Wound healing is a complex process, and there is ongoing interest in identifying natural compounds that can enhance this process effectively. Persea americana has been traditionally used for wound treatment, but its molecular mechanisms remain unclear. This study aimed to evaluate the wound-healing properties of P. americana leaf extract and elucidate its underlying molecular mechanisms through an integrated approach. The research employed a combination of in vivo studies, network pharmacology analysis, and molecular docking simulations. In vivo experiments assessed the wound healing efficacy of P. americana leaf extract at concentrations ranging from 5% to 15%, compared to povidone iodine. Network pharmacology was used to identify potential molecular targets, while molecular docking simulated interactions between key compounds and identified targets. In vivo studies demonstrated that P. americana leaf extract (5%–15%) exhibited wound healing activity comparable to povidone iodine, with no statistically significant differences observed (p value > 0.05). Network pharmacology analysis identified NF-κB1 as a core molecular target in the extract’s wound-healing process. Molecular docking simulations corroborated these findings and highlighted epicatechin, catechin, and quercetin as key compounds likely responsible for the observed wound-healing activity, primarily through NF-κB1 inhibition. This study provides strong evidence for the wound-healing efficacy of P. americana leaf extract and offers insights into its molecular mechanisms, particularly its inhibition of NF-κB1. The findings support the traditional use of P. americana in wound treatment and suggest its potential as a natural alternative in wound management.
Rosa Y, Riyanto R, Susanti G, Setiawansyah A, Zuhana Z, Fatriansari A, Pratama SA. Persea americana leaf extract promotes wound healing by inhibiting NF-KB1. J Appl Pharm Sci. 2024. http://doi.org/10.7324/JAPS.2025.218012
1. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, et al. Human skin wounds: a major and snowballing threat to public health and the economy: perspective Article. Wound Repair and Regeneration 2009;17:763-71. https://doi.org/10.1111/j.1524-475X.2009.00543.x | |
2. Järbrink K, Ni G, Sönnergren H, Schmidtchen A, Pang C, Bajpai R, et al. The humanistic and economic burden of chronic wounds: a protocol for a systematic review. Syst Rev. 2017;6(15):1-7. https://doi.org/10.1186/s13643-016-0400-8 | |
3. Moses RL, Prescott TAK, Mas-Claret E, Steadman R, Moseley R, Sloan AJ. Evidence for natural products as alternative wound-healing therapies. Biomolecules. 2023;13(3):444-470. https://doi.org/10.3390/biom13030444 | |
4. Hürkul MM, Sar?alt?n SY, Köro?lu A, Çoban T. In vitro inhibitory potential of avocado fruits, Persea americana (Lauraceae) against oxidation, inflammation and key enzymes linked to skin diseases. Revis Biol Trop. 2021;69(2):472-81. https://doi.org/10.15517/rbt.v69i2.41494 | |
5. Al-Otaibi T, Hawsah MA, Alojayri G, Mares MM, Aljawdah HMA, Maodaa SN, et al. In vivo anticoccidial, antioxidant, and anti-inflammatory activities of avocado fruit, Persea americana (Lauraceae), against Eimeria papillata infection. Parasitol Int. 2023;95:102741. https://doi.org/10.1016/j.parint.2023.102741 | |
6. Alkhalaf MI, Alansari WS, Ibrahim EA, ELhalwagy MEA. Antioxidant, anti-inflammatory and anti-cancer activities of avocado (Persea americana) fruit and seed extract. J King Saud Univ Sci. 2019;31(4):1358-62. https://doi.org/10.1016/j.jksus.2018.10.010 | |
7. Salazar-López NJ, Domínguez-Avila JA, Yahia EM, Belmonte-Herrera BH, Wall-Medrano A, Montalvo-González E, et al. Avocado fruit and by-products as potential sources of bioactive compounds. Food Res Int. 2020;138:109774. https://doi.org/10.1016/j.foodres.2020.109774 | |
8. Nayak BS, Raju SS, Chalapathi Rao AV. Wound healing activity of Persea americana (avocado) fruit: a preclinical study on rats. J Wound Care. 2008;17(3):123-5. https://doi.org/10.12968/jowc.2008.17.3.28670 | |
9. Hayati W, Raif MA, Ginting CN, Ikhtiari R. Antioxidant and wound healing potential of Persea americana Mill. leaves extract. In: 2021 international conference on artificial intelligence and mechatronics systems (AIMS). 2021. pp. 1-5. https://doi.org/10.1109/AIMS52415.2021.9466076 | |
10. Anatasya Putri S, Rani Gustia Maharani A, Luthfiana D, Chinecherem Nweze L, Setiawansyah A, Susanti G. Integrating the network pharmacology and molecular docking to uncover the potential mechanism of rutin in fighting diabetes mellitus. Ad-Dawaa' J Pharm Sci. 2024;7(1):39-52. https://doi.org/10.24252/djps.v7i1.49701 | |
11. Zhang R, Zhu X, Bai H, Ning K. Network pharmacology databases for traditional Chinese medicine: review and assessment. Frontiers in Pharmacol. 2019;10:123. https://doi.org/10.3389/fphar.2019.00123 | |
12. Luthfiana D and Utomo DH. Network pharmacology reveals the potential of Dolastatin 16 as a diabetic wound healing agent. In Silico Pharmacol. 2023;11(1):23. https://doi.org/10.1007/s40203-023-00161-5 | |
13. Noor F, Tahir Ul Qamar M, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA. Network pharmacology approach for medicinal plants: review and assessment. Pharmaceuticals. 2022;15(5):572. https://doi.org/10.3390/ph15050572 | |
14. Ayu DS, Pratama HA, Sari NP, Febrianti N, Komalasari NR, Adelia P, et al. Perbandingan uji mukolitik ekstrak dan fraksi daun lamtoro (Leucaena leucocephala (Lam) de Wit) halus dan kasar secara in vitro. J Ilmiah Sain Tek. 2024;2(4):12-20. | |
15. Park SJ, Nam YH, Rodriguez I, Park JH, Kwak HJ, Oh Y, et al. Chemical constituents of leaves of Persea americana (avocado) and their protective effects against neomycin-induced hair cell damage. Revis Brasileira de Farmacog. 2019;29(6):739-43. https://doi.org/10.1016/j.bjp.2019.08.004 | |
16. Liu J, Sudom A, Min X, Cao Z, Gao X, Ayres M, et al. Structure of the nuclear factor κB-inducing kinase (NIK) kinase domain reveals a constitutively active conformation. J Biol Chem. 2012;287(33):27326-34. https://doi.org/10.1074/jbc.M112.366658 | |
17. Setiawansyah A, Susanti G, Alrayan R, Hadi I, Arsul MI, Luthfiana D, et al. Aaptamine enhanced doxorubicin activity on b-cell lymphoma 2 (bcl-2): a multi-structural molecular docking study. Ad-Dawaa' J Pharm Sci. 2024;7(1):1-10. https://doi.org/10.24252/djps.v7i1.46796 | |
18. Utami H, Agustin VT, Novirianti L, Darni Y, Lesmana D, Takagi R. The leaching of natural dyes from avocado (Persea americana Mill) seeds using the ultrasonic-assisted extraction method and its application to cellulose fibers. J Rekay Kim Ling. 2021;16(2):100-8. https://doi.org/10.23955/rkl.v16i2.20140 | |
19. Owolabi MA, Coker HAB, Jaja SI. Bioactivity of the phytoconstituents of the leaves of Persea americana. J Med Plant Res. 2010;4(12):1130-5. | |
20. Hidayati N, Fadillah Amanda P, Setiawansyah A. Utilization of avocado leaves (Persea americana Mill) ethanol extract in acne spot gel formulation. Indonesian J Cosmet. 2024;2(1):1-9. | |
21. Setiawansyah A, Widiyawati AT, Sari MSD, Reynaldi MA, Hidayati N, Alrayan R, et al. FT-IR-based fingerprint combined with unsupervised chemometric analysis revealed particle sizes and aqueous-ethanol ratio alter the chemical composition and nutraceutical value of Daucus carota. Nat Prod Res. 2024; In Press:1-9. https://doi.org/10.1080/14786419.2024.2376351 | |
22. Utami N, Susianti S, Bakri S, Kurniawan B, Setiawansyah A. Cytotoxic activity of Cyperus rotundus L. rhizome collected from three ecological zones in Lampung-Indonesia against HeLa cervical cancer cell. J Appl Pharm Sci. 2023;13(10):141-8. https://doi.org/10.7324/JAPS.2023.113764 | |
23. Li S, Liu X, Chen X, Bi L. Research progress on anti-inflammatory effects and mechanisms of alkaloids from Chinese medical herbs. Evidence-based Complement and Alternat Med. 2020;1303524. https://doi.org/10.1155/2020/1303524 | |
24. Yan Y, Li X, Zhang C, Lv L, Gao B, Li M. Research progress on antibacterial activities and mechanisms of natural alkaloids. Antibiotics. 2021;10(3):318. https://doi.org/10.3390/antibiotics10030318 | |
25. Zeb A. Concept, mechanism, and applications of phenolic antioxidants in foods. J Food Biochem. 2020;44(9):e13394. https://doi.org/10.1111/jfbc.13394 | |
26. Muflihah YM, Gollavelli G, Ling YC. Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 Indonesian indigenous herbs. Antioxidants. 2021;10(10):1530. https://doi.org/10.3390/antiox10101530 | |
27. Ibrahim NI, Wong SK, Mohamed IN, Mohamed N, Chin KY, Ima-Nirwana S, et al. Wound healing properties of selected natural products. Int J Env Res Pub Health. 2018;15(11):2360. https://doi.org/10.3390/ijerph15112360 | |
28. Bigliardi PL, Alsagoff SAL, El-Kafrawi HY, Pyon JK, Wa CTC, Villa MA. Povidone iodine in wound healing: a review of current concepts and practices. Int J Surge. 2017;44:260-8. https://doi.org/10.1016/j.ijsu.2017.06.073 | |
29. Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18(5):309-24. https://doi.org/10.1038/nri.2017.142 | |
30. Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, et al. Cell type specific roles of nf-kb linking inflamation and thrombosis. Front Immunol. 2019;10:5. https://doi.org/10.3389/fimmu.2019.00085 | |
31. Euskirchen GM, Auerbach RK, Davidov E, Gianoulis TA, Zhong G, Rozowsky J, et al. Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches. PLoS Genet. 2011;7(3):e1002008. https://doi.org/10.1371/journal.pgen.1002008 | |
32. Wang T, Jin X, Liao Y, Sun Q, Luo C, Wang G, et al. Association of NF-κB and AP-1 with MMP-9 overexpression in 2-chloroethanol exposed rat astrocytes. Cells. 2018;7(8):96. https://doi.org/10.3390/cells7080096 | |
33. Wu X, Yang L, Zheng Z, Li Z, Shi J, Li Y, et al. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway. Int J Mol Med. 2016;37(3):639-48. https://doi.org/10.3892/ijmm.2016.2472 | |
34. Wen W, Yang L, Wang X, Zhang H, Wu F, Xu K, et al. Fucoidan promotes angiogenesis and accelerates wound healing through AKT/Nrf2/HIF-1α signalling pathway. Int Wound J. 2023;20(9):3606-18. https://doi.org/10.1111/iwj.14239 | |
35. Gao Y, Xie Z, Ho C, Wang J, Li Q, Zhang Y, et al. LRG1 promotes keratinocyte migration and wound repair through regulation of HIF-1α stability. J Invest Dermatol. 2020;140(2):455-464.e8. https://doi.org/10.1016/j.jid.2019.06.143 | |
36. Hong WX, Hu MS, Esquivel M, Liang GY, Rennert RC, McArdle A, et al. The role of hypoxia-inducible factor in wound healing. Adv Wound Care (New Rochelle). 2014;3(5):390-9. https://doi.org/10.1089/wound.2013.0520 | |
37. Botusan IR, Sunkari VG, Savu O, Catrina AI, Grünler J, Lindberg S, et al. Stabilization of HIF-1α is critical to improve wound healing in diabetic mice. Proceedings of the National Academy of Sciences; 2008;105(49):19426-31. https://doi.org/10.1073/pnas.0805230105 | |
38. Li G, Ko CN, Li D, Yang C, Wang W, Yang GJ, et al. A small molecule HIF-1α stabilizer that accelerates diabetic wound healing. Nat Commun. 2021;12(1):3363. https://doi.org/10.1038/s41467-021-23448-7 | |
39. Reynaldi MA, Setiawansyah A. Potensi anti-kanker payudara tanaman songga (Strychnos lucida R.Br): Tinjauan interaksi molekuler terhadap reseptor estrogen-α in silico. Sasambo J Pharm. 2022;3(1):30-5. https://doi.org/10.29303/sjp.v3i1.149 | |
40. Lakshmi SP, Reddy AT, Kodidhela LD, Varadacharyulu NC. The tea catechin epigallocatechin gallate inhibits NF-κB-mediated transcriptional activation by covalent modification. Arch Biochem Biophys. 2020;695:108620. https://doi.org/10.1016/j.abb.2020.108620 | |
41. Mackenzie GG, Carrasquedo F, Delfino JM, Keen CL, Fraga CG, Oteiza PI. Epicatechin, catechin, and dimeric procyanidins inhibit PMA-induced NF-kappaB activation at multiple steps in Jurkat T cells. FASEB J. 2004;18(1):167-9. https://doi.org/10.1096/fj.03-0402fje | |
42. Das D, Banerjee A, Mukherjee S, Maji BK. Quercetin inhibits NF-kB and JAK/STAT signaling via modulating TLR in thymocytes and splenocytes during MSG-induced immunotoxicity: an in vitro approach. Mol Biol Rep. 2024;51(1):277. https://doi.org/10.1007/s11033-024-09245-7 | |
43. Doersch KM, Newell-Rogers MK. The impact of quercetin on wound healing relates to changes in αV and β1 integrin expression. Exp Biol Med. 2017;242(14):1424-31. https://doi.org/10.1177/1535370217712961 | |
44. Mounir R, Alshareef WA, El Gebaly EA, El-Haddad AE, Ahmed AMS, Mohamed OG, et al. Unlocking the power of onion peel extracts: antimicrobial and anti-inflammatory effects improve wound healing through repressing Notch-1/NLRP3/Caspase-1 Signaling. Pharmaceuticals. 2023;16(10). https://doi.org/10.3390/ph16101379 | |
45. Carvalho MTB, Araújo-Filho HG, Barreto AS, Quintans-Júnior LJ, Quintans JSS, Barreto RSS. Wound healing properties of flavonoids: a systematic review highlighting the mechanisms of action. Phytomedicine. 2021;90:153636. https://doi.org/10.1016/j.phymed.2021.153636 | |
46. Zulkefli N, Che Zahari CNM, Sayuti NH, Kamarudin AA, Saad N, Hamezah HS, et al. Flavonoids as potential wound-healing molecules: emphasis on pathways perspective. Int J Mol Sci. 2023;24(5):4607. https://doi.org/10.3390/ijms24054607 | |
47. Jia G, Li Z, Le H, Jiang Z, Sun Y, Liu H, et al. Green tea derivative-based hydrogel with ROS-scavenging property for accelerating diabetic wound healing. Mater Des. 2023;225:111452. https://doi.org/10.1016/j.matdes.2022.111452 | |
48. Xu FW, Lv YL, Zhong YF, Xue YN, Wang Y, Zhang LY, et al. Beneficial effects of green tea EGCG on skin wound healing: a comprehensive review. Molecules. 2021; 26(20):6123. https://doi.org/10.3390/molecules26206123 | |
49. Loomis TA, Hayes AW. CHAPTER 12-principles of biological tests for toxicity. In: Loomis TA, Hayes AW, editors. Loomis's essentials of toxicology (fourth edition). San Diego, CA, USA: Academic Press; 1996. pp. 167-204. https://doi.org/10.1016/B978-012455625-6/50012-X | |
50. Padilla-Camberos E, Martínez-Velázquez M, Flores-Fernández JM, Villanueva-Rodríguez S. Acute toxicity and genotoxic activity of avocado seed extract (Persea americana Mill., c.v. Hass). Sci World J. 2013;2013:245828. https://doi.org/10.1155/2013/245828 |
Year
Month