin: special focus on neurological disorders. Antioxidants. 2020;9(7):609. doi: https://doi.org/10.3390/antiox9070609

13. Yamada M, Tanabe F, Arai N, Mitsuzumi H, Miwa Y, Kubota M, et al. Bioavailability of glucosyl hesperidin in rats. Biosci Biotechnol Biochem. 2006;70(6):1386−94. doi: https://doi.org/10.1271/bbb.50657

14. Hijiya H, Miyake T, inventors. Hayashibara Biological Science Research Institute, Inc., assignee. α-Glycosyl hesperidin and its uses. United States Patent US 5627157. 1997 May 6.

15. Kometani T, Terada Y, Nishimura T, Takii H, Okada S. Trans-glycosylation to hesperidin by cyclodextrin glucanotransferase from an alkalophilic Bacillus species in alkaline pH and properties of hesperidin glycosides. Biosci Biotechnol Biochem. 1994;58:1990–4. doi: https://doi.org/10.1271/bbb.58.1990

16. Miyake T, Yumoto T, inventors. Hayashibara Seibutsu Kagaku Kenkyujo KK, assignee Process for producing α-monoglucosyl hesperidin-rich substance. United States Patent US 6048712. 2000 Apr 11.

17. Zhou J, Shi Y, Fang J, Gan T, Lu Y, Zhu L, et al. Efficient production of α-monoglucosyl hesperidin by cyclodextrin glucanotransferase from Bacillus subtilis. Appl Microbiol Biotechnol. 2023;107(15):4803−13. doi: https://doi.org/10.1007/s00253-023-12628-8

18. Devi KP, Rajavel T, Nabavi SF, Setzer WN, Ahmadi A, Mansouri K, et al. Hesperidin: a promising anticancer agent from nature. Indust Crops Prod. 2015;76:582−9. doi: https://doi.org/10.1016/j.indcrop.2015.07.051

19. Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci. 2015;124:64−74. doi: https://doi.org/10.1016/j.lfs. 2014.12.030

20. Ohtsuki K, Abe A, Mitsuzumi H, Kondo M, Uemura K, Iwasaki Y, et al. Effects of long-term administration of hesperidin and glucosyl hesperidin to spontaneously hypertensive rats. J Nutr Sci Vitaminol. 2002;48(5):420−2. doi: https://doi.org/10.3177/jnsv.48.420

21. Ohtsuki K, Abe A, Mitsuzumi H, Kondo M, Uemura K, Iwasaki Y, et al. Glucosyl hesperidin improves serum cholesterol composition and inhibits hypertrophy in vasculature. J Nutr Sci Vitaminol. 2003;49(6):447−50. doi: https://doi.org/10.3177/jnsv.49.447

22. Yamamoto M, Suzuki A, Hase T. Short-term effects of glucosyl hesperidin and hesperetin on blood pressure and vascular endothelial function in spontaneously hypertensive rats. J Nutr Sci Vitaminol. 2008;54(1):95−8. doi: https://doi.org/10.3177/jnsv.54.95

23. Yamamoto M, Suzuki A, Jokura H, Yamamoto N, Hase T. Glucosyl hesperidin prevents endothelial dysfunction and oxidative stress in spontaneously hypertensive rats. Nutrition. 2008;24(5):470−6. doi: https://doi.org/10.1016/j.nut.2008.01.010

24. Ikemura M, Sasaki Y, Giddings JC, Yamamoto J. Preventive effects of hesperidin, glucosyl hesperidin and naringin on hypertension and cerebral thrombosis in stroke-prone spontaneously hypertensive rats. Phytother Res. 2012;26(9):1272−7. doi: https://doi.org/10.1002/ptr.3724

25. Yamamoto M, Jokura H, Suzuki A, Hase T, Shimotoyodome A. Effects of continuous ingestion of hesperidin and glucosyl hesperidin on vascular gene expression in spontaneously hypertensive rats. J Nutr Sci Vitaminol. 2013;59(5):470−3.

26. Saha RK, Takahashi T, Suzuki T. Glucosyl hesperidin prevents influenza a virus replication in vitro by inhibition of viral sialidase. Biol Pharm Bull. 2009;32(7):1188−92. doi: https://doi.org/10.1248/bpb.32.1188

27. Lipson SM, Ozen FS, Louis S, Karthikeyan L. Comparison of α-glucosyl hesperidin of citrus fruits and epigallocatechin gallate of green tea on the loss of rotavirus infectivity in cell culture. Front Microbiol. 2015;6:359. doi: https://doi.org/10.3389/fmicb.2015. 00359

28. Chaisin T, Rudeekulthamrong P, Kaulpiboon J. Enzymatic synthesis, structural analysis, and evaluation of antibacterial activity and α-glucosidase inhibition of hesperidin glycosides. Catalysts. 2021;11(5):532. doi: https://doi.org/10.3390/catal 11050532

29. Choi SS, Lee SH, Lee KA. A comparative study of hesperetin, hesperidin and hesperidin glucoside: antioxidant, anti-inflammatory, and antibacterial activities in vitro. Antioxidants. 2022;11(8):1618. doi: https://doi.org/10.3390/antiox11081618

30. Huang Y, Zhou W, Sun J, Ou G, Zhong NS, Liu Z. Exploring the potential pharmacological mechanism of hesperidin and glucosyl hesperidin against COVID-19 based on bioinformatics analyses and antiviral assays. Am J Chin Med. 2022;50(2):351−69. doi: https://doi.org/10.1142/S0192415X22500148

31. Poomipark N, Chaisin T, Kaulpiboon J. Synthesis and evaluation of antioxidant and β-glucuronidase inhibitory activity of hesperidin glycosides. Agric Nat Resour. 2020;54(2):165−72. doi: https://doi.org/10.34044/j.anres.2020.54.2.07

32. Kumazoe M, Tanaka Y, Yoshitomi R, Marugame Y, Lee KW, Onda H, et al. Glucosyl-hesperidin enhances the cyclic guanosine monophosphate-inducing effect of a green tea polyphenol EGCG. J Nat Med. 2021;75(4):1037−42. doi: https://doi.org/10.1007/s11418-021-01538-6

33. Ohara T, Muroyama K, Yamamoto Y, Murosaki S. A combination of glucosyl hesperidin and caffeine exhibits an anti-obesity effect by inhibition of hepatic lipogenesis in mice. Phytother Res. 2015;29(2):310−6. doi: https://doi.org/10.1002/ptr.5258

34. Gonçalves TT, Lazaro CM, de Mateo FG, Campos MC, Mezencio JG, Claudino MA, et al. Effects of glucosyl-hesperidin and physical training on body weight, plasma lipids, oxidative status and vascular reactivity of rats fed with high-fat diet. Diabetes Metab Syndr Obes Targets Ther. 2018:321−32. doi: https://doi.org/10.2147/DMSO.S153661

35. Nishikawa S, Hyodo T, Nagao T, Nakanishi A, Tandia M, Tsuda T. α-Monoglucosyl hesperidin but not hesperidin induces brown-like adipocyte formation and suppresses white adipose tissue accumulation in mice. J Agric Food Chem. 2019;67(7):1948−54. doi: https://doi.org/10.1021/acs.jafc.8b06647

36. Nakazawa Y, Naoki M, Ishiwa S, Morishita M, Endo S, Nagai N, et al. Oral intake of α?glucosyl?hesperidin ameliorates selenite?induced cataract formation. Mol Med Rep. 2020;21:1258−66. doi: https://doi.org/10.3892/mmr.2020.10941

37. Nakazawa Y, Doki Y, Sugiyama Y, Kobayashi R, Nagai N, Morisita N, et al. Effect of alpha-glucosyl-hesperidin consumption on lens sclerosis and presbyopia. Cells. 2021;10(2):382. doi: https://doi.org/10.3390/cells10020382

38. Sasaki Y, Hyodo K, Hoshino A, Kisa E, Matsuda K, Horikawa Y, et al. Myricetin and hesperidin inhibit cerebral thrombogenesis and atherogenesis in ApoE-/- and LDLR-/- mice. Food Nutr Sci. 2018;9(1):20−31. doi: https://doi.org/10.4236/fns.2018.91002

39. Sugasawa N, Katagi A, Kurobe H, Nakayama T, Nishio C, Takumi H, et al. Inhibition of atherosclerotic plaque development by oral administration of α-glucosyl hesperidin and water-dispersible hesperetin in apolipoprotein E knockout mice. J Am Coll Nutr. 2019;38(1):15−22. doi: https://doi.org/10.1080/07315724.2018.1468831

40. Iwai I, Yamashita T, Ochiai N, Masuda Y, Hosokawa K, Kohno Y. Can daily-use lipstick make lips more fresh and healthy—A new lipstick containing α-glucosyl-hesperidin can remove the dull-color from lips. Proc Soc Cosmet Sci Korea (SCSK) Conf. 2003;162 −77 .

41. Naiki T, Kurose Y, Hayashi K, Takumi H, Kometani T. Effects of long-term feeding of α-glucosylhesperidin on the mechanical properties of rabbit femoral arteries. Biorheology. 2012;49(5−6):353−63. doi: https://doi.org/10.3233/BIR-2012-0619

42. Yamada M, Mitsuzumi H, Tsuzaki Y, Miwa Y, Chaen H, Yamamoto I. Antioxidant activity of glycosylated vitamin P and its suppressive effect on oxidative stress in hyperlipidemic mice. J Jpn Soc Nutr Food Sci. 2003;56:355–63. doi: https://doi.org/10.4327/jsnfs.56.355

43. Yu L, Zhang Q, Zhou L, Wei Y, Li M, Wu X, et al. Ocular topical application of alpha-glucosyl hesperidin as an active pharmaceutical excipient: in vitro and in vivo experimental evaluation. Drug Deliv Translat Res. 2024;14(2):373−85. doi: https://doi.org/10.1007/s13346-023-01403-x

44. Yoshida H, Tsuhako R, Sugita C, Kurokawa M. Glucosyl hesperidin has an anti-diabetic effect in high-fat diet-induced obese mice. Biol Pharm Bull. 2021;44(3):422−30. doi: https://doi.org/10.1248/bpb.b20-00849

45. Bharathi BV, Jaya Prakash G, Krishna KM, Ravi Krishna CH, Sivanarayana T, Madan K, et al. Protective effect of alpha glucosyl hesperidin (G-hesperidin) on chronic vanadium induced testicular toxicity and sperm nuclear DNA damage in male Sprague Dawley rats. Andrologia. 2015;47(5):568−78. doi: https://doi.org/10.1111/and.12304

46. Nishida T, Horita C, Imagawa M, Hibarino M, Tateno S, Kubo Y, et al. Glucosyl hesperidin exhibits more potent anxiolytic activity than hesperidin accompanied by the attenuation of noradrenaline induction in a zebrafish model. Front Pharmacol. 2023;14:1213252. doi: https://doi.org/10.3389/fphar.2023.1213252

47. Yoshino F, Yoshida A, Toyama T, Wada-Takahashi S, Takahashi SS. α-Glucosyl hesperidin suppressed the exacerbation of 5-fluorouracil-induced oral mucositis in the hamster cheek pouch. J Funct Food. 2016;21:223−31. doi: https://doi.org/10.1016/j.jff. 2015.12.008

48. Kumrungsee T, Kariya T, Hashimoto K, Koyano T, Yazawa N, Hashimoto T, et al. The serum amyloid A3 promoter-driven luciferase reporter mice is a valuable tool to image early renal fibrosis development and shows the therapeutic effect of glucosyl hesperidin treatment. Sci Rep. 2019;9(1):14101. doi: https://doi.org/10.1038/s41598-019-50685-0

49. Uchiyama H, Tozuka Y, Asamoto F, Takeuchi H. α-Glucosyl hesperidin induced an improvement in the bioavailability of pranlukast hemihydrate using high-pressure homogenization. Int J Pharm. 2011;410(1−2):114−7. doi: https://doi.org/10.1016/j.ij pharm.2011.03.017

50. Nagashio Y, Matsuura Y, Miyamoto J, Kometani T, Suzuki T, Tanabe S. Hesperidin inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice by suppressing Th17 activity. J Funct Foods. 2013;5(4):1633−41. doi: https://doi.org/10. 1016/j.jff.2013.07.005

51. Kometani T, Fukuda T, Kakuma T, Kawaguchi K, Tamura W, Kumazawa Y, et al. Effects of α-glucosylhesperidin, a bioactive food material, on collagen-induced arthritis in mice and rheumatoid arthritis in humans. Immunopharmacol Immunotoxicol. 2008;30(1):117−34. doi: https://doi.org/10.1080/08923970701812688

52. Ota-Kontani A, Hirata H, Ogura M, Tsuchiya Y, Harada-Shiba M. Comprehensive analysis of mechanism underlying hypouricemic effect of glucosyl hesperidin. Biochem Biophys Res Commun. 2020;521(4):861−7. doi: https://doi.org/10.1016/j.bbrc.2019.10.199

53. Nagayama S, Aoki K, Komine S, Arai N, Endo S, Ohmori H. Improvement of low-intensity long-time running performance in rats by intake of glucosyl hesperidin. Physiol Rep. 2023;11(2):e15413. doi: https://doi.org/10.14814/phy2.15413

54. Chiba H, Uehara M, Wu J, Wang X, Masuyama R, Suzuki K, et al. Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice. J Nutr. 2003;133(6):1892−7.

55. Yoshikawa Y, Suzuki M, Yamada N, Yoshikawa K. Double-strand break of giant DNA: protection by glucosyl-hesperidin as evidenced through direct observation on individual DNA molecules. FEBS Lett. 2004;566(1−3):39−42. doi: https://doi.org/10.1016/j.febslet. 2004.04.008

56. Masaki M, Shimada Y, Takeda T, Aso H, Nakamura T. Inhibitory effect of organo-germanium compound 3-(trihydroxygermyl) propanoic acid on fructose-induced glycation of amino compounds. Carbohydr Res. 2024;542:109191. doi: https://doi.org/10.1016/j.carres.2024.109191

57. Matsumoto S, Hashimoto T, Ushio C, Namekawa K, Richards AB. Glucosyl hesperidin: safety studies. Fundam Toxicol Sci. 2019;6(8):299−317. doi: https://doi.org/10.2131/fts.6.299

58. Gyenge EB, Hettwer S, Schoeffel L, Suter B, Obermayer B. The invisible threat for hair and scalp. SOFW J. 2022;148:1−6.

59. CAA. Foods with functional claims. Food Labeling Act No. 70, Consumer Affairs Agency of Japan; 2013. doi: https://doi.org/10.1017/jns.2016.41

60. MFDS. Enzymatically modified hesperidin. Food Additive Code, Regulation No. 2019-63. Ministry of Food and Drug Safety of Korea; 2019.

61. FDA. Glucosyl hesperidin. List of raw materials available for food use. Taiwan: Food and Drug Administration; 1975.

62. EFSA. Safety of glucosyl hesperidin as a novel food pursuant to Regulation (EU) 2015/2283. European Food Safety Authority. EFSA J. 2024;22(8):e8911. doi: https://doi.org/10.2903/j.efsa.2024.8911

63. Miwa Y, Yamada M, Sunayama T, Mitsuzumi H, Tsuzaki Y, Chaen H, et al. Effects of glucosyl hesperidin on serum lipids in hyperlipidemic subjects: preferential reduction in elevated serum triglyceride level. J Nutr Sci Vitaminol. 2004;50(3):211−8. doi: https://doi.org/10.3177/jnsv.50.211

64. Miwa Y, Mitsuzumi H, Sunayama T, Yamada M, Okada K, Kubota M, et al. Glucosyl hesperidin lowers serum triglyceride level in hypertriglyceridemic subjects through the improvement of very low-density lipoprotein metabolic abnormality. J Nutr Sci Vitaminol. 2005;51(6):460−70. doi: https://doi.org/10.3177/jnsv.51.460

65. Yoshitani K, Minami T, Takumi H, Kagami Y, Shiraishi K, Kometani T. Effect of α-glucosyl hesperidin on poor circulation in women. J Jpn Soc Nutr Food Sci. 2008;61(5):233−9. doi: https://doi.org/10.4327/jsnfs.61.233

66. Tanaka Y, Imatomi H, Takihara T, Abe Y, Takano K, Usuda S, et al. Effects of glucosyl hesperidin on serum triglyceride and its safety in beverage. Jpn Pharmacol Ther. 2010;38(6):553−68.

67. Ohara T, Muroyama K, Yamamoto Y, Murosaki S. Oral intake of a combination of glucosyl hesperidin and caffeine elicits an anti-obesity effect in healthy, moderately obese subjects: a randomized double-blind placebo-controlled trial. Nutr J. 2016;15:6. doi: https://doi.org/10.1186/s12937-016-0123-7

68. Morishita N, Ogihara S, Endo S, Mitsuzumi H, Ushio S. Effects of glucosyl hesperidin on skin blood flow and temperature: a randomized, double-blind, placebo-controlled, crossover study. Shinryo Shinyaku. 2020;57:129−34.

69. Katada S, Oishi S, Yanagawa K, Ishii S, Oki M, Matsui Y, et al. Concomitant use of tea catechins affects absorption and serum triglyceride-lowering effects of monoglucosyl hesperidin. Food Funct. 2021;12(19):9339−46. doi: https://doi.org/10.1039/D1FO01917A

70. Nishimura N, Iwase S, Takumi H, Yamamoto K. Gravity-induced lower-leg swelling can be ameliorated by ingestion of α-glucosyl hesperidin beverage. Front Physiol. 2021;12: 670640. doi: https://doi.org/10.3389/fphys.2021.670640

71. Yoshitomi R, Yamamoto M, Kumazoe M, Fujimura Y, Yonekura M, Shimamoto Y, et al. The combined effect of green tea and α-glucosyl hesperidin in preventing obesity: a randomized placebo-controlled clinical trial. Sci Rep. 2021;11(1):19067. doi: https://doi.org/10.1038/s41598-021-98612-6

72. Moriwaki M, Abe A, Kapoor MP, Yamaguchi A, Okamoto S, Ozeki M. Hesperetin-7-glucoside-β-cyclodextrin inclusion complex is associated with improvement in vascular endothelial function, and mental and physical health in healthy subjects: a randomized, parallel, double-blind, and placebo-controlled study. Med Cons New − Remed. 2023;60(8):449−57.

73. Moriya K, Asada K, Suzuki S, Enomoto M, Fujinaga Y, Tsuji Y, et al. Benefit of glucosyl hesperidin in patients with primary biliary cholangitis: a multi-center, open-label, randomized control study. Medicine. 2022;101(48):e32127. doi: https://doi.org/10.1097/MD.0000000000032127

74. Hashizume Y, Tandia M. The beneficial effects of mono-glucosyl hesperidin and monoglucosyl rutin on vascular flexibility: a randomized, placebo-controlled, double-blind, parallel-group study. Funct Food Health Dis. 2024;14(5):346−65. doi: https://doi.org/10.31989/ffhd.v14i5.1319

Article Metrics
39 Views 10 Downloads 49 Total

Year

Month

Related Search

By author names