Mechanism of action of Indonesian medicinal plants in inhibiting 3T3-L1 adipocyte differentiation: A review

Eko Fuji Ariyanto Farhan Wirajati Putri Halleyana Rahman Afiat Berbudi Enny Rohmawaty   

Open Access   

Published:  Jan 03, 2023

DOI: 10.7324/JAPS.2023.6711
Abstract

Obesity is one of the most serious health problems worldwide, including in Indonesia. One of the strategies to inhibit obesity is modulating adipogenesis, as obesity is associated with the dysregulation of adipogenesis. Adipogenesis is mainly influenced by peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha; hence, substances that can inhibit the expression of both transcription factors can be key in obesity management. This review aims to elaborate upon Indonesian medicinal plants that can inhibit adipogenesis in 3T3-L1 adipocytes and their mechanism of action. Original research articles published in 2016–2020 and obtained from PubMed and CINAHL databases were included in this study. From 226 articles, 5 Indonesian medicinal plants (Catharanthus roseus, Chromolaena odorata, Lagerstroemia speciosa, Oroxylum indicum, and Spiranthes sinensis) have been identified to have an inhibitory effect on 3T3-L1 adipogenesis, by suppressing the induction of Pparg, Cebpa, and other adipogenic and lipid metabolism-related genes. Further research is required to identify the responsible chemical compounds that yield this effect and to elaborate on the mechanisms by which these compounds inhibit the induction of adipogenic genes.


Keyword:     3T3-L1 cells adipogenesis C/EBPα Indonesian medicinal plants PPARγ Obesity


Citation:

Ariyanto EF, Wirajati F, Rahman PH, Berbudi A, Rohmawaty E. Mechanism of action of Indonesian medicinal plants in inhibiting 3T3-L1 adipocyte differentiation: A review. J Appl Pharm Sci, 2023. https://doi.org/10.7324/JAPS.2023.6711

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular mechanisms of adipogenesis: the anti-adipogenic role of AMP-activated protein kinase. Front Mol Biosci, 2020; 7:76. https://doi.org/10.3389/fmolb.2020.00076

Ali AT, Hochfeld WE, Myburgh R, Pepper MS. Adipocyte and adipogenesis. Eur J Cell Biol, 2013; 92(6-7):229-36. https://doi.org/10.1016/j.ejcb.2013.06.001

Arner P. 2018. Fat tissue growth and development in humans. In: Colombo J, Koletzko B, Lampl M, ed. Recent research in nutrition and growth. Basel, Switzerland: Karger Publishers 37-45. https://doi.org/10.1159/000486491

Astapova O, Leff T. Adiponectin and PPARγ: cooperative and interdependent actions of two key regulators of metabolism. Vitam Horm, 2012; 90:143-62. https://doi.org/10.1016/B978-0-12-398313-8.00006-3

Borah AK, Singh A, Yasmin R, Doley R, Mattaparthi VSK, Saha S. 1α, 25-dihydroxy Vitamin D3 containing fractions of Catharanthus roseus leaf aqueous extract inhibit preadipocyte differentiation and induce lipolysis in 3T3-L1 cells. BMC Complement Altern Med, 2019; 19(1):338. https://doi.org/10.1186/s12906-019-2754-7

Chang E, Kim CY. Natural products and obesity: a focus on the regulation of mitotic clonal expansion during adipogenesis. Molecules, 2019; 24(6):1157. https://doi.org/10.3390/molecules24061157

Dev LR, Anurag M, Rajiv G. Oroxylum indicum: a review. Pharmacogn J, 2010; 2(9):304-10. https://doi.org/10.1016/S0975-3575(10)80121-X

Elfahmi, Woerdenbag HJ, Kayser O. Jamu: Indonesian traditional herbal medicine towards rational phytopharmacological use. J Herb Med, 2014; 4(2):51-73. https://doi.org/10.1016/j.hermed.2014.01.002

Fan J, Huang MY. Chloroplast genome structure and phylogeny of Spiranthes sinensis, an endangered medicinal orchid plant. Mitochondrial DNA B Resour, 2019; 4(2):2994-6. https://doi.org/10.1080/23802359.2019.1664345

Harminder, Singh V, Chaudhary AK. A review on the taxonomy, ethnobotany, chemistry and pharmacology of Oroxylum indicum vent. Indian J Pharm Sci, 2011; 73(5):483-90. https://doi.org/10.4103/0250-474X.98981

Hengpratom T, Ngernsoungnern A, Ngernsoungnern P, Lowe GM, Eumkeb G. Antiadipogenesis of Oroxylum indicum (L.) Kurz extract via PPAR γ 2 in 3T3-L1 adipocytes. Evid Based Complement Altern Med, 2020; 2020:6720205. https://doi.org/10.1155/2020/6720205

Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics, 2015; 33(7):673-89. https://doi.org/10.1007/s40273-014-0243-x

Hwang CS, Loftus T, Mandrup S, Lane M. Adipocyte differentiation and leptin expression. Annu Rev Cell Dev Biol, 1997; 13:231-59. https://doi.org/10.1146/annurev.cellbio.13.1.231

Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest, 2019; 129(10):3990-4000. https://doi.org/10.1172/JCI129187

Karnati M, Chandra RH, Veeresham C, Kishan B. Anti-arthritic activity of root bark of Oroxylum indicum (L.) vent against adjuvant-induced arthritis. Pharmacognosy Res, 2013; 5(2):121-8. https://doi.org/10.4103/0974-8490.110543

Karsono AH, Tandrasasmita OM, Tjandrawinata RR. Bioactive fraction from Lagerstroemia speciosa leaves (DLBS3733) reduces fat droplet by inhibiting adipogenesis and lipogenesis. J Exp Pharmacol, 2019; 11:39-51. https://doi.org/10.2147/JEP.S181642

Koduru RL, Babu PS, Varma IV, Kalyani GG, Nirmala P. A review on Lagerstroemia speciosa. Int J Pharm Sci Res, 2017; 8(11):4540- 5.

Koh YK, Lee MY, Kim JW, Kim M, Moon JS, Lee YJ, Ahn YH, Kim KS. Lipin1 is a key factor for the maturation and maintenance of adipocytes in the regulatory network with CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma 2. J Biol Chem, 2008; 283(50):34896-906. https://doi.org/10.1074/jbc.M804007200

Kumkarnjana S, Suttisri R, Nimmannit U, Sucontphunt A, Khongkow M, Koobkokkruad T, Vardhanabhuti N. Flavonoids kaempferide and 4,2′-dihydroxy-4′,5′,6′-trimethoxychalcone inhibit mitotic clonal expansion and induce apoptosis during the early phase of adipogenesis in 3T3-L1 cells. J Integr Med, 2019; 17(4):288-95. https://doi.org/10.1016/j.joim.2019.04.004

Lessard J, Tchernof A. Depot- and obesity-related differences in adipogenesis. Clin Lipidol, 2012; 7(5):587-96. https://doi.org/10.2217/clp.12.49

Lim JU, Lee JH, Kim JS, Hwang YI, Kim TH, Lim SY, Yoo KH, Jung KS, Kim YK, Rhee CK. Comparison of World Health Organization and Asia-Pacific body mass index classifications in COPD patients. Int J Chron Obstruct Pulmon Dis, 2017; 12:2465-75. https://doi.org/10.2147/COPD.S141295

Liu J, Li CY, Yuan Z, Yang L, Li YF. Chemical constituents from Spiranthes sinensis. Biochem Syst Ecol, 2013; 47:108-110. https://doi.org/10.1016/j.bse.2012.11.001

Liu Y, Sun M, Yao H, Liu Y, Gao R. Herbal medicine for the treatment of obesity: an overview of scientific evidence from 2007 to 2017. Evid Based Complement Altern Med, 2017; 2017:8943059. https://doi.org/10.1155/2017/8943059

Mangal P, Khare P, Jagtap S, Bishnoi M, Kondepudi KK, Bhutani KK. Screening of six ayurvedic medicinal plants for anti-obesity potential: an investigation on bioactive constituents from Oroxylum indicum (L.) Kurz bark. J Ethnopharmacol, 2017; 197:138-46. https://doi.org/10.1016/j.jep.2016.07.070

Moseti D, Regassa A, Kim WK. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int J Mol Sci, 2016; 17(1):1-24. https://doi.org/10.3390/ijms17010124

Mota de Sá P, Richard AJ, Hang H, Stephens JM. Transcriptional regulation of adipogenesis. Compr Physiol, 2017; 7(2):635-74. https://doi.org/10.1002/cphy.c160022

Mousa AM, El-Sammad NM, Abdel-Halim AH, Anwar N, Khalil WKB, Nawwar M, Hashim AN, Elsayed EA, Hassan SK. Lagerstroemia speciosa (L.) Pers leaf extract attenuates lung tumorigenesis via alleviating oxidative stress, inflammation and apoptosis. Biomolecules, 2019; 9(12):871. https://doi.org/10.3390/biom9120871

Nejat N, Valdiani A, Cahill D, Tan Y-H, Maziah M, Abiri R. Ornamental exterior versus therapeutic interior of Madagascar periwinkle (Catharanthus roseus): the two faces of a versatile herb. Sci World J, 2015; 2015:982412. https://doi.org/10.1155/2015/982412

Nurcahyanti ADR, Arieselia Z, Kurniawan SV, Sofyan F, Wink M. Revisiting Bungur (Lagerstroemia speciosa) from Indonesia as an antidiabetic agent, its mode of action, and phylogenetic position. Pharmacogn Rev, 2018; 12(23):40-45. https://doi.org/10.4103/phrev.phrev_20_17

Pace MC, Giraldo G, Frericks J, Lehnebach CA, Cameron KM. Illuminating the systematics of the Spiranthes sinensis species complex (Orchidaceae): ecological speciation with little morphological differentiation. Bot J Linn Soc, 2019; 189(1):36-62. https://doi.org/10.1093/botlinnean/boy072

Padmanaba M, Tomlinson KW, Hughes AC, Corlett RT. Alien plant invasions of protected areas in Java, Indonesia. Sci Rep, 2017; 7(1):1-11. https://doi.org/10.1038/s41598-017-09768-z

Rasadah MA. Oroxylum indicum (L.) Kurz. In: van Valkenburg JLCH, Bunyapraphatsara N (eds.). Plant resources of South-East Asia No 12(2): medicinal and poisonous plants 2, PROSEA Foundation, Bogor, Indonesia. Database record: prota4u.org/prosea. 2001. [Online] Available via https://www.prota4u.org/prosea/view.aspx?id=1215 (Accessed 28 July 2020).

Riskesdas Basic Health Study of Indonesia 2013. 2013. [Online] Available via https://www.kemkes.go.id/resources/download/general/ HasilRiskesdas2013.pdf (Accessed 25 June 2020).

Riskesdas Basic Health Study of Indonesia 2018. 2018. [Online] Available via http://kesmas.kemkes.go.id/assets/upload/ dir_519d41d8cd98f00/files/Hasil-riskesdas-2018_1274.pdf (Accessed 25 June 2020).

Rohit Singh T, Ezhilarasan D. Ethanolic extract of Lagerstroemia speciosa (L.) Pers., induces apoptosis and cell cycle arrest in HepG2 cells. Nutr Cancer, 2020; 72(1):146-56. https://doi.org/10.1080/01635581.2019.1616780

Sarjeant K, Stephens JM. Adipogenesis. Cold Spring Harb Perspect Biol, 2012; 4(9):a008417. https://doi.org/10.1101/cshperspect.a008417

Shie PH, Yang CP, Huang GJ, Wang SY, Kuo YH. Sinensol-C isolated from Spiranthes sinensis inhibits adipogenesis in 3T3-L1 cells through the regulation of adipogenic transcription factors and AMPK activation. Molecules, 2020; 25(18):4204. https://doi.org/10.3390/molecules25184204

Stern JH, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab, 2016; 23(5):770-84. https://doi.org/10.1016/j.cmet.2016.04.011

Vijayaraghavan K, Rajkumar J, Bukhari SNA, Al-Sayed B, Seyed MA. Chromolaena odorata: a neglected weed with a wide spectrum of pharmacological activities (Review). Mol Med Rep, 2017; 15(3):1007-16. https://doi.org/10.3892/mmr.2017.6133

World Health Organization. Obesity. 2022. [Online] Available via https://www.who.int/southeastasia/health-topics/obesity (Accessed 25 June 2020).

Xu L, Zhao W, Wang D, Ma X. Chinese medicine in the battle against obesity and metabolic diseases. Front Physiol, 2018; 9:850. https://doi.org/10.3389/fphys.2018.00850

Zebisch K, Voigt V, Wabitsch M, Brandsch M. Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal Biochem, 2012; 425(1):88-90. https://doi.org/10.1016/j.ab.2012.03.005

Article Metrics

0 Absract views 2 PDF Downloads 2 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required
Similar Articles


Warning: mysqli_fetch_array() expects parameter 1 to be mysqli_result, bool given in /home/japsonli/public_html/articlemodule/database.php on line 426

Warning: mysqli_fetch_array() expects parameter 1 to be mysqli_result, bool given in /home/japsonli/public_html/articlemodule/database.php on line 426
Perception of weight and weight management practices among students of a tertiary institution in south west NigeriaOlubukola. R Olaoye, Olubukola. O. Oyetunde