Investigation of the antimicrobial efficacy and cytotoxicity of a natural disinfectant Syzygium cumini (L.) skeels leaf extract on vero cell lines

Haorongbam Joldy Devi Prathiba Gnanasekaran Yumnam Asha Devi Durairaj Siva Jaihitashee Jayashankar   

Open Access   

Published:  Oct 01, 2024

DOI: 10.7324/JAPS.2024.203410
Abstract

Disinfectants are vital for infection prevention and environmental health maintenance. However, the use of chemical disinfectants has adverse effects on human health, including the development of antibiotic-resistance genes and resistance to disinfectants due to overuse and abuse. There is a critical need to find natural alternatives to reduce the problems caused by chemical disinfectants. The present study analyzed the antimicrobial activity of Syzygium cumini leaf extract (SCLE) against Staphylococcus aureus, Pseudomonas aeruginosa, Mucor sp., Candida albicans, and Aspergillus niger and its efficacy as a natural disinfectant was also evaluated, along with GC-MS analysis and in vitro toxicity test. The study showed that SCLE exhibited antimicrobial activity against all test organisms except A. niger. The minimum inhibitory concentration (MIC) against S. aureus, P. aeruginosa, Mucor sp., and C. albicans was 625, 1,250, 78, and 1,250 μg/ml, respectively. The minimum bactericidal concentration (MBC) against S. aureus and P. aeruginosa was 1,250 and 2,500 μg/ml, respectively. The minimum fungicidal concentration (MFC) against Mucor sp. and C. albicans was 156 and 5,000 μg/ml, respectively. SCLE demonstrated bactericidal and fungicidal properties based on MIC: MBC and MIC: MFC, with significant reductions in P. aeruginosa (99.99%), S. aureus (90.71%), Mucor sp. (92%), and C. albicans (73.45%) after the treatment. Syzygium cumini leaf extract, identified as nontoxic with an IC50 of 320μg/ml, proves promising as a potent natural disinfectant. This study marks the first report on the efficacy of S. cumini leaf extract against test organisms, showcasing its potential as a natural disinfecting agent against test organisms.


Keyword:     Syzygium cumini bactericidal fungicidal natural disinfectant GC-MS analysis in vitro toxicity test


Citation:

Devi HJ, Gnanasekaran P, Devi YA, Siva D, Jayashankar J. Investigation of the antimicrobial efficacy and cytotoxicity of a natural disinfectant Syzygium cumini (L.) skeels leaf extract on vero cell lines. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.203410

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Vaishali C, Jivitesh B, Shalini R, Sonal D. Sensitivity of floor Microflora towards various Disinfectants. Electron J Biol. 2011; 7:44–8. Available from: https://ejbio.imedpub.com/sensitivity-of-floor-microflora-towards-various-disinfectants.php?aid=6005

2. Bush LM and Vazquez-Pertejo MT. Staphylococcal infections [Internet]. MSD Manual; 2023 May [cited 2023 Dec 5]. Available from: https://doi.org/10.1155/2011/852513

https://www.msdmanuals.com/en-gb/professional/infectious-diseases/gram-positive-cocci/staphylococcal-infections

3. Cigana C, Lorè NI, Bernardini ML, Bragonzi A. Dampening host sensing and avoiding recognition in Pseudomonas aeruginosa Pneumonia. BioMed Res Int. 2011;2011:10. doi: https://doi.org/10.1155/2011/852513

4. Ferreira TR, Costa SM, De Souza JM, Castilho ACS, Eller LKW, Moris DV, et al. Viability of Candida albicans in different fomites and hospital surfaces under disinfectants and biological fluids influence. Res Soc Dev. 2021;10(5):1–7. doi: https://doi.org/10.33448/rsd-v10i5.15049

5. Arya NR and Rafiq NB. Candidiasis. [Internet]. Treasure Island, FL: StatPearls; 2023 May [cited 2023 Dec7]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK560624/

6. Poulsen JS, Madsen AM, White JK, Nielsen JL. Physiological responses of Aspergillus niger challenged with Itraconazole. Antimicrob Agents Chemother. 2021;65(6):e02549–20. doi: https://doi.org/10.1128/aac.02549-20

https://doi.org/10.1128/aac.02549-20

7. Ashley Hagen MS. COVID-19-Associated Mucormycosis: triple threat of the pandemic. Am Soc Microbiol. [Internet]. 2021 July [cited 2023 Nov 27]. Available from: https://asm.org/Articles/2021/July/COVID-19-Associated-Mucormycosis-Triple-Threat-of

8. Singla N, Sharma N, Sharma N, Behera A, Bhatia M. Clinical profile of patients admitted with Mucormycosis during the COVID-19 pandemic in medicine emergency of a tertiary care hospital care in North India. Cureus. 2022;14(9):e29219. doi: https://doi.org/10.7759/cureus.29219

9. Tong C, Hu H, Chen G, Li Z, Li A, Zhang J. Disinfectant resistance in bacteria: Mechanisms, spread, and resolution strategies. Environ Res. 2021;195:110897. doi: https://doi.org/10.1016/j.envres.2021.110897

10. Lachenmeier DW. Antiseptic drugs and disinfectants with special scrutiny of COVID-19 pandemic related side effects. Side Effects of Drugs Ann. 2021;43:275–84. doi: https://doi.org/10.1016/bs.seda.2021.03.001

11. Mandavgane SA, Rambhal AK, Mude NK. Development of cow urine based disinfectant. Nat Prod Radiance. 2005;4:410–5. Available from: http://nopr.niscpr.res.in/handle/123456789/8129

12. Hidayati YA, Yulia R, Rosita S, Rahmah KN, Marlina ET, Harlia E. The effect of neem leaves (Azadirachta indica A. Juss) application as a natural disinfectant on decreasing number of bacteria and fungi in poultry incubator. Walailak Procedia. 2019;2019(1):1–4. Available from: https://wjst.wu.ac.th/index.php/wuresearch/article/view/6588

13. Rios HJ, Claros BP, Rios AM, Mejia JC, Arias AF. In vitro effectiveness of an aqueous extract of neem (Azadirachta indica A. Juss) leaves on bacteria causing healthcare associated infection in Valledupar. Vitae. 2021;27(3):1–6. doi: https://doi.org/10.17533/udea.vitae.v27n3a05

14. Verma RK, Kumari P, Maurya RK, Kumar V, Verma RB, Singh RK. Medicinal properties of turmeric (Curcuma longa L.): a review. Int J Chem Stud. 2018;6(4):1354–7. Available from: https://www.chemijournal.com/archives/2018/vol6issue4/PartV/6-4-314-742.pdf

15. Mayefis D, Gainil S, Dahlia AB, Syukrillah GS, Oktaviyanti N. Effectiveness of combination of Gotu Kola (Centella Asiatica (L.) Urban) and aloe vera herb extracts as a natural disinfectant. Jurnal Eduhealth. 2023;14(1):182–93. Available from: http://ejournal.seaninstitute.or.id/index.php/healt/article/view/1466

16. Vajrabhaya Lo and Korsuwannawong S. Cytotoxicity evaluation of a Thai herb using tetrazolium (MTT) and sulforhodamine B (SRB) assays. J Anal Sci Technol. 2018;9:15. doi: https://doi.org/10.1186/s40543-018-0146-0

17. Elfadil AG, Karamallah AA, Abualhassan AM, Hamid AA, Sabahelkhier MK. Antimicrobial activities of Syzygium cumini leave extracts against selected microorganisms. Nova J Med Biol Sci. 2015;4:1–8. Available from: https://api.semanticscholar.org/CorpusID:87668526

18. Chhikara N, Kaur R, Jaglan S, Sharma P, Gat Y, Panghal A. Bioactive compounds and pharmacological and food applications of Syzygium cumini–a review. Food Funct. 2018;9:6096–115. doi: https://doi.org/10.1039/C8FO00654G

19. Devi HJ, Gnanasekaran P, Devi YA. Selection of effective plant extract as a disinfecting agent using hot and cold-water extraction. Eco Env Cons. 2022;28(4):1874–81. doi: http://doi.org/10.53550/EEC.2022.v28i04.034.

20. Alam Md R, Rahman AB, Moniruzzaman Md, Kadir MF, Haque Md A, Alvi RaziUl-Hsan M, et al. Evaluation of antidiabetic phytochemicals in Syzygium cumini (L.) Skeels (Family: Myrtaceae). J App Pharm Sci. 2012;2(10):094–8. doi: https://doi.org/10.7324/JAPS.2012.21019

21. Sofi MA, Nanda A, Raj E, Sofi MA. Phytochemical profiling of the methanolic root extract of Lavatera cashmeriana using GC-MS and evaluation of its potential antimicrobial activity. Res J Pharm Technol. 2022;15(12):5707–3. doi: https://doi.org/10.33640/2405-609x.1219

https://doi.org/10.52711/0974-360X.2022.00962

22. Venkateswarulu TC, Srirama K, Mikkili I, Nazneen Md B, Dutta JB, Alugunutta VN, et al. Estimation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of antimicrobial peptides of Saccharomyces boulardii against selected pathogenic strains. Karbala Int J Mod Sci. 2019;5(4):Article 8. doi: https://doi.org/10.33640/2405-609x.1219

23. Mostafa AA, Al-Askar AA, Almaary KS, Dawoud TM, Sholkamy EN, Bakri MM. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J Biol Sci. 2018;25(2):361–6. doi: https://doi.org/10.1016/j.sjbs.2017.02.004

24. Caruso C, Porta A, Tosco A, Eletto D, Pacente L, Bartollino S, et al. A novel vitamin E TPGS-based formulation enhances chlorhexidine bioavailability in corneal layers. Pharmaceutics. 2020;12(7):642. doi: https://doi.org/10.3390/pharmaceutics12070642

25. Mogana R, Adhikari A, Tzar MN, Ramliza R, Wiart C. Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complement Med Ther. 2020;20:55. doi: https://doi.org/10.1186/s12906-020-2837-5

26. Welk A, Meller C, Schubert R, Schwahn Ch, Kramer A, Below H. Effect of lactoperoxidase on the antimicrobial effectiveness of the thiocyanate hydrogen peroxide combination in a quantitative suspension test. BMC Microbiol. 2019;9:134. doi: https://doi.org/10.1186/1471-2180-9-134

27. Saad AH, Gamil SN, Kadhim RB, Samour R. Formulation and evaluation of herbal hand wash from Matricaria chamomilla flowers extracts. Int J Res Ayurveda Pharm. 2011;2(6):1811–3. Available from: https://ijcrt.org/papers/IJCRT2005404.pdf

28. Njeru SN and Muema JM. In vitro cytotoxicity of Aspilia pluriseta Schweinf. extract fractions. BMC Res Notes. 2021;14:57. doi: https://doi.org./10.1186/s13104-021-05472-4

29. Fouda A, Al-Otaibi WA, Saber T, AlMaotwaa SM, Alshallash KS, Elhady M, et al. Antimicrobial, antiviral and in-vitro cytotoxicity and mosquitocidal activities of Portulaca oleracea-based green synthesis of Selenium Nanoparticles. J Funct Biomat. 2022;132(3):157. doi: https://doi.org/10.3390/jfb13030157

30. Pareek A, Meena RK, Yadav B. Antimicrobial activity of Syzigium cumini. Indian J Appl Res. 2015;5(8):751753. Available from: https://shorturl.at/CyuSV

31. Adelakun AO, Awosika A, Adabanya U, Omole AE, Olopoda AI, Bello ET. Antimicrobial and synergistic effects of Syzygium cumini, Moringa oleifera, and Tinospora cordifolia against different Candida infections. Cureus. 2024;16(1):e52857. doi: https://doi.org/10.7759/cureus.52857

32. Chanudom L, Bhoopong P, Khwanchuea R, Tangpong J. Antioxidant and antimicrobial activities of aqueous & ethanol crude extracts of 13 Thai traditional plants. Int J Curr Microbiol App Sci. 2014;3(1):549–58. Available from: https://ijcmas.com/vol-3-1/Lanchakon%20Chanudom,%20et%20al.pdf

33. Oliveira GF, Furtado NAJC, Filho AAS, Martins CHG, Bastos JK, Cunha WR, et al. Antimicrobial activity of Syzigium cumini (Myrtaceae) leaves extract. Braz J Microbiol. 2007;38(2):381–4. doi: https://doi.org/10.1590/S1517-83822007000200035

34. Bernardo WLC, Boriollo MFG, Tonon CC, da Silva JJ, Oliveira MC, de Moraes FC, et al. Biosynthesis of silver nanoparticles from Syzygium cumini leaves and their potential effects on odontogenic pathogens and biofilms. Front Microbiol. 2022;13:995521. doi: https://doi.org/10.3389/fmicb.2022.995521

35. Figueirêdo Junior EC, Cavalcanti YW, Lira AB, Pessôa HLF, Lopes WS, da Silva DR et al. Phytochemical composition, antifungal activity, in vitro and in vivo toxicity of Syzygium cumini (L.) Skeels leaves extract. Bol Latinoam Caribe Plant Med Aromat. 2021;20:536–57. doi: https://doi.org/10.37360/blacpma.21.20.5.40 10.37360/blacpma.21.20.5.40

36. Liu Y, Yang K, Jia Y, Shi J, Tong Z, Wang Z. Thymine sensitizes Gram negative pathogens to antibiotic killing. Front Microbiol. 2021;12:622798. doi: https://doi.org/10.3389/fmicb.2021.622798

37. Amala VE and Jeyaraj M. Determination of antibacterial, antifungal, bioactive constituents of Triphala by Ft-IR and GC-MS analysis. Int J Pharm Sci. 2014;6(8):123–6. Available from: https://shorturl.at/iTt51

38. Human Metabolome Database [Internet]. Showing metabocard for 1,3,5-Triphenylcyclohexane (HMDB0037518). 2022 Jul 3;[cited 2023 Nov 27]. Available from: https://hmdb.ca/metabolites/HMDB0037518

https://hmdb.ca/metabolites/HMDB0037518

39. Gade S, Rajamanikyam M, Vadlapudi V, Nukala KM, Aluvala R, Giddigari C, et al. Acetylcholinesterase inhibitory activity of stigmasterol & hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata. Biochimica et Biophysica Acta General Subjects. 2017;1861(3):541–50. doi: https://doi.org/10.1016/j.bbagen.2016.11.044

40. Ladokun OA, Abiola A, Okikiola D, Ayodeji F. GC-MS and molecular docking studies of Hunteria umbellate methanolic extract as a potent anti-diabetic. Inform Med Unlocked. 2018;13:1–8. doi: https://doi.org/10.1016/j.imu.2018.08.001

41. Lara HH, Ixtepan Turrent L, Garza Trevino EN, Flores Tevino SM, Borkow G, Rodriguez Padilla C. Antiviral propierties of 5,5’-Dithiobis-2-nitrobenzoic acid and bacitracin against T-tropoc human immunodeficiency virus type 1. Virol J. 2011;8:137. doi: https://doi.org/10.1186/1743-422X-8-137

42. Masfra and Hafni A. Cytotoxicity of “Ekor naga” Leaf (Rhaphidophora pinnata (Lf) Shcott) Chloroform extract against T47D Cancer cells. Int J PharmTech Res. 2014-2015;7(2):238–42. Available from: https://api.semanticscholar.org/CorpusID:88916695

43. Ribeiro TG, Chávez Fumagalli MA, Valadares DG, Valadares DG, Franca JR, Lage PS, et al. Antileishmanial activity and cytotoxicity of Brazilian plants. Exp Parasitol. 2014;143:60–8. doi: https://doi.org/10.1016/j.exppara.2014.05.004

44. Pereira JV, Freires IA, Castilho AR, da Cunha MG, Alves HDS, Rosalen PL. Antifungal potential of Sideroxylon obtusifolium and Syzigium and their mode of action against Candida albicans. Pharm Biol. 2016;54(10):2312–9. doi: https://doi.org/10.3109/13880209.2016.115562

Article Metrics
74 Views 26 Downloads 100 Total

Year

Month

Related Search

By author names