Overcoming multifaceted challenges in cancer treatment: Targeting signal transduction pathways and tumor microenvironment for enhanced therapeutic efficacy

Abdul Majeed Ansari Naresh Kumar Sharma Kashinath Tripathi Gautam Bhardwaj Ritu Chauhan Rajiv Kumar Tonk Moyad Shahwan Hardeep Singh Tuli Abhishek Chauhan   

Open Access   

Published:  Feb 10, 2025

DOI: 10.7324/JAPS.2025.204012
Abstract

Cancer, a leading global cause of mortality, persists despite extensive research. While progress, notably in protein kinase-modulating drugs, is evident, a definitive cure remains elusive due to multifaceted challenges. This article discusses diverse approaches in cancer treatment, recognizing its complexity. Key hurdles include cancer progression stages, the intricate tumor microenvironment, drug resistance, pharmacodynamics, tumor hypoxia, and compromised immunity. Signal transduction pathways are crucial in cancer progression and resistance, particularly in immune regulation, hypoxia response, and autophagy. Understanding and targeting these pathways are vital for developing novel therapies. By elucidating the interplay between immunity, signaling, and therapeutics, researchers seek to overcome treatment obstacles. A comprehensive approach offers hope for improved outcomes and breakthroughs in cancer management.


Keyword:     Autophagy drug resistance hypoxia immune regulation signal transduction tumor microenvironment


Citation:

Ansari AM, Sharma NK, Tripathi KN, Bhardwaj G, Chauhan R, Tonk RK, Shahwan M, Tuli HS, Chauhan A. Overcoming multifaceted challenges in cancer treatment: Targeting signal transduction pathways and tumor microenvironment for enhanced therapeutic efficacy. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.204012

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Wozniak AJ, Glisson BS, Ross WE, Hande KR. Inhibition of Etoposide-induced DNA damage and cytotoxicity in L1210 cells by dehydrogenase inhibitors and other agents Cancer Res. 1984;44(2):626–32.

2. Sasabe E, Tatemoto Y, Li D, Yamamoto T, Osaki T. Mechanism of HIF-1α-dependent suppression of hypoxia-induced apoptosis in squamous cell carcinoma cells. Cancer Sci. 2005;96(7):394–402. doi: https://doi.org/10.1111/j.1349-7006.2005.00065.x

3. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14. doi: https://doi.org/10.1126/science.123.3191.309

4. Kaczanowski S. Apoptosis: its origin, history, maintenance and the medical implications for cancer and aging. Phys Biol. 2016;13(3), 031001.

5. Cotter TG. Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer. 2009;9:501–7. doi: https://doi.org/10.1038/nrc2663

6. Patil M, Pabla N, Dong Z. Checkpoint kinase 1 in DNA damage response and cell cycle regulation. Cellul Mol Life Sci. 2013;70:4009–21. doi: https://doi.org/10.1007/s00018-013-1307-3

7. Hong Son B, Van Nga V, Thi Diem Hong L, Thi Quynh D. Potent natural inhibitors of Alpha-glucosidase and the application of Aspergillus spp. in diabetes type 2 drugs: a review. VNU J Sci Med Pharm Sci. 2022;38(1):002. doi: https://doi.org/10.25073/2588-1132/vnumps.4334

8. Olcina M, Lecane PS, Hammond EM. Targeting hypoxic cells through the DNA damage response. Clin Cancer Res. 2010;16(23):5624–9. doi: https://doi.org/10.1158/1078-0432.CCR-10-0286

9. Kelly KR, Friedberg JW, Park SI, McDonagh K, Hayslip J, Persky D, et al. Phase I study of the investigational aurora A kinase inhibitor alisertib plus rituximab or rituximab/vincristine in relapsed/refractory aggressive B-cell lymphoma. Clin Cancer Res. 2018;24(24):6150–9. doi: https://doi.org/10.1158/1078-0432.CCR-18-0286

10. Spaapen R, Van Den Oudenalder K, Ivanov R, Bloem A, Lokhorst H, Mutis T. Rebuilding human leukocyte antigen class II-restricted minor histocompatibility antigen specificity in recall antigen-specific T cells by adoptive T cell receptor transfer: implications for adoptive immunotherapy. Clin Cancer Res. 2007;13(13):4009–15. doi: https://doi.org/10.1158/1078-0432.CCR-07-0286

11. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017;387:61–8. doi: https://doi.org/10.1016/j.canlet.2016.01.043

12. Shao C, Yang F, Miao S, Liu W, Wang C, Shu Y, et al. Role of hypoxia-induced exosomes in tumor biology. Mol Cancer. 2018;17:120. doi: https://doi.org/10.1186/s12943-018-0869-y

13. Yang ZJ, Bi QC, Gan LJ, Zhang LL, Wei MJ, Hong T, et al. Exosomes derived from glioma cells under hypoxia promote angiogenesis through up-regulated exosomal connexin 43. Int J Med Sci. 2022;19(7):1205–15. doi: https://doi.org/10.7150/ijms.71912

14. Zhang W, Bai M, Liu K, Tan J, Ma J, Zhao J, et al. LncRNA surfactant associated 1 activates large tumor suppressor kinase 1/Yes-associated protein pathway via modulating hypoxic exosome-delivered miR-4766–5p to inhibit lung adenocarcinoma metastasis. Int J Biochem Cell Biol. 2022;153:106317. doi: https://doi.org/10.1016/j.biocel.2022.106317

15. Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, et al. Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: from biology to therapeutic targeting. Biochim Biophys Acta Mol Cell Res. 2016;1863(3):449–63. doi: https://doi.org/10.1016/j.bbamcr.2015.08.015

16. Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM. Exosome mediated communication within the tumor microenvironment. J Control Release. 2015;219:278–94. doi: https://doi.org/10.1016/j.jconrel.2015.06.029

17. Wu G, Ding X, Quan G, Xiong J, Li Q, Li Z, et al. Hypoxia-induced miR-210 promotes endothelial cell permeability and angiogenesis via exosomes in pancreatic ductal adenocarcinoma. Biochem Res Int. 2022;2022:Article ID 7752277. doi: https://doi.org/10.1155/2022/7752277

18. Mo F, Xu Y, Zhang J, Zhu L, Wang C, Chu X, et al. Effects of hypoxia and radiation-induced exosomes on migration of lung cancer cells and angiogenesis of umbilical vein endothelial cells. Radiat Res. 2020;194(1):71–80. doi: https://doi.org/10.1667/RR15555.1

19. Wigerup C, Påhlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther. 2016;164:152–69. doi: https://doi.org/10.1016/j.pharmthera.2016.04.009

20. Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer. 2011;11:393–410. doi: https://doi.org/10.1038/nrc3064

21. Nelson DA, Tan TT, Rabson AB, Anderson D, Degenhardt K, White E. Hypoxia and defective apoptosis drive genomic instability and tumorigenesis. Genes Dev. 2004;18:2095–107. doi: https://doi.org/10.1101/gad.1204904

22. Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM, Luddy K, et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 2016;76(6):1381–90. doi: https://doi.org/10.1158/0008-5472.CAN-15-1743

23. Sgarbi G, Gorini G, Liuzzi F, Solaini G, Baracca A. Hypoxia and IF1 expression promote ROS decrease in cancer cells. Cells. 2018;7(7):64. doi: https://doi.org/10.3390/cells7070064

24. Zhu X, Zuo L. Characterization of oxygen radical formation mechanism at early cardiac ischemia. Cell Death Dis. 2013;4:e787. doi: https://doi.org/10.1038/cddis.2013.313

25. Guzy RD, Hoyos B, Robin E, Simon MC, Hammerling U, Schumacker PT. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1(6):P401–8. doi: https://doi.org/10.1016/j.cmet.2005.05.001

26. Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev. 2016;2016:Article ID 3164734. doi: https://doi.org/10.1155/2016/3164734

27. Syu JP, Chi JT, Kung HN. Nrf2 is the key to chemotherapy resistance in MCF7 breast cancer cells under hypoxia. Oncotarget. 2016;7:14659–72. doi: https://doi.org/10.18632/oncotarget.7406

28. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):P549–55. doi: https://doi.org/10.1016/S1471-4906(02)02302-5

29. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced: MDSC-mediated T cell activation. J Exp Med. 2014;211(5):781–90. doi: https://doi.org/10.1084/jem.20131916

30. Zub KA, de Sousa MML, Sarno A, Sharma A, Demirovic A, Rao S, et al. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired Melphalan resistance in multiple myeloma cells. PLoS One. 2015;10(3):e0119857. doi: https://doi.org/10.1371/journal.pone.0119857

31. Triner D, Shah YM. Hypoxia-inducible factors: a central link between inflammation and cancer. J Clin Investig. 2016;126(10):3689–98. doi: https://doi.org/10.1172/JCI84430

32. Cummins EP, Oliver KM, Lenihan CR, Fitzpatrick SF, Bruning U, Scholz CC, et al. NF-κB Links CO2 Sensing to innate immunity and inflammation in mammalian cells. J Immunol. 2010;185(7):4439–45. doi: https://doi.org/10.4049/jimmunol.1000701

33. De la Garza MM, Cumpian AM, Daliri S, Castro-Pando S, Umer M, Gong L, et al. COPD-Type lung inflammation promotes K-ras mutant lung cancer through epithelial HIF-1α mediated tumor angiogenesis and proliferation. Oncotarget. 2018;9:32972–83. doi: https://doi.org/10.18632/oncotarget.26030

34. Naldini A, Filippi I, Miglietta D, Moschetta M, Giavazzi R, Carraro F. Interleukin-1β regulates the migratory potential of MDAMB231 breast cancer cells through the hypoxia-inducible factor-1α. Eur. J Cancer. 2010;46(18):PP3400–8. doi: https://doi.org/10.1016/j.ejca.2010.07.044

35. Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, et al. Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat. 2007;10(1-2):13–29. doi: https://doi.org/10.1016/j.drup.2007.01.003

36. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998;391:43–50. doi: https://doi.org/10.1038/34112

37. Mow BMF, Blajeski AL, Chandra J, Kaufmann SH. Apoptosis and the response to anticancer therapy. Curr Opin Oncol. 2001;13(6):453–62. doi: https://doi.org/10.1097/00001622-200111000-00007

38. Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med. 2000;6:513–9. doi: https://doi.org/10.1038/74994

39. Erler JT, Cawthorne CJ, Williams KJ, Koritzinsky M, Wouters BG, Wilson C, et al. Hypoxia-mediated down-regulation of bid and bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol Cell Biol. 2004;24(7):2875–89. doi: https://doi.org/10.1128/mcb.24.7.2875-2889.2004

40. Hunter FW, Young RJ, Shalev Z, Vellanki RN, Wang J, Gu Y, et al. Identification of P450 oxidoreductase as a major determinant of sensitivity to hypoxia-activated prodrugs. Cancer Res. 2015;75(19):4211–23. doi: https://doi.org/10.1158/0008-5472.CAN-15-1107

41. Cui XY, Tinholt M, Stavik B, Dahm AEA, Kanse S, Jin Y, et al. Effect of hypoxia on tissue factor pathway inhibitor expression in breast cancer. J Thromb Haemost. 2016;14(2):387–96. doi: https://doi.org/10.1111/jth.13206

42. Jögi A, Ehinger A, Hartman L, Alkner S. Expression of HIF-1α is related to a poor prognosis and tamoxifen resistance in contralateral breast cancer. PLoS One. 2019;14(12):e0226150. doi: https://doi.org/10.1371/journal.pone.0226150

43. Xiong G, Stewart RL, Chen J, Gao T, Scott TL, Samayoa LM, et al. Collagen prolyl 4-hydroxylase 1 is essential for HIF-1α stabilization and TNBC chemoresistance. Nat Commun. 2018;9:4456. doi: https://doi.org/10.1038/s41467-018-06893-9

44. Phillips RM, Hendriks HR, Peters GJ. EO9 (Apaziquone): from the clinic to the laboratory and back again. Br J Pharmacol. 2013;168(1):11–8. doi: https://doi.org/10.1111/j.1476-5381.2012.01996.x

45. Shukla SK, Purohit V, Mehla K, Gunda V, Chaika NV, Vernucci E, et al. MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer. Cancer Cell. 2017;32(3):392. doi: https://doi.org/10.1016/j.ccell.2017.08.008

46. Li CJ, Liao WT, Wu MY, Chu PY. New insights into the role of autophagy in tumor immune microenvironment. Int J Mol Sci. 2017;18(7):1566. doi: https://doi.org/10.3390/ijms18071566

47. Assi M, Kimmelman AC. Impact of context-dependent autophagy states on tumor progression. Nat Cancer. 2023;4:596–607. doi: https://doi.org/10.1038/s43018-023-00546-7

48. Singhal SK, Byun JS, Park S, Yan T, Yancey R, Caban A, et al. Kaiso (ZBTB33) subcellular partitioning functionally links LC3A/B, the tumor microenvironment, and breast cancer survival. Commun Biol. 2021;4:150. doi: https://doi.org/10.1038/s42003-021-01651-y

49. Yu S, Wang Y, Jing L, Claret FX, Li Q, Tian T, et al. Autophagy in the ‘inflammation-carcinogenesis’ pathway of liver and HCC immunotherapy. Cancer Lett. 2017;411:82–9. doi: https://doi.org/10.1016/j.canlet.2017.09.049

50. Meymandi ARP, Akbari B, Soltantoyeh T, Hadjati J, Klionsky DJ, Badie B, et al. Crosstalk between autophagy and metabolic regulation of (CAR) T cells: therapeutic implications. Front Immunol. 2023;14:1212695. doi: https://doi.org/10.3389/fimmu.2023.1212695

51. Liu A, Li Y, Shen L, Li N, Shen L, Li Z. Pan-cancer analysis of a novel indicator of necroptosis with its application in human cancer. Aging (Albany. NY). 2022;14(18):7587–616. doi: https://doi.org/10.18632/aging.204307

52. Xu W, Wei Q, Han M, Zhou B, Wang H, Zhang J, et al. CCL2-SQSTM1 positive feedback loop suppresses autophagy to promote chemoresistance in gastric cancer. Int J Biol Sci. 2018;14(9):1054–66. doi: https://doi.org/10.7150/ijbs.25349

53. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10(1):51–64. doi: https://doi.org/10.1016/j.ccr.2006.06.001

54. Rouschop KMA, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest. 2010;120:127–41. doi: https://doi.org/10.1172/JCI40027

55. Yang M, Zeng P, Kang R, Yu Y, Yang L, Tang D, et al. S100A8 Contributes to drug resistance by promoting autophagy in leukemia cells. PLoS One. 2014;9(5):e97242. doi: https://doi.org/10.1371/journal.pone.0097242

56. Goncharova EA, Goncharov DA, Eszterhas A, Hunter DS, Glassberg MK, Yeung RS, et al. Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation: a role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM). J Biol Chem. 2002;277(34):30958–67. doi: https://doi.org/10.1074/jbc.M202678200

57. Kwiatkowski DJ, Zhang H, Bandura JL, Heiberger KM, Glogauer M, el-Hashemite N, et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet. 2002;11(5):525–34. doi: https://doi.org/10.1093/hmg/11.5.525

58. Kenerson HL, Aicher LD, True LD, Yeung RS. Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. Cancer Res. 2002;62(20):5645–50.

59. Karbowniczek M, Yu J, Henske EP. Renal angiomyolipomas from patients with sporadic lymphangiomyomatosis contain both neoplastic and non-neoplastic vascular structures. Am J Pathol. 2003;162(2):491–500. doi: https://doi.org/10.1016/S0002-9440(10)63843-6

60. El-Hashemite N, Zhang H, Henske EP, Kwiatkowski DJ. Mutation in TSC2 and activation of mammalian target of rapamycin signalling pathway in renal angiomyolipoma. Lancet. 2003;361(9366):1348–9. doi: https://doi.org/10.1016/S0140-6736(03)13044-9

61. Curatolo P, Bjørnvold M, Dill PE, Ferreira JC, Feucht M, Hertzberg C, et al. The role of mTOR inhibitors in the treatment of patients with tuberous sclerosis complex: evidence-based and expert opinions.

Drugs. 2016;76:551–65. doi: https://doi.org/10.1007/s40265-016-0552-9

62. Pfirmann P, Combe C, Rigothier C. Tuberous sclerosis complex: a review. Revue de Med Interne. 2021;42(10):714–21. doi: https://doi.org/10.1016/j.revmed.2021.03.003

63. Bar C. Delmas J, Bessou P, Morice-Picard F, Pedespan JM. Sclérose tubéreuse de Bourneville: actualités et perspectives. Perfectionnement Pédiatr. 2022;5(3):213–20.

64. Crino PB. Molecular pathogenesis of tuber formation in tuberous sclerosis complex. J Child Neurol. 2004;19:716–25. doi: https://doi.org/10.1177/08830738040190091301

65. Maldonado M, Baybis M, Newman D, Kolson DL, Chen W, McKhann G, et al. Expression of ICAM-1, TNF-α, NFκB, and MAP kinase in tubers of the tuberous sclerosis complex. Neurobiol Dis. 2003;14(2):279–90. doi: https://doi.org/10.1016/S0969-9961(03)00127-X

66. Manning BD, Logsdon MN, Lipovsky AI, Abbott D, Kwiatkowski DJ, Cantley LC. Feedback inhibition of Akt signaling limits the growth of tumors lacking Tsc2. Genes Dev. 2005;19:1773–8. doi: https://doi.org/10.1101/gad.1314605

67. Zhang H, Bajraszewski N, Wu E, Wang H, Moseman AP, Dabora SL, et al. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest. 2007;117:730–8. doi: https://doi.org/10.1172/JCI28984

68. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84. doi: https://doi.org/10.1016/j.cell.2006.01.016

69. Yang Q, Guan KL. Expanding mTOR signaling. Cell Res. 2007;17:666–81. doi: https://doi.org/10.1038/cr.2007.64

70. Corradetti MN, Guan KL. Upstream of the mammalian target of rapamycin: do all roads pass through mTOR?. Oncogene. 2006;25:6347–60. doi: https://doi.org/10.1038/sj.onc.1209885

71. Kwiatkowski DJ, Manning BD. Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum Mol Genet. 2005;14(Issue suppl_2):R251–8. doi: https://doi.org/10.1093/hmg/ddi260

72. Wienecke R, König A, DeClue JE. Identification of tuberin, the tuberous sclerosis-2 product: tuberin possesses specific Rap1GAP activity. J Biol Chem. 1995;270(27):16409–14. doi: https://doi.org/10.1074/jbc.270.27.16409

73. Budanov AV, Shoshani T, Faerman A, Zelin E, Kamer I, Kalinski H, et al. Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene. 2002;21:6017–31. doi: https://doi.org/10.1038/sj.onc.1205877

74. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14):1296–302. doi: https://doi.org/10.1016/j.cub.2004.06.054

75. Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6:1122–8. doi: https://doi.org/10.1038/ncb1183

76. Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl Acad Sci USA. 1998;95(4):1432–7. doi: https://doi.org/10.1073/pnas.95.4.1432

77. Pearson RB, Dennis PB, Han JW, Williamson NA, Kozma SC, Wettenhall RE, et al. The principal target of rapamycin-induced p70(s6k) inactivation is a novel phosphorylation site within a conserved hydrophobic domain. EMBO J. 1995;14:5279–87. doi: https://doi.org/10.1002/j.1460-2075.1995.tb00212.x

78. Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014;15:155–62. doi: https://doi.org/10.1038/nrm3757

79. Hardie DG. New roles for the LKB1→AMPK pathway. Curr Opin Cell Biol. 2005;17(2):167–73. doi: https://doi.org/10.1016/j.ceb.2005.01.006

80. Zheng Y, Tao Y, Zhan X, Wu Q. Nuclear receptor 4A1 (NR4A1) silencing protects hepatocyte against hypoxia-reperfusion injury in vitro by activating liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) signaling. Bioengineered. 2022;13(4):8349–59. doi: https://doi.org/10.1080/21655979.2022.2053804

81. Bourouh M, Marignani PA. The tumor suppressor kinase LKB1: metabolic nexus. Front Cell Dev Biol. 2022;10:881297. doi: https://doi.org/10.3389/fcell.2022.881297

82. Wang X, Meng D, Chang Q, Pan J, Zhang Z, Chen G, et al. Arsenic inhibits neurite outgrowth by inhibiting the LKB1-AMPK signaling pathway. Environ Health Perspect. 2010;118(5):627–34. doi: https://doi.org/10.1289/ehp.0901510

83. Jiang ZZ, Hu MW, Ma XS, Schatten H, Fan HY, Wang ZB, et al. LKB1 acts as a critical gatekeeper of ovarian primordial follicle pool. Oncotarget. 2016;7:5738–53. doi: https://doi.org/10.18632/oncotarget.6792

84. Inoki K, Ouyang H, Zhu T, You M, Williams BO, Guan K-L. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell. 2006;126(5):955–68. doi: https://doi.org/10.1016/j.cell.2006.06.055

85. Arsham AM, Howell JJ, Simon MC. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J Biol Chem. 2003;278(32):29655–60. doi: https://doi.org/10.1074/jbc.M212770200

86. Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell. 2006;21(4):521–31. doi: https://doi.org/10.1016/j.molcel.2006.01.010

87. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18:2893–904. doi: https://doi.org/10.1101/gad.1256804

88. SoferA, Lei K, Johannessen CM, Ellisen LW. Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol. 2005;25(14):5834–45. doi: https://doi.org/10.1128/mcb.25.14.5834-5845.2005

89. Kirkwood JM, Tarhini AA, Panelli MC, Moschos SJ, Zarour HM, Butterfield LH, et al. Next generation of immunotherapy for melanoma. J Clin Oncol. 2008;26(20):3445–55. doi: https://doi.org/10.1200/JCO.2007.14.6423

90. Hogan SA, Levesque MP, Cheng PF. Melanoma immunotherapy: next-generation biomarkers. Front Oncol. 2018;8:178. doi: https://doi.org/10.3389/fonc.2018.00178

91. Luke JJ, Ott PA. PD-1 pathway inhibitors: the next generation of immunotherapy for advanced melanoma. Oncotarget. 2015;6:3479–92. doi: https://doi.org/10.18632/oncotarget.2980

92. Dhanak D, Edwards JP, Nguyen A, Tummino PJ. Small-molecule targets in immuno-oncology. Cell Chem Biol. 2017;24(9):1148–60. doi: https://doi.org/10.1016/j.chembiol.2017.08.019

93. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64. doi: https://doi.org/10.1038/nrc3239

94. Sitkovsky MV, Hatfield S, Abbott R, Belikoff B, Lukashev D, Ohta A. Hostile, hypoxia-A2-adenosinergic tumor biology as the next barrier to overcome for tumor immunologists. Cancer Immunol Res. 2014;2(7):598–605. doi: https://doi.org/10.1158/2326-6066.CIR-14-0075

95. Cekic C, Linden J. Purinergic regulation of the immune system. Nat Rev Immunol. 2016;16:177–92. doi: https://doi.org/10.1038/nri.2016.4

96. Vijayan D, Young A, Teng MW, Smyth MJ. Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer. 2017;17(12):709–24.

97. Kumar V. Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go?. Purinergic Signal. 2013;9:145–d65. doi: https://doi.org/10.1007/s11302-012-9349-9

98. Häusler SFM, Del Barrio IM, Diessner J, Stein RG, Strohschein J, Hönig A, et al. Anti-CD39 and anti-CD73 antibodies A1 and 7G2 improve targeted therapy in ovarian cancer by blocking adenosine-dependent immune evasion Am J Transl Res. 2014;6(2):129–39.

99. Turcotte M, Spring K, Pommey S, Chouinard G, Cousineau I, George J, et al. CD73 is associated with poor prognosis in high-grade serous ovarian cancer. Cancer Res. 2015;75(21):4494–503. doi: https://doi.org/10.1158/0008-5472.CAN-14-3569

100. Stagg J, Divisekera U, Duret H, Sparwasser T, Teng MWL, Darcy PK, et al. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res. 2011;71(8):2892–900. doi: https://doi.org/10.1158/0008-5472.CAN-10-4246

101. Ryzhov SV, Pickup MW, Chytil A, Gorska AE, Zhang Q, Owens P, et al. Role of TGF-β signaling in generation of CD39+CD73+ myeloid cells in tumors. J Immunol. 2014;193(6):3155–64. doi: https://doi.org/10.4049/jimmunol.1400578

102. Allard B, Turcotte M, Spring K, Pommey S, Royal I, Stagg J. Anti-CD73 therapy impairs tumor angiogenesis. Int J Cancer. 2014;134(6):1466–73. doi: https://doi.org/10.1002/ijc.28456

103. Thibaudin M, Chaix M, Boidot R, Végran F, Derangère V, Limagne E, et al. Human ectonucleotidase-expressing CD25high Th17 cells accumulate in breast cancer tumors and exert immunosuppressive functions. Oncoimmunology. 2015;5(1):e1055444. doi: https://doi.org/10.1080/2162402X.2015.1055444

104. Ohta A, Madasu M, Subramanian M, Kini R, Jones G, Choukèr A, et al. Hypoxia-induced and A2A adenosine receptorindependent T-cell suppression is short lived and easily reversible. Int Immunol. 2014;26(2)83–91. doi: https://doi.org/10.1093/intimm/dxt045

105. Beavis PA, Milenkovski N, Henderson MA, John LB, Allard B, Loi S, et al. Darcy PK. Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses. Cancer Immunol Res. 2015;3(5):506–17. doi: https://doi.org/10.1158/2326-6066.CIR-14-0211

106. Leclerc BG, Charlebois R, Chouinard G, Allard B, Pommey S, Saad F, et al. CD73 expression is an independent prognostic factor in prostate cancer. Clin Cancer Res. 2016;22(1):158–66. doi: https://doi.org/10.1158/1078-0432.CCR-15-1181

107. Bao R, Hou J, Li Y, Bian J, Deng X, Zhu X, et al. Adenosine promotes Foxp3 expression in Treg cells in sepsis model by activating JNK/AP-1 pathway. Am J Transl Res. 2016;8(5):2284–92.

108. Cekic C, Day YJ, Sag D, Linden J, Myeloid expression of adenosine a2A receptor suppresses T and NK cell responses in the solid tumor microenvironment, Cancer Res. 2014;74(24):7250–9. doi: https://doi.org/10.1158/0008-5472.CAN-13-3583

109. Csóka B, Zsolt Selmeczy Z, Koscsó B, Németh ZH, Pacher P, Murray PJ, et al. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J. 2012;26(1):376–86. doi: https://doi.org/10.1096/fj.11-190934

110. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MKK, et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci USA. 2006;103(35)13132–7. doi: https://doi.org/10.1073/pnas.0605251103

111. Iannone R, Miele L, Maiolino P, Pinto A, Morello S, Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model. Am J Cancer Res. 2014;4(2):172–81.

112. Vecchio EA, Tan CYR, Gregory KJ, Christopoulos A, White PJ, May LT. Ligand-independent adenosine A2B receptor constitutive activity as a promoter of prostate cancer cell proliferation, J Pharmacol Exp Ther. 2016;357(1):36–44. doi: https://doi.org/10.1124/jpet.115.230003

113. Cekic C, Sag D, Li Y, Theodorescu D, Strieter RM, Linden J. Adenosine A2B receptor blockade slows growth of bladder and breast tumors. J Immunol. 2012;188(1):198–205. doi: https://doi.org/10.4049/jimmunol.1101845

114. Iannone R, Miele L, Maiolino P, Pinto A, Morello S. Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma. Neoplasia. 2013;15(12):1400–9. doi: https://doi.org/10.1593/neo.131748

115. Sorrentino C, Miele L, Porta A, Pinto A, Morello S. Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angiogenesis in a mouse melanoma model. Oncotarget. 2015;6:27478–89. doi: https://doi.org/10.18632/oncotarget.4393

116. Kjaergaard J, Hatfield S, Jones G, Ohta A, Sitkovsky M. A2A Adenosine receptor gene deletion or synthetic A2A antagonist liberate tumor-reactive CD8+ T cells from tumor-induced immunosuppression. J Immunol. 2018;201(2):782–91. doi: https://doi.org/10.4049/jimmunol.1700850

117. Williams M, Francis J, Ghai G, Braunwalder A, Psychoyos S, Stone GA, et al. Biochemical characterization of the triazoloquinazoline, CGS 15943, a novel, non-xanthine adenosine antagonist. J Pharmacol Exp Ther. 1987;241(2):415–20.

118. Gatta F, Del Giudice M, Borioni A, Borea P, Dionisotti S, Ongini E. Synthesis of imidazo[1,2-c]pyrazolo[4,3-e]pyrimidines, pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]-pyrimidines and 1,2,4-triazolo[5,1-i]purines: new potent adenosine A2 receptor antagonists. Eur J Med Chem. 1993;28(7-8):569–76. doi: https://doi.org/10.1016/0223-5234(93)90087-U

119. Cekic C, Linden J. Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment, Cancer Res. 2014;74(24):7239–49. doi: https://doi.org/10.1158/0008-5472.CAN-13-3581

120. Ref. Deligny M, Crosignani S, Houthuys JE. Macrocyclic diamine derivatives as ent inhibitors for the treatment of cancers, and combination thereof with adenosine receptor antagonists. WO2021/20486 Patent. 2021.

121. DiRenzo D, Piovesan D, Tan J, Miles DH, Leleti MR, Park T, et al. A dual antagonist of the A2aR and A2bR adenosine receptors, relieves adenosine-mediated immune suppression. Cancer Immunol Res. 2019;7(2_Suppl.):A162. doi: https://doi.org/10.1158/2326-6074.cricimteatiaacr18-a162

122. Walters MJ, Piovesan D, Tan J, DiRenzo D, Yin F, Miles D, et al. Combining adenosine receptor inhibition with AB928 and chemotherapy results in greater immune activation and tumor control. Cancer Res. 2018;78(13_Suppl):5556. doi: https://doi.org/10.1158/1538-7445.am2018-5556

123. Borodovsky A, Wang Y, Ye M, Shaw JC, Sachsenmeier KF, Deng N, et al. Preclinical pharmacodynamics and antitumor activity of AZD4635, a novel adenosine 2A receptor inhibitor that reverses adenosine mediated T cell suppression. Cancer Res. 2017;77(13_Suppl):5580. doi: https://doi.org/10.1158/1538-7445.am2017-5580

Article Metrics
85 Views 29 Downloads 114 Total

Year

Month

Related Search

By author names