Adipogenesis research often necessitates lengthy induction protocols and intricate biochemical assays to assess lipid accumulation, posing challenges for rapid screening of substances affecting fat cell formation. The purpose of this study is to present a novel, expedited approach utilizing L929 cells and image-based analysis to evaluate the adipogenic response to (-)-epigallocatechin gallate (EGCG). The L929 cells, known for their spontaneous adipocyte differentiation potential, were selected as an alternative to the conventional 3T3-L1 cell model. Unlike 3T3-L1 cells, which require a 10–14-day induction period, L929 cells differentiated into mature adipocytes within just 5 days, significantly reducing the processing time. Our results demonstrate that L929 cells exhibit greater sensitivity to EGCG compared to 3T3-L1 cells, with a dose-dependent decrease in viability observed after 72 hours of exposure. Despite this difference in sensitivity, both cell types displayed consistent anti-adipogenic responses and gene expression trends when treated with EGCG. Specifically, EGCG treatment resulted in the downregulation of adipogenic genes such as PPARγ, C/EBPα, aP2, and Pref-1, indicating a similar mechanism of action in both cell lines. The image-based assay employed in this study enabled precise quantification of cellular parameters, facilitating objective and reproducible assessments of adipogenic responses without the need for biochemical evaluation of lipid accumulation. Our findings suggest that the combined use of L929 cells and image-based analysis provides a reliable, cost-effective, and time-efficient method for preliminary screening of anti-adipogenic substances. This streamlined approach holds promise for advancing adipogenesis research by offering a practical alternative to traditional methods while maintaining robust and reproducible results.
Inthanon K, Sririwichitchai R, Davies NM. Rapid screening of adipogenic responses to EGCG in non-induced L929 adipocytes using image-based analysis compared to the conventional 3T3-L1 method. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.220047
1. Mejia-Meza EI, Yanez JA, Remsberg CM, Takemoto JK, Davies NM, Rasco B, et al. Effect of dehydration on raspberries: polyphenol and anthocyanin retention, antioxidant capacity, and antiadipogenic activity. J Food Sci. 2010;75(1):H5-H12. https://doi.org/10.1111/j.1750-3841.2009.01383.x | |
2. Takemoto JK, Remsberg CM, Davies NM. Pharmacologic activities of 3'-hydroxypterostilbene: cytotoxic, anti-oxidant, anti-adipogenic, anti-inflammatory, histone deacetylase and sirtuin 1 inhibitory activity. J Pharm Sci. 2015;18(4):713-27. https://doi.org/10.18433/J33W4C | |
3. Bahmad HF, Daouk R, Azar J, Sapudom J, Teo JC, Abou-Kheir W, et al. Modeling adipogenesis: current and future perspective. Cells. 2020;9(10):2326. https://doi.org/10.3390/cells9102326 | |
4. Maier-Hein L, Eisenmann M, Reinke A, Onogur S, Stankovic M, Scholz P, et al. Why rankings of biomedical image analysis competitions should be interpreted with care. Nat Commun. 2018;9(1):5217. https://doi.org/10.1038/s41467-018-07619-7 | |
5. Mori E, Fujikura J, Noguchi M, Nakao K, Matsubara M, Sone M, et al. Impaired adipogenic capacity in induced pluripotent stem cells from lipodystrophic patients with BSCL2 mutations. Metabolism. 2016;65(4):543-56. https://doi.org/10.1016/j.metabol.2015.12.015 | |
6. Sririwichitchai R, Saiai A, Inthanon K, Chomdej S, Wongkham W, Roongruangwongse W. Anti-adipogenesis activities of Zingiber cassumunar Roxb. rhizome extracts on L929 cells evaluated by image-based analysis. Vet Integr Sci. 2018;16(2):35-51. | |
7. Paul T, Apte KG, Parab PB, Das B. Role of Adiantum philippense L. on glucose uptake in isolated pancreatic cells and inhibition of adipocyte differentiation in 3T3-L1 cell line. Pharmacogn Mag. 2017;13(Suppl 2):S334. https://doi.org/10.4103/pm.pm_415_16 | |
8. Theerakittayakorn K, Bunprasert T. Differentiation capacity of mouse L929 fibroblastic cell line compare with human dermal fibroblast. Int J Med Sci. 2011;5(2):51-4. | |
9. Jakab J, Miški? B, Mikši? Š, Jurani? B, ?osi? V, Schwarz D, et al. Adipogenesis as a potential anti-obesity target: a review of pharmacological treatment and natural products. Diabetes Metab Syndr Obes. 2021 Jan 8;14:67-83. https://doi.org/10.2147/DMSO.S281186 | |
10. Peng H, Lin X, Wang Y, Chen J, Zhao Q, Chen S, et al. Epigallocatechin gallate suppresses mitotic clonal expansion and adipogenic differentiation of preadipocytes through impeding JAK2/STAT3-mediated transcriptional cascades. Phytomedicine. 2024;129:155563. https://doi.org/10.1016/j.phymed.2024.155563 | |
11. Zhang Z, Jia Y, Zhang C, Zhang Z, Jin F, Pan D, et al. Efficacy of epigallocatechin gallate (EGCG) and its underlying mechanism in preventing bisphenol-A-induced metabolic disorders in mice. J Hazard Mater. 2024;469:134098. https://doi.org/10.1016/j.jhazmat.2024.134098 | |
12. Jeney F, Bazsó-Dombi E, Oravecz K, Szabó J, Nagy IZ. Cytochemical studies on the fibroblast-preadipocyte relationships in cultured fibroblast cell lines. Acta Histochem. 2000;102(4):381-9. https://doi.org/10.1078/0065-1281-00567 | |
13. Van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237-45. https://doi.org/10.1007/978-1-61779-080-5_20 | |
14. Sakuma M. Probit analysis of preference data. Appl Entomol Zoolog. 1998;33(3):339-47. https://doi.org/10.1303/aez.33.339 | |
15. Wong-a-nan N, Inthanon K, Saiai A, Inta A, Nimlamool W, Chomdej S, et al. Lipogenesis inhibition and adipogenesis regulation via PPARγ pathway in 3T3-L1 cells by Zingiber cassumunar Roxb. rhizome extracts. EJBAS. 2018;5(4):289-97. https://doi.org/10.1016/j.ejbas.2018.09.001 | |
16. Kinkel AD, Fernyhough ME, Helterline DL, Vierck JL, Oberg KS, Vance TJ, et al. Oil red-O stains non-adipogenic cells: a precautionary note. Cytotechnology. 2004;46:49-56. https://doi.org/10.1007/s10616-004-3903-4 | |
17. Li Y, Sair AT, Zhao W, Li T, Liu RH. Ferulic acid mediates metabolic syndrome via the regulation of hepatic glucose and lipid metabolisms and the insulin/IGF-1 receptor/Pi3K/AKT pathway in palmitate-treated HepG2 cells. J Agric Food Chem. 2022;70(46):14706-17. https://doi.org/10.1021/acs.jafc.2c05676 | |
18. Broeke J, Pérez J MM, Pascau J. Image processing with Image J. 2nd ed. Birmingham, UK: Packt Publishing Ltd; 2015. | |
19. Livak K J, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402-8. https://doi.org/10.1006/meth.2001.1262 | |
20. Matsumura K, Kim JY, Tsutsumi S, Hyon SH. Hibernation, reversible cell growth inhibition by epigallocatechin-3-O-gallate. J Biotech. 2007;127(4):758-64. https://doi.org/10.1016/j.jbiotec.2006.08.006 | |
21. Lao W, Tan Y, Jin X, Xiao L, Kim JJ, Qu X. Comparison of cytotoxicity and the anti-adipogenic effect of green tea polyphenols with epigallocatechin-3-gallate in 3T3-L1 preadipocytes. Am J Chin Med. 2015;43(6):1177-90. https://doi.org/10.1142/S0192415X15500676 | |
22. Lin J, Della-Fera MA, Baile CA. Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obes Res. 2005;13(6):982-90. https://doi.org/10.1038/oby.2005.115 | |
23. Bécsi B, Kónya Z, Boratkó A, Kovács K, Erd?di F. Epigallocatechine- 3-gallate inhibits the adipogenesis of human mesenchymal stem cells via the regulation of protein phosphatase-2A and myosin phosphatase. Cells. 2022;11(10):1704. https://doi.org/10.3390/cells11101704 | |
24. Chen CP, Su TC, Yang MJ, Chen WT, Siao AC, Huang LR. et al. Green tea epigallocatechin gallate suppresses 3T3-L1 cell growth via microRNA-143/MAPK7 pathways. EBM. 2022;247(18):1670-9. https://doi.org/10.1177/15353702221108925 | |
24. Rawat SG, Tiwari RK, Sonker P, Maurya RP, Vishvakarma NK, Kumar A. EGCG as anti-obesity and anticancer agent. Book: Obesity and Cancer. Berlin, Germany: Springer Nature; 2021. pp. 209-33. https://doi.org/10.1007/978-981-16-1846-8_11 | |
25. Rodriguez T, Rengifo E, Gavilondo J, Tormo B, Fernández A. Morphologic and cytochemical study of L929 cell variants with different metastasizing ability in C3HA/Hab mice. Neoplasma. 1984;31(3):271-9. | |
26. Wu M, Liu D, Zeng R, Xian T, Lu Y, Zeng G, et al. Epigallocatechin- 3-gallate inhibits adipogenesis through down-regulation of PPARγ and FAS expression mediated by PI3K-AKT signaling in 3T3-L1 cells. Eur J Pharmacol. 2017;795:134-42. https://doi.org/10.1016/j.ejphar.2016.12.006 | |
27. Wu R, Yao Y, Jiang Q, Cai M, Liu Q, Wang Y, et al. Epigallocatechin gallate targets FTO and inhibits adipogenesis in an mRNA m6A-YTHDF2-dependent manner. Int J Obes (Lond). 2018;42(7):1378- 88. https://doi.org/10.1038/s41366-018-0082-5 | |
28. Green H. U.S. Patent No. 4,003,789. Washington, DC: U.S. Patent and Trademark Office; 1977, p. 697. | |
29. Chen B, Zhang W, Lin C, Zhang L. A comprehensive review on beneficial effects of catechins on secondary mitochondrial diseases. Int J Mol Sci. 2022;23(19):11569. https://doi.org/10.3390/ijms231911569 | |
30. Mokra D, Joskova M, Mokry J. Therapeutic effects of green tea polyphenol (-) -epigallocatechin-3-Gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. Int J Mol Sci. 2022;24(1):340. https://doi.org/10.3390/ijms24010340 | |
31. Ouyang J, Zhu K, Liu Z, Huang J. Prooxidant effects of epigallocatechin-3-gallate in health benefits and potential adverse effect. Oxid Med Cell Longev. 2020;1:9723686. https://doi.org/10.1155/2020/9723686 | |
32. Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese. Biomed Pharmacother. 2021;137:111315. https://doi.org/10.1016/j.biopha.2021.111315 | |
33. Czech MP. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol Metab. 2020;34:27-42. https://doi.org/10.1016/j.molmet.2019.12.014 | |
34. Henne WM, Reese ML, Goodman JM. The assembly of lipid droplets and their roles in challenged cells. EMBO J. 2018;37(12):e98947. https://doi.org/10.15252/embj.201898947 | |
35. Remsberg CM, Martinez SE, Akinwumi BC, Anderson HD, Takemoto JK, Sayre CL, et al. Preclinical pharmacokinetics and pharmacodynamics and content analysis of gnetol in foodstuffs. Phytother Res. 2015;29(8):1168-79. https://doi.org/10.1002/ptr.5363 | |
36. Brownstein AJ, Veliova M, Acin-Perez R, Villalobos F, Petcherski A, Tombolato A, et al. Mitochondria isolated from lipid droplets of white adipose tissue reveal functional differences based on lipid droplet size. Life Sci Alliance. 2024;7(2):e202301934. https://doi.org/10.26508/lsa.202301934 | |
37. Bosch M, Parton RG, Pol A. Lipid droplets, bioenergetic fluxes, and metabolic flexibility. Semin Cell Biol. 2020;108:33-46. https://doi.org/10.1016/j.semcdb.2020.02.010 | |
38. Veliova M, Petcherski A, Liesa M, Shirihai OS. The biology of lipid droplet-bound mitochondria. Semin Cell Dev Biol. 2020;108:55-64. https://doi.org/10.1016/j.semcdb.2020.04.013 | |
39. Sun C, Mao S, Chen S, Zhang W, Liu C. PPARs-orchestrated metabolic homeostasis in the adipose tissue. Int J Mol Sci. 2021;22(16):8974. https://doi.org/10.3390/ijms22168974 | |
40. Sul HS, Smas C, Mei B, Zhou L. Function of pref-1 as an inhibitor of adipocyte differentiation. Int J Obes Relat Metab Disord. 2000;24 Suppl 4:S15-9. https://doi.org/10.1038/sj.ijo.0801494 | |
41. Lee MS, Kim CT, Kim Y. Green tea (-)-epigallocatechin-3-gallate reduces body weight with regulation of multiple genes expression in adipose tissue of diet-induced obese mice. Ann Nutr Metab. 2009;54(2):151-7. https://doi.org/10.1159/000214834 | |
42. Wang Y, Kim KA, Kim JH, Sul HS. Pref-1, a preadipocyte secreted factor that inhibits adipogenesis. J Nutr. 2006;136(12):2953-6. https://doi.org/10.1093/jn/136.12.2953 | |
43. Gu Q, Xia L, Du Q, Shao Y, He J, Wu P, et al. The therapeutic role and potential mechanism of EGCG in obesity-related precocious puberty as determined by integrated metabolomics and network pharmacology. Front Endocrinol. 2023;14:1159657. https://doi.org/10.3389/fendo.2023.1159657 | |
44. Tahri-Joutey M, Andreoletti P, Surapureddi S, Nasser B, Cherkaoui- Malki M, Latruffe N. Mechanisms mediating the regulation of peroxisomal fatty acid beta-oxidation by PPARα. Int J Mol Sci. 2021;22(16):8969. https://doi.org/10.3390/ijms22168969 | |
45. Faria A, Pereira-Wilson C, Negrão R. The relevance of polyphenols in obesity therapy. In Monteiro R (Ed.), Martins MJ (Co-Ed.). Recent advances in obesity: understanding obesity - from its origins to impact on life. Bentham Science Publishers; 2020. pp. 271-307. https://doi.org/10.2174/9789811442636120010014 | |
46. Lee K, Villena JA, Moon YS, Kim KH, Lee S, Kang C, et al. Inhibition of adipogenesis and development of glucose intolerance by soluble preadipocyte factor-1 (Pref-1). J Clin Invest. 2003;111(4):453-61. https://doi.org/10.1172/JCI15924 | |
47. Furuyashiki T, Nagayasu H, Aoki Y, Bessho H, Hashimoto T, Kanazawa K, et al. Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARγ2 and C/EBPα in 3T3-L1 cells. Biosci Biotechnol Biochem. 2004;68(11):2353-9. https://doi.org/10.1271/bbb.68.2353 | |
48. Chen N, Bezzina R, Hinch E, Lewandowski PA, Cameron-Smith D, Mathai ML, et al. Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet. Nutr Res. 2009;29(11):784-93. https://doi.org/10.1016/j.nutres.2009.10.003 | |
49. Dobson ET, Cimini B, Klemm AH, Wählby C, Carpenter AE, Eliceiri KW. ImageJ and CellProfiler: complements in open-source bioimage analysis. Curr Protoc. 2021;1(5):e89. https://doi.org/10.1002/cpz1.89 | |
50. Caicedo JC, Cooper S, Heigwer F, Warchal S, Qiu P, Molnar C, et al. Data-analysis strategies for image-based cell profiling. Nat Methods. 2017;14(9):849-63. https://doi.org/10.1038/nmeth.4397 |
Year
Month