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INTRODUCTION
The complexity of cancer has provided both 

researchers and healthcare professionals with a significant 
opportunity to advance understanding and treatment. Across 
various classifications, cancer remains a leading cause of 
death worldwide [1], despite the implementation of multiple 

therapeutic approaches. One of the most daunting challenges lies 
in the intricate etiology of cancer, particularly as it progresses 
to advanced stages. The widely accepted tumor node metastasis 
staging system underscores the complexity of cancer diagnosis 
and treatment planning. While early-stage tumors may be 
effectively managed through surgical interventions, the presence 
of metastasis necessitates a combination of adjuvant chemo 
radiation and surgical modalities. However, the success rates of 
these interventions remain dishearteningly low, largely due to 
the aggressive nature of metastatic cancer, which can infiltrate 
and affect multiple organs in various ways. Chemo radiation 
therapy, in NSCLC, paclitaxel in chemotherapy with radiation, 
and oxaliplatin in chemotherapy with radiation although 
integral to cancer treatment, often fall short of fully addressing 
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ABSTRACT
Cancer, a leading global cause of mortality, persists despite extensive research. While progress, notably in protein 
kinase-modulating drugs, is evident, a definitive cure remains elusive due to multifaceted challenges. This article 
discusses diverse approaches in cancer treatment, recognizing its complexity. Key hurdles include cancer progression 
stages, the intricate tumor microenvironment, drug resistance, pharmacodynamics, tumor hypoxia, and compromised 
immunity. Signal transduction pathways are crucial in cancer progression and resistance, particularly in immune 
regulation, hypoxia response, and autophagy. Understanding and targeting these pathways are vital for developing 
novel therapies. By elucidating the interplay between immunity, signaling, and therapeutics, researchers seek to 
overcome treatment obstacles. A comprehensive approach offers hope for improved outcomes and breakthroughs in 
cancer management.
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cancer cells, under hypoxic conditions, escape from 
chemotherapy drugs, and these cancer cells ensure epithelial 
to mesenchymal transition. Some studies revealed in the 
acidic environment of cells lysosomes and endosomes in 
tumor cells support metastasis by activating protease [21,22]. 
The degradation of tumor cells in a neutral environment 
and simultaneously, improved by cytotoxic T lymphocyte, 
immunotherapy [23]. In the light of above point, hypoxia 
alters apoptosis cell death, autophagy to remove dead from 
cells, and immunotherapy to manage cancer. 

Hypoxia bolstering ROS  to induced cancer
During hypoxic conditions, ROS levels increased 

due to decreased oxygen utilization, the passage of electrons 
from the mitochondrial complex by the electron transport 
chain (ETC), and electron leak from the ETC, consequently 
overproduction of ROS. ROS destabilize genomic stability 
and disrupt the DNA repair pathways and simultaneously, 
ROS. cause mutation and promotion of cancer with multidrug 
resistance cells [24–27]. Hypoxic stress aids tumor resistance 
with immunosuppression by tumor-associated macrophages 
[28,29]. The drug does not diffuse into the cell in an acidic 
environment and simultaneously, genetic alteration in P53 
due to Hypoxia, also known as ion trapping [30]. In hypoxic 
conditions, multidrug resistance has increased the activity of 
multidrug transporter p-glycoprotein (p-gp) and its expression 
with the mechanism of multidrug resistance expressed by the 
MDR1 gene. Simultaneously, in hypoxic conditions mRNA 
levels remain the same, and activity increases consequently, 
tumor progression increases [31–34]. Tumor cells in the human 
body then alter the metabolism of normal cells under hypoxic 
conditions and proliferate by capturing the host immune system, 
disrupting apoptosis [35,36] by Caspase-mediated selective 
cleavage off a subset of cellular polypeptides. Simultaneously, 
participating biochemical and morphological cell apoptosis 
[37]. DNA damage and microtubule disruption by intracellular 
caspase cascades accelerate by death receptor ligand system 
and cellular stress. DNA damage and microtubule disruption 
regulate B cell lymphoma-2(Bcl-2) family members have pro-
apoptic and anti-apoptic class. Intracellular caspase cascade 
is regulated by the Bcl-2 family by cytochrome-c and other 
polypeptides [38,39].

Hypoxia modulation to manage Cancer
Hypoxia is to be considered as targeted for cancer 

therapy. Multiple ways to target hypoxic tumors are hypoxia-
activated prodrug [40], hypoxia-inducible factor 1-alpha (HIF-
1α) modulator, Prolyl 4-hydroxylase alpha-1 (P4HA1), Prolyl 
hydroxylase domain 2, Gene therapy, specific target pathways 
critical in hypoxia such as mTOR (mammalian target of 
rapamycin), unfolding protein response (UPR) pathways, Acid 
induced tumor. HIF-1α induced chemotherapeutic resistance 
in pancreatic cancer via up-regulation of cytidine triphosphate 
synthase and transketolase while using digoxigenin to halt HIF-
1α induced translation. Consequently, encouraging results of 
gemcitabine in pancreatic Cancer [41–43].P4HA1 up regulated 
by HIF-1α in the TME of breast cancer. P4HA1 regulates cell 
metabolism and enhances tumors; thus, P4HA1 is a prominent 

metastatic cancer. Consequently, chemotherapy emerges as 
a cornerstone modality in the management of metastasized 
cancer. However, the emergence of chemotherapeutic drug 
resistance poses a significant hurdle to achieving successful 
treatment outcomes [2].

In recent years, the development of novel drug 
candidates utilizing sophisticated drug design approaches and 
considering explicit clinical parameters has shown promise. 
Despite these advancements, the persistence of chemotherapy 
resistance highlights the ongoing challenge of achieving a 
comprehensive cure for cancer. In navigating this landscape, 
it is crucial to delve deeper into the mechanisms driving 
cancer progression and treatment resistance. By embracing a 
multifaceted approach that combines innovative therapeutic 
modalities with a nuanced understanding of cancer biology, 
we can strive towards more effective treatment strategies and 
improved outcomes for patients battling this formidable disease.

Approaches on the robust basis of physiology via 
killing cancerous cells by oxidized free radicals and reactive 
oxygen species (ROS) in cells. The study revealed platinum 
class alkylating chemotherapeutic drug generated free radicals 
in cells that accept and transfer electrons oxygen and kill 
cancerous cells [1]. Cell organelle has a vital role involving 
mitochondria, endoplasmic reticulum, lysosomes, and Golgi 
bodies. Mitochondria and HIF have a strong interconnection in 
regulating cell death. Subdue mitochondrial function by HIF to 
participate in drug treatment failure [2].

The Otto Warburg illustrates damaged respiration 
and excessive fermentation in cells responsible for Cancer 
[3,4]. The D.N.A. of cell damage by ultra violet radiation. 
Carcinogens consequently defect in apoptosis liable for 
tumorigenesis [5]. Apoptosis of damaged D.N.A. control 
by (Ataxia telangiectasis mutated and RAD3 related) 
A.T.R./Chk-1 but mechanism not yet well established [6,7]. 
Evidently, upon D.N.A. damage by U.V. simultaneously 
activation of (Ataxia telangiectasis mutated) A.T.M./Chk-
1 signaling pathway consequently down-regulates Smurf-1 
and increases Rho-B consequently, apoptosis [8–10]. Failures 
are considered as an opportunity to be emphasized in this 
article. Multiple transduction pathways are to be found, 
analyzed, and then designed for chemotherapy. Among all 
other protein kinases, the most acceptable pathway is still a 
significant impediment in clinical oncology. Protein kinase 
involves receptor and non-receptor tyrosine kinase, Serine 
and threonine kinase, and other associated pathways. All 
signal transduction pathways majorly inhibit translation by 
altered transcription and replication whereas this perspective 
emphasizes hypoxia and immunotherapy. Another, parameter, 
tumor microenvironment (TME), was altered drug penetration 
due to adverse pharmacokinetic conditions consequently, 
promote tumor growth. Stromal cells in T.M.E. participate 
in uncontrolled proliferation, angiogenesis, and metastasis 
with drug impediments [11–18]. Tumor cells participate 
in hypoxia in the TME and its major impediment to cancer 
drugs [12]. Hypoxia participates by HIF-α and acidic TME. 
In hypoxic conditions, the fast proliferation of cancerous cells 
due to creates new angiogenic vasculature that contributes to 
delivering oxygenated blood [19,20]. The slowly proliferating 
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target for breast cancer [41]. HIF-1α regulates the transcriptional 
regulation by gene TFP1 in breast cancer. Another prominent 
target of HIF-1α is prolyl hydroxylase domain 2 (PHD2) for 
breast cancer treatment. The hypoxia is further illustrated in 
Figure 1.

The hypoxic prodrug was activated by cellular 
reductase, re-oxidized into initial drug progenitors in 
anorexic cells, and then converted into a cytotoxic substance. 
Clinical trial phase-II results encourage hypoxic progenitor 
TH-302 with gemcitabine. Hypoxic agents as progenitors, 
also known as alkylating agents, are in Figure 2. TH-302 
((1) Evofosfamide) chemical class of alkylating agent and, 
in combination with (2) gemcitabine, synergistic action in 
pancreatic cancer [44]. Synergistic action of (3) praziquantel 
use as an adjunct therapy in bladder cancer with (4) 
Mitomycin-derived prodrug [45].

Autophagy and Cancer (Hypoxia by HIF-1α induction of 
autophagy)

Autophagy, a vital cellular process, is essential for 
maintaining cellular viability by removing misfolded proteins 
and dysfunctional organelles [46–52]. It is particularly crucial 
for cellular stress management and homeostasis, thereby 
inhibiting tumor formation. However, in the context of solid 
tumors, autophagy’s role becomes complex and controversial as 
it aids tumor survival under hypoxic conditions [53]. Hypoxia, 
often found in solid tumors, induces autophagy through the 
HIF-1α pathway. This pathway activates autophagy-related 
proteins such as ULK-1, Atg13, and FIP200 through mTOR and 
LKB1-AMPK signaling [54]. 

Autophagy is classified into three types: 
macroautophagy, microautophagy, and chaperone-mediated 
autophagy. In solid tumors, inhibiting autophagy has been shown 
to enhance chemotherapy effectiveness, highlighting its dual 
role in cancer therapy [55]. Hypoxia-induced autophagy occurs 
in tumor regions, where the UPR contributes to chemotherapy 
resistance. This resistance is mediated by the PERK-dependent 
transcriptional induction of microtubule-associated protein 1 
light chain 3 and autophagy-related genes [55,55]. Furthermore, 
autophagy is associated with multidrug resistance due to the 
activation of ATP-binding cassette transporters. Therefore, 
understanding the balance between autophagy’s protective roles 
and its support for tumor survival under hypoxia is crucial for 
developing effective cancer therapies.

m-TOR pathway
The elevated level of m-TORC1 was detected in 

rodents and human tumors. Further, confirmed in tumor-derived 
cell lines have knockdown of TSC1:TSC2 [56–67]. Cell growth 
is regulated by the mTOR pathway involved, specifically by 
m-TORC1 upregulating and downregulating the TSC1/TSC2 
complex. Other factors regulate cell growth by activating the 
m-TOR pathway and rising level A.M.P. consequently activated 

Figure 1. The figure depicts the effects of hypoxia on cellular and physiological processes. Hypoxia leads to the activation of HIF-1αsss, which results in mitochondrial 
dysfunction, p53 dysfunction, DNA damage, and autophagy. Additionally, hypoxia causes a decrease in pH, creating an acidic environment that contributes to 
immunity dysfunction, alteration of the TME, and increased drug resistance. This interplay highlights the critical role of hypoxia and HIF-1 in tumor progression and 
resistance to therapy.

Figure 2. Hypoxic prodrugs. 
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AMP kinase (AMPK) in multiple ways among one genotoxic 
stress by P-53 mediated activation. The mTORC1 activity is 
upregulated by growth factors through insulin or insulin-like 
growth factors, phosphoinositide-3’ kinase, A.K.T. pathway, 
Wnt-GSK3 signaling pathway and ERK-RSK kinase cascade 
[68,69]. 

m TORC1 activity modulates in adverse conditions, 
nutrient limitation, Hypoxia, and DNA damage disrupt the 
cell cycle and P53 signal. m TORC1 activity upregulates and 
downregulates by TSC1:TSC2 complex via GAP (GTPase 
activating protein) by action of GTPase-Rheb that stimulates 
mTORC1. m TOR regulation involves specifically sestrin-2 due 
to a decrease in GTP level. TSC activity also regulated by other 
kinase AKT, ERK, RSK, AMPK [70,71].

In stressed conditions, P53 precisely targets gene 
p21waf to activate sestrin, which means sestrin-1(PA26) 
and sestrin-2(Hi95) dimer interact with TSC1:TSC2 
(Hamartin:tuberin) complex and phosphorylation by AMP 
induced AMPK-α consequently autophosphorylation 
TSC1:TSC2 complex simultaneously GAP activity by Rap1 
induced by TSC2 and another factor Guanidine exchange factor 
also participate support by transitional controlled tumor protein 
study in drosophila [72] and m-TOR inhibition [73]. In cancer 
conditions, G.A.P. mutates, mTORC1 activation, and cell 
growth. m TOR proteins are serine-threonine kinase that belongs 
to the family of the phosphoinositide 3 kinase-related kinase 
and occurs in eukaryotes. m TOR occurs in two complex forms: 
mTORC1 and mTORC2. mTORC1 evidently participates in 
cancer, neurodegeneration while mTORC2 function is still not 
fully understood [74–77]. The m-TOR activity is illustrated in 
Figure 3 [78].

m TORC1 modulation was TSC complex-dependent 
signaling. TSC suppresses tumor cells and downregulates by 
phosphorylation. m-TORC1 upregulates cell growth, but the 
mTOR pathway still needs further research. m-TOR inhibitors 
(5), (6), (7), and (8) are in Figure 4. TSC complex downregulates 
by phosphorylation among GSK-3β, energy stress, and hypoxia 
to AMP activates AMPK, and hypoxia to HIF1α activates 
REDD1. In contrast, on the other side, hypoxia-induced HIF1α 
inhibited by Von Hippel-Lindau tumor suppressor furthermore 
WNT pathway inhibits GSK-3β to phosphorylation [79–88].

Immunotherapy and Cancer
In cancer few decades, immunotherapy is illustrated 

in Figure 5 as one option to combat cancer [89–91]. 
Immunotherapy boosts immunity to kill cancer cells at 
checkpoints via checkpoint inhibitors, adoptive cell transfer, 
and vaccines. The increased immunity combat cancer 
cells via several checkpoint inhibitors among Cytotoxic T- 
lymphocyte-associated protein-4 (CTLA-4) and programmed 
cell death protein 1 (PD-1) and other renowned checkpoint 
inhibitor monoclonal antibodies (mAB) with the disadvantage 
of administration schedule, time-consuming procedure 
and costly and toxic effects not to be altered by any way in 
comparison to small drug molecule. The small drug molecule 
can reach the target site in the TME and low immunogenicity 
[92]. Find out small molecules that work in the TMEt and 
modulate immune suppression via either activating innate 

immune response or adaptive immune signaling pathway to 
treat Cancer. Among adenosine receptor signaling at immune 
checkpoint prominent target. Adenosine A2AR and A2BR 
receptor antagonists were used for cancer management by 
immune-modulation. The human immune system combats 
pathogens by way of inflammatory response. Tumors hijack 
and take control of the immune system, grow, and then 
metastasize [93]. The immune checkpoint  pathways PD1, 
CTLA-4, A2AR ,A2BR, TIM-3(T cell immunoglobin and 
mucin domain-3) [94,95]. In normal physiological conditions, 
the level of adenosine is less than 1 µM [96] but observed 
adenosine levels (10 µM) in the TME and related pathological 
conditions are, as Cancer related fibroblasts, regulatory T 
cells, myeloid-derived suppressor cells (MDSCs), endothelial 
cells and T helper cells [97–103].

Upon binding adenosine to A2AR and A2BR to 
increase c AMP protein kinase, the signal is associated with 
the immune system and consequently, immunosuppressant 
in the TME. Increased intracellular c AMP level in T cells 
due to activation of A2AR and A2BR receptor consequently, 
decreased Tumor necrosis factor (TNFα), interleukin 2, and 
interferon Gamma, and compromised CD-8+ T cell infiltration 
[104–106]. Adenosine 2A receptor activation on regulatory 
T cells increases PD-1 and CTLA-4 expression, and 
macrophages promote tumor cell proliferation and increase 
immunosuppressant [107,108]. A2BR alters cell differentiation 
by the mononuclear-phagocyte system, consequently, cancer 
angiogenesis, tumor spread, and suppression of lymphocyte-
mediated anti-tumor immunity [109]. Thus, Adenosine 
receptor antagonist, PD1, CTLA-4, a prominent oncotarget. 
Evidently, in some studies alone, A2AR antagonists were not 
encouraged as a result in CL8-1 melanoma cell line and RMA 
T cell lymphoma cell line exhibits dependent on CD8+ T 
cell activity but prominent observation metastasis decrease. 
The union of A2AR and A2BR antagonists with inhibition of 
PD-1 and CTLA-4 results in a prominent anticancer effect 
[110,111]. The A2BR inhibition has prominent anti-tumor 
effects in prostate cancer, slow growth of the bladder, and 
breast cancer with decreased cell proliferation. Furthermore, 
it decreases tumor growth and immune suppression due to 
MDSCs and inhibits vascular endothelial growth factor and 
angiogenesis [112–115].

Adenosine antagonist for cancer immunotherapy
Adenosine 2A receptors have significance in cancer 

immunotherapy such as pyrazole and pyrimidine core. That 
article emphasizes anti-tumor effects concerning immunity. 
Natural and synthetic analogs as Adenosine receptor 
antagonists are Xanthine and analogue, Pyrimidine analogue, 
Azolopyrimidine analogues, Triazolo pyrimidine analogues, 
2-oxothiazole analogue, Pyrazole and Benzothiazole analogue, 
Benzimidazole, Benzothiazole, Quinoxalines, Amino 
Pyrimidines, Triazine isomers, Pyrazole linked heterocyclics 
and miscellaneous as illustrated in Table 1.

Xanthine and its analogue
Xanthine and semi-synthetic analogues are illustrated 

in Figure 6. (9) Caffeine is a non-specific naturally occurring 
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Figure 3. The figure illustrates the complex signaling pathways involving the mammalian target of rapamycin (mTOR), focusing on its two complexes: mTORC1 
and mTORC2. mTORC1 is regulated by nutrients, growth factors, and energy status, promoting protein synthesis, lipogenesis, and ribosome biogenesis while 
inhibiting autophagy. Key regulators include Rheb-GTP, FKBP38, TSC1/TSC2, PI3K, AKT, and AMPK. mTORC2 mainly regulates cytoskeletal organization and 
cell survival through AKT, SGK, and PKC. The figure also highlights the downstream effects of mTOR activation, such as translation promotion via S6K and 4EBP1, 
and autophagy regulation through ULK1 and Beclin1. This interplay underscores the importance of mTOR in cellular growth, metabolism, and survival, pointing to 
potential therapeutic targets for diseases like cancer.
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Figure 4. mTOR modulator. 

Figure 5. The diagram illustrates the interaction between adenosine and caffeine with the adenosine receptor. Adenosine acts as an agonist, binding to the adenosine 
receptor, leading to an increase in cAMP kinase activity. This cascade results in immunosuppression and the promotion of tumor proliferation. Conversely, caffeine 
functions as an antagonist to the adenosine receptor, potentially disrupting this pathway. The overall theme is the impact of small molecules on immunity and cellular 
processes.
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adenosine receptor antagonist (10) Istradefylline, a semi-
synthetic xanthine analogue, have adenosine antagonist 
action and was initially designed to treat Parkinsonism, but 
(10) has revealed good result in Cancer [116] thus, as an 
option to repurpose for Cancer. Xanthine analogues have poor 
water solubility. Pyrazolo triazole Pyrimidine analogue non-
xanthine adenosine 2A receptor antagonists are SCH58261, 
FSTP, ZM241385, and Tozadenant [117,118] (11). SCH58261 
revealed the slowdown of metastasis in breast cancer by CD73 
endogenously, and melanomas activate Nk cells (12). FSTP 
irreversible type antagonist and low efficacy due to impaired 
CD+ T cell differentiation and accumulation [119], (13) 

ZM241385 has poor solubility but inhibits lung cancer tumor 
metastasis [110], (14) Tozadenant enters clinical trial phase-3, 
but adverse events and scientists were further studies but 
encouraging results in breast cancer in combination with PD-1 
inhibitors and mAB [105]. 

Pyrimidine analoguesAdoRx therapeutics design and 
patented pyrimidine derivatives are illustrated in Figure 7 as 
potent A2AR and A2BR antagonists. The 2-amino pyrimidine core 
chemical structure of the antagonist is A at R1 position furan ring 
and at X-R2 position aryl methylamine. These analogue (15), 
(16), (17), and (18) exhibit responses in lipopolysaccharide 
mediate TNFα release NECA reversal assay. 

Figure 6. Xanthine and Pyrazolo triazole pyrimidine inhibitor. 

Figure 7. Pyrimidine inhibitors. 
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Table 1. Synthetic analogues for cancer. 

Analogues name Structure Class Reference

(1) Evofosfamide Alkylating agent [45]

(2) Gemicitabine Alkylating agent [45]

(3) Praziquantel Alkylating agent [45]

(4) Mitomycin-C Alkylating agent [45]

(5) Everolimus mTOR [79–88]

(Continued)
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Analogues name Structure Class Reference

(6) Temsirolimus mTOR [79–88]

(7) PQR-309 Bimiralisib k1tor = 
93.4 nm

ki110 = 15.6 nm

mTOR [79–88]

(8) k1mtor = 6.p nm

kip110 = 11.5 nm  
PQR620 approved in cancer but 

clinical trials resistant to epileptic 
seizure

mTOR [79–88]

(9) Caffeine Xanthine 
analogue

[117–119]

(10) Istradefylline Xanthine 
analogue

[117–119]

(Continued)

Table 1. (Continued)
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Analogues name Structure Class Reference

(11) SCH58261 Xanthine 
analogue

[117–119]

(12) FSPTP Xanthine 
analogue

[117–119]

(13) ZM241385 Xanthine 
analogue

[117–119]

(14) Tozadenant Xanthine 
analogue

[117–119]

(15) IC50 =  
77 nM

Pyrimidine 
inhibitors

(16) IC50 =  
9 nM

Pyrimidine 
inhibitors

Table 1. (Continued)

(Continued)
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Analogues name Structure Class Reference

(17) 12 times less potent than 
compound 16 

Pyrimidine 
inhibitors

(18) IC50 = 17 nM Pyrimidine 
inhibitors

(19) IC50 > 100 Azolo pyrimidine [120–122]

(20) AB928 Azolo pyrimidine [120–122]

(21) Azolo pyrimidine [120–122]

(22) Azolo pyrimidine [120–122]

Table 1. (Continued)

(Continued)
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Analogues name Structure Class Reference

(23) Azolo pyrimidine [120–122]

(24) Azolo pyrimidine 
analogue

[120–122]

(25) Vipadenant Triazolo 
pyrimidine 
analogue

(26) Ciforadenant Triazolo 
pyrimidine 
analogue

(27A) E-1 Oxothiazole 
analogue

Table 1. (Continued)

(Continued)
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Analogues name Structure Class Reference

(28) Preladenant Quinazoline 
analogue

(29) Quinazoline 
analogue

[123]

(30) Quinazoline 
analogue

[123]

(31) Quinazoline 
analogue

[123]

(32) Quinazoline 
analogue

[123]

Table 1. (Continued)

(Continued)
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Analogues name Structure Class Reference

(33) Quinazoline 
analogue

[123]

(34) Quinazoline 
analogue

[123]

(35) Quinazoline 
analogue

[123]

(36) Quinazoline 
analogue

[123]

(37) Quinazoline 
analogue

[123]

Table 1. (Continued)

(Continued)
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Analogues name Structure Class Reference

(38) Quinazoline 
analogue

[123]

(39) Quinazoline 
analogue

[123]

(40) Quinazoline 
analogue

[123]

(41) Taminadentant (PBF509) Imidazo [1,2-α]
pyrazin-8-amine

(42) PBF-999 Imidazo [1,2-α]
pyrazin-8-amine

(43) Amino 
pyrimidine

Table 1. (Continued)

(Continued)
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Analogues name Structure Class Reference

(44) Triazine 
Analogue

[123]

(45) Triazine 
Analogue

[123]

(46) AZD4635 Triazine 
Analogue

[123]

(47)  PF 02545920  
IC50 = 0.37 nM (PDE10A)

Pyrazole 
analogue

[123]

(48)  TAK063 IC50 = 0.3 nM 
(PDE10A)

Pyrazole 
analogue

[123]

Table 1. (Continued)

(Continued)
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Analogues name Structure Class Reference

(49) OMS 824 IC50 (PDE10A) not 
disclosed

Pyrazole 
analogue

[123]

Table 1. (Continued)

Azolopyrimidine analogues
Arcus bioscience design and patented azolopyrimidine 

illustrated in Figure 8 to target Cancer [120] as an adenosine 
antagonist. In structure B at R4 position, substitution with methyl 
group activity decreases compared to hydrogen. Compound 
(19) exhibits A2A receptor antagonist activity in CHO-TREx 
cAMP assay. Compound (20) have methyl benzonitrile and 
dose 100 mg/kg, po, b.i.d alone [121] or in combination with 
anti-PD-1 (5 mg/kg) or doxorubicin(6 mg/kg), consequently 
anti-tumor effects on B16-F-10 melanoma [122]. Arcus further 
two patents, one on quinazoline pyridine as compound C and 

Figure 8. Azolo pyrimidine analogues. 

Figure 9. Triazolo pyrimidine analogues. 
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its analogues (21), (22). Another quinazoline pyrazole core 
compound D and its analogue (23), (24). These compounds 
exhibit antagonist activity as A2AR and A2BR

Triazolo pyrimidine analogues
Bristol-Myers Squibb research and design illustrated 

in Figure 9 (25) Vipadenant and (26) Ciforadenant have 
[1,2,3] triazolo[5,4-d] pyrimidine core was first introduced 
for Parkinsonism. It revealed the selectivity towards A2AR, but 
it was discontinued due to failure in the phase-2 clinical trial 
in preclinical cancer immunology research and observed an 
othosteric binding site. Ciforadenant potently inhibits c AMP 
in HEK-293 cells at Ic50=17nM and primary human T cells at 
IC50=70 nM. Ciforadenant suppresses p CREB and restores 
PERK levels in human cells.

Figure 10. Oxothiazole analogue. 

Figure 11. Pyrazole analogue. 

Figure 12. Benzimidazole and isosteric replacement analogues. 
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Benzimidazole (Bioisostere replacement of sulphur with nitrogen)
Benzimidazole and its analogue illustrated in Figure 

12 have (29), (30), (31), (32), (33), and (34) A2AR antagonist 
effects. Benzimidazole analogues (35), (36), and (37) have the 
isosteric replacement of sulphur with nitrogen as a consequence 
of a half-life increase. The half-life of benzimidazole analogues 
further increased with aryl amide replacement. Consequently, 
the Benzimidazole morpholino group was replaced with 
heteroaryl, improving pharmacokinetic properties and these 
compounds as A2AR inhibitors. These compounds control the 
secretion of cytokine that is suppressed by adenosine. These 
compounds have IC50 = 100–1,000 nM range.

Quinoxalines analogue
Quinoxalines from Benzothiazole illustrated in 

Figure 13 (38), (39), and (40) retained adenosine antagonistic 
activity and a half-life of more than 2 hours. In Quinoxalines, 
the analogue aryl group was replaced with tetrahydropyran, 
consequently decreasing half-life, and the urea side chain was 
replaced with aryl amide, consequently poor pharmacokinetic 
properties.

2-Oxothiazole analoguei
TEAOS research group developed 2-Oxothiazole, 

illustrated in Figure 10, as an A2AR antagonist to target 
Parkinsonism’s disease, but due to a high adenosine environment, 
it does not exhibit antagonistic activity. The high dose required 
for inhibition within the tumor for cancer management [95]. 
E core was introduced as cAMP inhibition. It also inhibited 
CREB phosphorylation as a consequence of A2AR antagonism. 
2-Oxothiazole and its analogues (27A, 27B).

Pyrazole and Benzothiazole analogue
Further researchers from Merck introduce pyrazolo 

[4,3-e]-1,2,4-triazolo-[1,5-c] pyrimidine analogue illustrated in 
Figure 11. (28) Preladenant was introduced for Parkinsonism 
but terminated in phase-3 consequences of failure in efficacy 
as compared to placebo. The Preladenant result of the phase-1 
clinical trial of (NCT0399161) in advanced solid tumor but 
data did not support at the endpoint thus terminated. Merck 
has patented three Benzothiazole compounds (14) Tozadenant 
where nitrogen atom introduced to improve pharmacokinetic 
properties. 

Figure 13. Quinazoline analogue. 

Figure 14. Amino pyrimidine analogue. 
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CONCLUSION
In cancer life-threatening conditions chemotherapy 

failure and drug resistance are major emerging areas for 
researchers. Hypoxia and associated conditions, tumor micro 
environment, ROS, and immunosuppressant condition. 
Adenosine receptor and hypoxia significance emphasize above 
and management of cancer by modulation of pathway mTOR 
and in immunity by CTLA 4, PD1 Benzothiazole, quinazoline, 
and pyrimidine analogue have prominent inhibitory responses 
in adenosine sites. Alkylating agents exhibit prominent effects 
in hypoxic tumors and drug response. Thus, design Nitrogen-
containing heterocyclic, Benzothiazole, quinazoline pyrimidine 
analogue have both alkylating and adenosine inhibitory action.
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Amino pyrimidines
2,6-Bis(heteroaryl)-4-amino-pyrimidines design 

illustrated in Figure 14 and introduces Novartis/Palobiopharma 
as an A2AR antagonist. The potency of the compound increased 
by introducing an electron-withdrawing group at position 5 of 
the pyrimidine ring. (41) Taminadentant (PBF-509) exhibit 25 
times more potent antagonism as compared to bis(hetroaryl)-
4-amino pyrimidine A2AR antagonist. (42), (43) Chloro / 
cyano substitution at fifth position and pyrrolidyl/ethylthiol/
trifluoroethoxyl at the sixth position of the bis(heteroaryl)-
4-Amino pyrimidine for its antagonist response and it is 
important for binding to receptor. Furthermore, PBF-509 
exhibits a decreased tumor burden in mice with B16-CD73+ 
tumors. PBF-509 with PD-L1 maintains immune response in 
tumor-infiltrating lymphocytes in non-small cell lung cancer 
cases. PBF-509 produced a synergistic anti-tumor effect with 
immunotherapeutic agents.

Triazine isomers
AstraZeneca, by using computational techniques to 

design, illustrates in Figure 15 1,3,5-triazines isomers and 1,2,4 
triazines isomers as A2AR antagonists that access ribose pocket 
(44), (45), (46). AZD4635 was designed by using an SBDD 
strategy with PDB:6GT3 and decreased tumor growth (50 mg/
kg,po,b.i.d) with anti-PDL1 [123].

Pyrazole linked heterocyclics as a phosphodiesterase inhibitor
Overexpression of PDE-10A was observed in Cancer 

then, specifically, PDE-10A inhibitors illustrated in Figure 16 
(47), (48), (49).

Figure 16. Pyrazole heterocycles. 

Figure 15. Triazine analogue. 
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